RU2713375C2 - Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы - Google Patents

Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы Download PDF

Info

Publication number
RU2713375C2
RU2713375C2 RU2018112753A RU2018112753A RU2713375C2 RU 2713375 C2 RU2713375 C2 RU 2713375C2 RU 2018112753 A RU2018112753 A RU 2018112753A RU 2018112753 A RU2018112753 A RU 2018112753A RU 2713375 C2 RU2713375 C2 RU 2713375C2
Authority
RU
Russia
Prior art keywords
magnetic field
magnetic
alternating
nanoparticles
field
Prior art date
Application number
RU2018112753A
Other languages
English (en)
Other versions
RU2018112753A (ru
RU2018112753A3 (ru
Inventor
Юрий Иванович Головин
Наталья Львовна Клячко
Александр Олегович Жигачев
Дмитрий Юрьевич Головин
Сергей Львович Грибановский
Алексей Васильевич Шуклинов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина"
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина", Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина"
Priority to RU2018112753A priority Critical patent/RU2713375C2/ru
Publication of RU2018112753A publication Critical patent/RU2018112753A/ru
Publication of RU2018112753A3 publication Critical patent/RU2018112753A3/ru
Application granted granted Critical
Publication of RU2713375C2 publication Critical patent/RU2713375C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

Группа изобретений относится к области биомедицины и биомедицинской техники и может быть использована как в исследовательских, так и прикладных задачах биомедицины: разработка новых технологий в области адресной доставки лекарств, исследование наномеханического воздействия на макромолекулярные и клеточные структуры с целью управления их функционированием, онкотерапии и др. Способ оказания локального воздействия переменного магнитного поля на биохимические системы с предварительно введенными в них функционализированными магнитными наночастицами заключается в управлении магнитными наночастицами с помощью комбинации постоянного градиентного магнитного поля напряженностью
Figure 00000018
и переменного магнитного поля с амплитудой
Figure 00000019
, согласно изобретению для локализации воздействия в области радиусом R* осуществляют периодическую переориентацию магнитных наночастиц в низкочастотном переменном магнитном поле с амплитудой
Figure 00000020
и угловой частотой меньше любой (или меньшей) из двух величин - 1000 с-1 и
Figure 00000021
(где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды). Устройство для локального наномеханического воздействия на биохимические системы, содержащие магнитные наночастицы, состоящее из узла, генерирующего градиентное магнитное поле Hg, узла катушек, создающих однородное магнитное поле Hb, которое изменяет положение области воздействия переменного магнитного поля, узла катушек, создающих переменное поле, которое управляет движением магнитных наночастиц, и управляемых источников постоянного и переменного тока для питания соответствующих катушек. Узел катушек, создающих переменное магнитное поле, генерирует магнитное поле с угловой частотой меньше любой из двух величин – 1000 с-1 и ωc=μμ0H a /(6ηVHD) (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), обеспечивая периодическую механическую переориентацию магнитных наночастиц. Способ и устройство обеспечивают наномеханическое воздействие на отдельные молекулы и молекулярные структуры или клетки в выбранном ограниченном объёме биохимической системы с введёнными в неё магнитными наночастицами за счёт периодической переориентации магнитных наночастиц в низкочастотное переменное магнитное поле. 2 н. и 7 з.п. ф-лы, 4 ил.

