RU2715588C1 - Способ определения характеристик насыпного грунта - Google Patents
Способ определения характеристик насыпного грунта Download PDFInfo
- Publication number
- RU2715588C1 RU2715588C1 RU2019130924A RU2019130924A RU2715588C1 RU 2715588 C1 RU2715588 C1 RU 2715588C1 RU 2019130924 A RU2019130924 A RU 2019130924A RU 2019130924 A RU2019130924 A RU 2019130924A RU 2715588 C1 RU2715588 C1 RU 2715588C1
- Authority
- RU
- Russia
- Prior art keywords
- soil
- unloading
- expansion
- loading
- pressure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Изобретение относится к строительному грунтоведению и может быть использовано при проектировании искусственных оснований фундаментов зданий и сооружений из насыпного глинистого грунта и в агрономии для качественной оценки агрономической ценности почвы по размерам почвенных агрегатов. Способ определения характеристик насыпного грунта заключается в многоцикловом нагружении-разгружении образца грунта в жесткой цилиндрической камере статическим давлением, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке. Регистрации в каждом цикле нагружения-разгружения образца грунта осевой деформации сжатия при нагружении и осевой деформации расширения при разгружении, окончании многоциклового нагружения-разгружения образца грунта при достижении стабильного значения коэффициента упругой работы грунта с допускаемым коэффициентом вариации в 6-ти последних циклах нагружения-разгружения и определении влажности, плотности и плотности минеральных частиц грунта, удельной работы уплотнения и расширения, объемного содержания в грунте упруго деформирующейся воды и воды, участвующей в неупругой части деформации грунта, и объемного содержания минеральных частиц в грунте. Многоцикловое нагружение-разгружение образца грунта производят постоянно возрастающим и постоянно убывающим давлением со скоростью не более 10 кПа/мин с регистрацией значений давления и осевых деформаций сжатия и расширения образца грунта с шагом деформации не более 0,005 мм и времени их проявления. Определяют скорости осевой деформации сжатия и расширения образца грунта по приведенной зависимости. При давлении pI и pI-1, кПа, причем p=Bpt, где t - длительность возрастания или убывания давления, мин, со скоростью Bp≤10, кПа/мин, и по периодически повторяющимся значениям выделяют циклы изменения скорости осевой деформации сжатия и расширения образца, присущие данному грунту, а в числе характеристик грунта дополнительно определяют обобщенный размер структурных элементов уплотненного в заданном диапазоне давлений грунта по приведенной зависимости. Технический результат состоит в обеспечении повышения достоверности и точности результатов испытаний образца грунта при многоцикловом нагружении-разгружении, обеспечении увеличения числа определяемых характеристик грунта. 3 ил.
Description
Изобретение относится к строительному грунтоведению и может быть использовано при проектировании искусственных оснований фундаментов зданий и сооружений из насыпного глинистого грунта и в агрономии для качественной оценки агрономической ценности почвы по размерам почвенных агрегатов.
Известен способ уплотнения грунта, заключающийся в 10-тицикловом нагружении-разгружении нескольких образцов одного и того же фунта с различной влажностью в жесткой цилиндрической камере одной стандартной ступенью статического давления, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке, регистрации в каждом цикле нагружения-разгружения каждого образца грунта его вертикальной осадки после нагружения и вертикального расширения после разгружения с погрешностью 0,01 мм и расчете деформационных характеристик грунта. Для каждого образца грунта с различной влажностью производят 10 циклов нагружения-разгружения с интервалами 5 с между циклами [Руководство по геотехническому контролю за подготовкой оснований и возведением грунтовых сооружений в энергетическом строительстве. РД 34 15.073-91. - Л.: ВНИИГидротехники им. Б.Е. Веденеева, 1991. - 434 с, пп. 7.12.4-7.12.5] и определяют характеристики грунта: плотность и влажность грунта. Испытания образцов с различной влажностью заканчивают тогда, когда с повышением влажности грунта последующих двух-трех образцов грунта происходит последовательное уменьшение значений плотности грунта или когда грунт перестает уплотняться и начинает при нагружении выжиматься из жесткой цилиндрической камеры. По полученным при испытаниях образцов грунта значениям плотности и влажности определяют плотность сухого грунта и строят график зависимости плотности сухого грунта от влажности, на котором находят максимум полученной зависимости и соответствующие ему величины максимальной плотности сухого грунта и оптимальной влажности. Недостатками способа являются:
- необоснованно одинаковое 10-тицикловое нагружение-разгружение для каждого образца разных фунтов;
- окончание нагружения-разгружения каждого образца фунта производится без обоснования достаточности 10-ти циклов;
- низкая достоверность результатов испытаний вследствие разного состояния фунта при разной влажности и одинаковом числе циклов нагружения-разгружения;
- малое число определяемых характеристик фунта: позволяет определять только деформационные характеристики, максимальную плотность и оптимальную влажность;
- невозможность оценки структурности грунта.
Известен способ определения характеристик фунтов, заключающийся в многоцикловом нагружении-разгружении нескольких образцов фунта в жесткой цилиндрической камере одной постоянной ступенью статического давления, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке, регистрации в каждом цикле нагружения-разгружения каждого образца грунта его осевой деформации после нагружения и осевого расширения после разгружения, окончании многоциклового нагружения-разгружения образца фунта при достижении стабильного значения коэффициента упругой работы фунта с допускаемым коэффициентом вариации в 6-ти последних циклах и определении влажности, плотности и плотности минеральных частиц фунта, удельной работы уплотнения и расширения, объемного содержания в фунте упруго деформирующейся воды и воды, участвующей в неупругой части деформации грунта и объемного содержания минеральных частиц в грунте [Патент РФ на изобретение №2699554, G01N 3/32, E02D 1/02, G01N 33/24. Способ определения максимальной плотности и оптимальной влажности грунта / Ляшенко П.А., Денисенко В.В., Коваленко B.C., Коломиец Н.С.// опубл. 06.09.2019 Бюл. №25 - (прототип)].
Недостатками способа являются:
- низкая достоверность результатов испытаний, обусловленная мгновенным, одной ступенью, приложением большого давления на образец грунта, что не соответствует условиям уплотнения катком на строительной площадке;
- недостаточная точность определения удельной работы уплотнения и расширения по конечным значениям деформаций при приложении давления одной ступенью, приводящая к завышению числа циклов нагружения-разгружения;
- невозможность точного разделения упругой и неупругой работы при уплотнении и расширении образца грунта;
- невозможность оценки структурности грунта.
Задача изобретения - повышение достоверности и точности результатов испытаний образца грунта при многоцикловом нагружении-разгружении и увеличение числа определяемых характеристик грунта.
Технический результат изобретения достигается тем, что в способе определения характеристик насыпного грунта, заключающийся в многоцикловом нагружении-разгружении образца грунта в жесткой цилиндрической камере статическим давлением, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке, регистрации в каждом цикле нагружения-разгружения образца грунта осевой деформации сжатия при нагружении и осевой деформации расширения при разгружении, окончании многоциклового нагружения-разгружения образца грунта при достижении стабильного значения коэффициента упругой работы грунта с допускаемым коэффициентом вариации в 6-ти последних циклах нагружения-разгружения и определении влажности, плотности и плотности минеральных частиц грунта, удельной работы уплотнения и расширения, объемного содержания в грунте упруго деформирующейся воды и воды, участвующей в неупругой части деформации грунта и объемного содержания минеральных частиц в грунте, согласно изобретения, многоцикловое нагружение-разгружение образца грунта производят постоянно возрастающим и постоянно убывающим давлением со скоростью не более 10 кПа/мин с регистрацией значений давления и осевых деформаций сжатия и расширения образца грунта с шагом деформации не более 0,005 мм и времени их проявления, определяют скорости осевой деформации сжатия и расширения образца грунта по формуле
где ƒI - скорость осевой деформации сжатия или расширения на I-м шаге регистрации осевых деформаций сжатия и расширения образца грунта, мм/кПа;
sI и sI-1 соответственно значения осевой деформации сжатия или расширения образца грунта, мм, при давлении pI и pI-1, кПа, причем р=Bpt, где t - длительность возрастания или убывания давления, мин, со скоростью Вр≤10, кПа/мин,
и по периодически повторяющимся значениям выделяют циклы изменения скорости осевой деформации сжатия и расширения образца, присущие данному грунту, а в числе характеристик грунта дополнительно определяют обобщенный размер структурных элементов уплотненного в заданном диапазоне давлений грунта по формуле
где dS - обобщенный размер структурных элементов в последних 6-ти циклах нагружения-разгрузки;
hS - средняя высота образца грунта в последних 6-ти циклах нагружения-разгрузки;
nS - среднее число циклов осевой деформации сжатия и расширения в
последних 6-ти циклах нагружения-разгрузки.