Description

Группа изобретений относится к области биомедицины и биомедицинской техники и может быть использовано как в исследовательских, так и прикладных задачах биомедицины: разработка новых технологий нанобиомедицины в области адресной доставки лекарств, исследование наномеханического воздействия на макромолекулярные и клеточные структуры, в том числе с целью управления их функционированием, в частности, в интересах онкотерапии и др.
Далее в описании используются следующие термины, которые, хотя и являются общепринятыми для специалистов в данной области техники, однако, требуют уточнения в контексте заявляемого изобретения.
ПМП - переменное магнитное поле;
НЧ - низкая частота;
ВЧ - высокая частота;
МНЧ -магнитные наночастицы;
МП - магнитное поле;
MPI - способ и устройство визуализации магнитных наночастиц (англ. magneticparticleimaging);
Группа изобретений предназначена для обеспечения локального воздействия переменного магнитного поля (ПМП) низкой частоты (НЧ) на биохимические системы, например, биоактивные молекулы и их комплексы, микроорганизмы, клеточные культуры, ткани, лабораторных животных, человека. При этом в биохимическую систему должны быть предварительно введены однодоменные магнитные наночастицы (МНЧ) преобразующие энергию НЧ МП в энергию вращательно - колебательных движений. Предлагаемые способ и устройство позволяют оказывать наномеханическое воздействие на отдельные биомакромолекулы и молекулярные структуры через конъюгированные с ними МНЧ или микроустройства на их основе без существенного разогрева в заранее намеченной (выбранной) области биохимической системы, не оказывая при этом воздействия в остальном объеме этой системы. При этом, можно управлять положением области воздействия и ее размерами для обеспечения 3D сканирования заранее намеченного объема (например, опухоли), не затрагивая окружающие ткани.
Из существующего уровня техники известны способы (US 4674481 A, US 5441532 A, US 5097844 А) локализации воздействия высокочастотного (ВЧ) ПМП на МНЧ, которые могут быть использованы для воздействия на биохимические системы путем преобразования энергии ПМП в тепловую энергию (магнитная гипертермия).
В патенте US 4674481 А описано устройство и способ локализации теплового воздействия ВЧ магнитного поля, основанные на изменении взаимной пространственной ориентации двух колец индуктивности.
В патенте US 5441532 А описывается устройство для проведения локальной терапии методом гипертермии с помощью набора катушек индуктивности, расположенных вокруг пациента и специфических алгоритмов, заложенных в управляющей системе. Такая система позволяет создать и управлять положением области с повышенной, по сравнению с остальной частью рабочего пространства, напряженностью высокочастотного (ВЧ) магнитного поля.
В патенте US 5097844 А описано устройство для локализации гипертермии в пространстве с помощью нескольких групп электромагнитных катушек, составленных из трех каждая, которые в совокупности создают поле с повышенной напряженностью ВЧ магнитного поля в определенной области организма человека по сравнению с окружающими тканями.
Недостатками упомянутых способов и соответствующих устройств является то, что локализация основана на создании области с повышенной напряженностью ПМП, что, во-первых, усложняет создание и применение устройств из-за большой мощности генераторов, во-вторых, создаваемое поле влияет на МНЧ, находящиеся вне интересующей зоны. Заявляемый способ и устройство основаны не на фокусировке управляющего ПМП в определенной области пространства, а на создании дополнительного градиентного поля, обеспечивающего блокировку движения МНЧ под действием внешнего НЧ ПМП за счет магнитного насыщения повсюду, кроме небольшой области, положение которой может регулироваться за счет смещающих магнитных полей.
В научной литературе, например, Tasci, Т.О., Vargel, I., Arat, A., Guzel, Е., Korkusuz, P., &Atalar, E. (2009). Focused RF hyperthermiausingmagneticfluids. Medicalphysics, 56(5), 1906-1912 описывается способ локализации области воздействия ВЧ магнитного поля, аналогичный предлагаемому и основанный на создании градиентного поля, создаваемого электромагнитными катушками. Из другого литературного источника (Jian, L., Shi, Y., Liang, J., Liu, С., &Xu, G. (2013). A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment. IEEETransactionsonAppliedSuperconductivity, 23(3), 4400104-4400104) известен способ локализации гипертермии с помощью шести сверхпроводящих катушек, создающих экранирующее постоянное поле вокруг области воздействия ВЧ ПМП, с низкой напряженностью поля в рабочей области (области интереса), где МНЧ вызывают локальный нагрев тканей при включении высокочастотного поля.
Из существующего уровня техники известно устройство (RU 2593238) для исследования воздействия низкочастотного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы. Это устройство позволяет оказывать воздействие низкочастотным магнитным полем на магнитные наночастицы с целью управления функционированием биохимических систем.
Недостатком этого устройства является невозможность оказания локального воздействия ПМП на МНЧ в выбранной области, воздействие магнитного поля охватывает всю рабочую область устройства.
Из существующего уровня техники известен способ и устройство визуализации магнитных наночастиц (англ. magneticparticleimaging (MPI)), закрепленный патентами WO 2011116229 А2, WO 2008/078246 А2 и описанный в научной литературе, например, Weizenecker, J., Gleich, В., Rahmer, J., Dahnke, H., &Borgert, J. (2009). Three-dimensional real-time in vivo magnetic particle imaging. Physics in medicine and biology, 54(5), L1. и Т. Knopp, T.M. Buzug. (2012) Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. SpringerScience&BusinessMedia. 204 p.Упомянутый способ основан на создании двух областей: 1) с низкой напряженностью поля, где МНЧ находятся в ненасыщенном состоянии и 2) области с высокой напряженностью поля, где МНЧ находятся в насыщенном состоянии. Способ и устройства, описанные в указанных источниках, позволяют, используя систему, состоящую из выбирающего узла (selectionmeans), сдвигающего узла (drivemeans) и узла регистрации сигнала (receivingmeans), которые строятся, как правило, на основе электромагнитных катушек, визуализировать пространственную плотность распределения МНЧ в исследуемом объекте в реальном времени.