Новизна заявляемого технического решения обусловлена тем, что многоцикловое нагружение-разгружение образца грунта постоянно возрастающим и постоянно убывающим давлением со скоростью не более 10 кПа/мин с регистрацией значений давления и осевых деформаций сжатия и расширения образца грунта с шагом деформации не более 0,005 мм и времени их проявления позволяет определять значения скорости осевой деформации сжатия и расширения образца грунта и с их помощью выделять циклы изменения скорости осевой деформации сжатия и расширения образца, присущие данному грунту и позволяющие определять обобщенный размер структурных элементов уплотненного в заданном диапазоне давлений грунта. Кроме того, такой режим нагружения-разгружения и регистрации результатов испытания образца грунта повышает достоверность и точность результатов испытаний,
позволяет дополнительно определять обобщенный размер структурных элементов, уплотненного в заданном диапазоне давлений грунта.
Таким образом, совокупность указанных отличительных признаков является сущностью изобретения, обеспечивающей его новизну, изобретательский уровень и промышленную применимость.
Пояснения к заявляемому способу определения характеристик насыпного грунта изображены на:
фиг. 1 - график осевой деформаций образца грунта при многоцикловом нагружении-разгружении постоянно возрастающим и постоянно убывающим давлением с регистрацией давления и осевых деформаций сжатия и расширения с шагом деформации 0,005 мм;
фиг. 2 - график скорости осевой деформации сжатия образца грунта при постоянно возрастающем давлении;
фиг. 3 - график скорости осевой деформации расширения образца грунта при постоянно убывающем давлении.
Для реализации способа определения характеристик насыпного грунта может быть использован любой прибор, имеющий жесткую цилиндрическую камеру с подвижным жестким штампом, механизм постоянно возрастающего или постоянно убывающего давления, измеритель перемещения штампа и блок регистрации перемещения штампа с электронной памятью. В качестве такого прибора может быть использован, например, автоматический компрессионный прибор с постоянно возрастающей нагрузкой АКП-6Н [Денисенко В.В., Ляшенко П.А. Автоматический компрессионный прибор АКП-6Н для испытания грунтов постоянно возрастающей нагрузкой // Научные труды Кубанского государственного технологического университета, 2016, №6. - С. 156-169. - URL: http://ntk.kubstu.ru/file/1014].
Способ определения характеристик насыпного грунта осуществляют следующим образом.
Из подготовленного для испытания измельченного грунта с известной влажностью отбирают навеску грунта определенной массы, в зависимости от объема жесткой цилиндрической камеры, в которой будут производиться испытания. Отобранную навеску грунта загружают в жесткую цилиндрическую камеру, разравнивают, накрывают жестким подвижным штампом, устанавливают измеритель перемещения штампа, нагружают начальным статическим давлением, значение которого согласуют с давлением на строительной площадке от транспортных механизмов, выдерживают в течение 10 мин для формирования связного образца грунта и регистрируют показания измерителя перемещения штампа.
Подготовленный таким образом образец грунта нагружают постоянно возрастающим давлением со скоростью не более 10 кПа/мин до конечного значения, которое согласуют с давлением уплотнения на строительной площадке, при этом регистрируют значения давления и осевой деформации сжатия образца грунта (осевого перемещения штампа) с шагом деформации не более 0,005 мм в электронной памяти прибора. Конечное давление выдерживают в течение 1 мин, а затем образец грунта разгружают постоянно убывающим давлением с той же скоростью до начального значения давления и при этом регистрируют значения давления и осевой деформации расширения образца грунта с шагом деформации не более 0,005 мм в электронной памяти прибора.
После выдерживания образца грунта под начальным давлением в течение 1 мин вновь производят нагружение-разгружение образца грунта в описанном режиме.
Аналогичным образом производят многоцикловое нагружение-разгружение образца грунта до достижения стабильного значения коэффициента упругой работы грунта с допускаемым коэффициентом вариации в 6-ти последних циклах [Патент РФ на изобретение №2699554, G01N 3/32, E02D 1/02, G01N 33/24. Способ определения максимальной плотности и оптимальной влажности грунта / Ляшенко П.А., Денисенко В.В., Коваленко B.C., Коломиец Н.С.// опубл. 06.09.2019 Бюл. №25].
Затем образец грунта полностью разгружают и определяют его стандартные характеристики: плотность, влажность, коэффициент пористости и плотность минеральных частиц грунта по общепринятой методике [ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик. - М.: Стандартинформ, 2016. - 24 с.], а также удельную работу уплотнения и расширения, объемное содержание в грунте упруго деформирующейся воды и объемное содержание воды, участвующей в неупругой части деформации грунта, и объемное содержание минеральных частиц в грунте [Патент РФ на изобретение №2699554, G01N 3/32, E02D 1/02, G01N 33/24. Способ определения максимальной плотности и оптимальной влажности грунта / Ляшенко П.А., Денисенко В.В., Коваленко B.C., Коломиец Н.С.// опубл. 06.09.2019 Бюл. №25], строят зависимости осевой деформации образца грунта при многоцикловом нагружении-разгружении постоянно возрастающим и постоянно убывающим давлением, которые имеют вид кривых, в отличие от прямых в прототипе, ступенчатый характер изменения деформаций и, соответственно, циклический характер изменения скорости деформации, которые не могут быть выявлены в прототипе.
Рассчитывают значения скорости деформаций сжатия (уплотнения) и расширения образца грунта в каждом цикле нагружения-разгружения по формуле:
где ƒI - скорость осевой деформации сжатия или расширения на I-м шаге регистрации осевых деформаций сжатия и расширения образца грунта, мм/кПа;
sI и sI-1 - соответственно значения осевой деформации сжатия или расширения образца грунта, мм, при давлении pI и pI-1, кПа, причем
р=Bpt, где t - длительность возрастания или убывания давления, мин, со скоростью Вр≤10, кПа/мин,
По периодически повторяющимся значениям скорости деформаций сжатия и расширения образца грунта выделяют циклы изменения скорости осевой деформации сжатия и расширения образца, присущие данному грунту, и по формуле
где dS - обобщенный размер структурных элементов в последних 6-ти циклах нагружения-разгрузки;
hS - средняя высота образца грунта в последних 6-ти циклах нагружения-разгрузки;
nS- среднее число циклов осевой деформации сжатия и расширения в последних 6-ти циклах нагружения-разгрузки,
определяют дополнительную характеристику грунта - обобщенный размер структурных элементов уплотненного грунта, с помощью которого можно:
- оценивать количественно развитие структурности грунтов при разной влажности и разных диапазонах статического давления на них для направленного регулирования состава и механических свойств уплотненного грунта, например, путем введения в грунт песчаных и пылеватых фракций можно снизить обобщенный размер структурных элементов, повысить их прочность и жесткость грунтового основания;
- оценивать количественно развитие структурности почв при разной влажности и разных диапазонах статического давления на них для выбора режима полевых работ в растениеводстве.
Структурные элементы (агрегаты) выделяются в образце грунта (или почвы) поверхностями скольжения, которые развиваются не равномерно, а скачкообразно, в соответствии с распределением неоднородностей. От размеров структурных элементов зависит прочность и сжимаемость грунтов. При компрессионном сжатии постоянно возрастающей нагрузкой скачкообразность развития поверхностей скольжения порождает, вследствие кооперативного эффекта, скачкообразность развития деформации и, соответственно, цикличность скорости деформации образца. Поэтому число структурных элементов агрегатов в направлении оси сжатия равно удвоенному числу циклов скорости деформации, так как образец грунта испытывает давление от двух штампов прибора одновременно, а поверхности скольжения развиваются от них вглубь образца [см. Ляшенко П.А. Сопротивление и деформации глинистого грунта: монография. - Краснодар: Изд-во КубГАУ, 2014. - С. 81].
Таким образом, изобретение позволяет:
- получать расширенный комплекс характеристик грунта при испытании одного образца;
- повышает достоверность результатов за счет нагружения-разгружения образца грунта постоянно возрастающим и постоянно убывающим давлением, что более соответствует условиям уплотнения грунта катком на строительной площадке, и точность за счет частой регистрации значений давления и осевых деформаций сжатия и расширения;
- фиксировать присущий грунту циклический характер скорости деформации образца грунта при постоянно возрастающем и постоянно убывающем давлении, который при нагружении-разгружении образца грунта ступенью давления зафиксировать невозможно;
- определять соотношение упругой и неупругой деформации при уплотнении насыпного грунта, основанного на измерении присущего грунту циклического характера скорости деформации, что необходимо для контроля расчетов основания сооружения;
- оценивать количественно развитие структурности грунтов при разной влажности и разных диапазонах статического давления на них для направленного регулирования состава и механических свойств уплотненного грунта, например, путем введения в грунт песчаных и пылеватых фракций можно снизить обобщенный размер структурных элементов, повысить их прочность и жесткость грунтового основания;
- оценивать количественно развитие структурности почв при разной влажности и разных диапазонах статического давления на них для выбора режима полевых работ в растениеводстве;
определять обобщенный размер структурных элементов, взаимодействующих между собой (через поверхности скольжения) в образце при внешнем механическом воздействии на него, без разрушения образца на составляющие агрегаты.
Claims (8)
- Способ определения характеристик насыпного грунта, заключающийся в многоцикловом нагружении-разгружении образца грунта в жесткой цилиндрической камере статическим давлением, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке, регистрации в каждом цикле нагружения-разгружения образца грунта осевой деформации сжатия при нагружении и осевой деформации расширения при разгружении, окончании многоциклового нагружения-разгружения образца грунта при достижении стабильного значения коэффициента упругой работы грунта с допускаемым коэффициентом вариации в 6-ти последних циклах нагружения-разгружения и определении влажности, плотности и плотности минеральных частиц грунта, удельной работы уплотнения и расширения, объемного содержания в грунте упруго деформирующейся воды и воды, участвующей в неупругой части деформации грунта, и объемного содержания минеральных частиц в грунте, отличающийся тем, что многоцикловое нагружение-разгружение образца грунта производят постоянно возрастающим и постоянно убывающим давлением со скоростью не более 10 кПа/мин с регистрацией значений давления и осевых деформаций сжатия и расширения образца грунта с шагом деформации не более 0,005 мм и времени их проявления, определяют скорости осевой деформации сжатия и расширения образца грунта по формуле
- где ƒI - скорость осевой деформации сжатия или расширения на I шаге регистрации осевых деформаций сжатия и расширения образца грунта, мм/кПа;
- sI и sI-1 - соответственно значения осевой деформации сжатия или расширения образца грунта, мм, при давлении pI и pI-1, кПа, причем p=Bpt, где t - длительность возрастания или убывания давления, мин, со скоростью Bp≤10, кПа/мин, и по периодически повторяющимся значениям выделяют циклы изменения скорости осевой деформации сжатия и расширения образца, присущие данному грунту, а в числе характеристик грунта дополнительно определяют обобщенный размер структурных элементов уплотненного в заданном диапазоне давлений грунта по формуле
- где dS - обобщенный размер структурных элементов в последних 6-ти циклах нагружения-разгружения;
- hS - средняя высота образца грунта в последних 6-ти циклах нагружения-разгружения;
- nS- среднее число циклов осевой деформации сжатия и расширения в последних 6-ти циклах нагружения-разгружения.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019130924A RU2715588C1 (ru) | 2019-09-30 | 2019-09-30 | Способ определения характеристик насыпного грунта |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019130924A RU2715588C1 (ru) | 2019-09-30 | 2019-09-30 | Способ определения характеристик насыпного грунта |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2715588C1 true RU2715588C1 (ru) | 2020-03-02 |
Family
ID=69768227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019130924A RU2715588C1 (ru) | 2019-09-30 | 2019-09-30 | Способ определения характеристик насыпного грунта |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2715588C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2801164C1 (ru) * | 2023-01-09 | 2023-08-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) г. Новосибирск | Способ измерения несущей способности насыпных грунтов |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1605203A1 (ru) * | 1988-07-07 | 1990-11-07 | Производственный И Научно-Исследовательский Институт По Инженерным Изысканиям В Строительстве Госстроя Рсфср | Способ испытани грунтов и устройство дл его осуществлени |
RU2186174C2 (ru) * | 2000-06-13 | 2002-07-27 | Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" | Способ определения технологических характеристик связных грунтов при уплотнении механизмами |
RU2619383C2 (ru) * | 2013-06-18 | 2017-05-15 | Александр Николаевич Труфанов | Способ определения прочностных характеристик грунтов в режиме релаксации напряжений |
RU2628874C2 (ru) * | 2015-06-29 | 2017-08-22 | Юрий Петрович Васильев | Способ лабораторного испытания грунтов |
RU2699554C1 (ru) * | 2018-04-23 | 2019-09-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" | Способ определения максимальной плотности и оптимальной влажности грунта |
-
2019
- 2019-09-30 RU RU2019130924A patent/RU2715588C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1605203A1 (ru) * | 1988-07-07 | 1990-11-07 | Производственный И Научно-Исследовательский Институт По Инженерным Изысканиям В Строительстве Госстроя Рсфср | Способ испытани грунтов и устройство дл его осуществлени |
RU2186174C2 (ru) * | 2000-06-13 | 2002-07-27 | Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" | Способ определения технологических характеристик связных грунтов при уплотнении механизмами |
RU2619383C2 (ru) * | 2013-06-18 | 2017-05-15 | Александр Николаевич Труфанов | Способ определения прочностных характеристик грунтов в режиме релаксации напряжений |
RU2628874C2 (ru) * | 2015-06-29 | 2017-08-22 | Юрий Петрович Васильев | Способ лабораторного испытания грунтов |
RU2699554C1 (ru) * | 2018-04-23 | 2019-09-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" | Способ определения максимальной плотности и оптимальной влажности грунта |
Non-Patent Citations (1)
Title |
---|
ГОСТ 12248-96 Грунты. Методы лабораторного определения характеристик прочности и деформируемости, Москва, Издательство стандартов, 1997. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2801164C1 (ru) * | 2023-01-09 | 2023-08-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) г. Новосибирск | Способ измерения несущей способности насыпных грунтов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4854175A (en) | Simple shear device for testing earthen materials and powders | |
Ferrari et al. | Advances in the testing of the hydro-mechanical behaviour of shales | |
Tanaka et al. | Unloading behavior of clays measured by CRS test | |
Miller et al. | Desiccation crack depth and tensile strength in compacted soil | |
RU2715588C1 (ru) | Способ определения характеристик насыпного грунта | |
RU2350922C1 (ru) | Способ определения коэффициента пуассона горных пород | |
RU2337343C1 (ru) | Способ определения длительной прочности и давления набухания в глинистом грунте | |
RU2707624C1 (ru) | Способ определения характеристик набухания грунта | |
RU2699554C1 (ru) | Способ определения максимальной плотности и оптимальной влажности грунта | |
RU2629508C2 (ru) | Способ определения несущей способности сваи | |
Abrantes et al. | Evaluation of the coefficient of earth pressure at rest (K0) of a saturated-unsaturated colluvium soil | |
Quinn et al. | Effect of strain rate on isotropically consolidated kaolin over a wide range of strain rates in the triaxial apparatus | |
CN106018017A (zh) | 一种砂土地基模型试验中的砂土地基模型的制备方法 | |
Abadkon | Strength and dilatancy of anisotropic cohesionless soils | |
RU2398936C1 (ru) | Способ оценки несущей способности буронабивной сваи | |
RU2569915C1 (ru) | Способ определения плотности грунта при компрессионных испытаниях | |
Mendoza et al. | A new testing device for characterizing anisotropic response of soils during compaction processes | |
RU2708768C1 (ru) | Способ определения характеристик набухания грунта | |
Alqrinawi et al. | Calibrations of the Innovative S3F Sensor for Shear Stress Measurements in Soil | |
Susinov et al. | Investigation of the hydro‐mechanical properties of silty sand material from Topolnica tailings dam | |
Ghafghazi et al. | Confidence and accuracy in determination of the critical state friction angle | |
Osinski et al. | Comparison of Soil Water Retention Curves for sandy clay, obtained using different laboratory testing methods | |
RU2817587C1 (ru) | Способ определения деформационных характеристик грунтов | |
Fazeli et al. | Shear strength characteristics of Shiraz unsaturated silty clay | |
Arshad et al. | Use of Miniature Soil Stress Measuring Cells under Repeating Loads |