На базе принципов, положенных в основу MPI, запатентован способ локального нагрева с помощью магнитных частиц, (заявка WO 2004018039 А1, МПК A61H 1/40, A61N 2/00; A61N 1/40, 2004), который принят в качестве прототипа заявляемого способа. Общими признаками заявляемого способа и известного являются последовательность действий для локализации действия ПМП путем создания градиентного магнитного поля.
Недостатком известного способа является невозможность локализации нагрева, создаваемого МНЧ, в живых тканях в объеме менее 1 см3 в результате теплопроводности окружающих тканей, что ослабляет или сводит к нулю преимущества локализации воздействия ВЧ ПМП.
Заявляемый способ позволяет преодолеть этот недостаток за счет принципиально иного механизма действия, так как создает наномеханическое воздействие на биохимические системы с помощью периодической переориентации МНЧ без их значимого нагрева во внешнем НЧ ПМП. В этом заключается принципиальное отличие от прототипа, поскольку наномеханическое воздействие может быть локализовано на уровне отдельных биоактивных макромолекул и клеток.
Техническим результатом по объекту «способ» является локализация и изменение положения области конечного наномеханического воздействия МНЧ на молекулярные объекты биохимической системы за счет создания дополнительного градиентного поля с нулевой точкой и применения НЧ ПМП, вызывающего переориентацию МНЧ, что в свою очередь создает наномеханическое воздействие на отдельные биомакромолекулы или клетки и не распространяется самопроизвольно в объем всей биохимической системы.
Технический результат достигается способом оказания локального воздействия переменного магнитного поля на биохимические системы с предварительно введенными в них функционализированными магнитными наночастицами, заключающемся в управлении магнитными наночастицами с помощью комбинации постоянного градиентного магнитного поля напряженностью
Figure 00000001
и переменного магнитного поля с амплитудой
Figure 00000002
и перемещении области воздействия с помощью регулируемого по напряженности однородного магнитного поля Hb, согласно изобретению, для локализации воздействия в области радиусом R* осуществляют периодическую переориентацию магнитных наночастиц в низкочастотном переменном магнитном поле с амплитудой
Figure 00000003
и угловой частотой меньше любой (или меньшей) из двух величин - 1000 с-1 и
Figure 00000004
(где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды).
Перед включением переменного и градиентного магнитных полей предварительно включают постоянное однородное магнитное поле напряженностью H0, способствующее агрегации магнитных наночастиц, что в свою очередь, усиливает наномеханической воздействие или позволяет снизить напряженность всех магнитных полей, используемых при реализации.
Переменное магнитное поле генерируют в виде последовательных пакетов и пауз с регулируемой длительностью te и tp соответственно, что позволяет увеличить эффективность наномеханического воздействия.
Размер области локализации увеличивают или уменьшают путем увеличения или уменьшения величины градиента
Figure 00000005
локализирующего постоянного магнитного поля соответственно.
Переменное магнитное поле может иметь вращающийся вектор напряженности
Figure 00000006
что увеличивает возможные деформации в конъюгированных биомакромолекулах.
Переменное магнитноеполе с напряженностью
Figure 00000007
может генерироваться во времени как меандр, путем периодического переключения его направления на противоположное, что упрощает и удешевляет способ и устройство для его реализации.
Переменное магнитное поле
Figure 00000008
может иметь вид затухающих во времени колебаний, разделенных паузами, что позволяет увеличить мгновенные значения напряженности переменного магнитного поля без увеличения средней мощности генератора.
Направление градиента
Figure 00000005
может периодически изменятся, причем длительность фронта изменения направления градиента магнитного поля устанавливают меньше, чем продолжительность изменения направления вектора намагниченности магнитных наночастиц, что вызывает полезное повышение концентрации магнитных частиц вблизи точки с нулевым значением градиентного магнитного поля и уменьшение их концентрации на периферии.
В качестве прототипа устройства выбрано устройство, описанное в заявке WO 2004018039 А1, МПК A61N 1/40, A61N 2/00; A61N 1/40, 2004. Общими признаками заявляемого устройства и известного являются узел, генерирующий градиентное магнитное поле, узел смещающих катушек, изменяющих положение области воздействия переменного магнитного поля, узел управляющих катушек, создающих переменное поле, управляемые источники постоянного и переменного тока.
Техническим результатом по объекту «устройство» также является локализация конечного наномеханического воздействия МНЧ на молекулярные объекты биохимической системы за счет создания дополнительного градиентного поля с нулевой точкой и применения НЧ ПМП, вызывающего переориентацию МНЧ, что в свою очередь создает наномеханическое воздействие на отдельные биомакромолекулы или клетки и не распространяется самопроизвольно в объем всей биохимической системы. Изобретение включает возможность изменения размера области локализации воздействия.
Технический результат достигается тем, что устройство, состоящее из узла, генерирующего градиентное магнитное поле
Figure 00000009
узла катушек, создающих магнитное поле Hb, которое изменяет положение области воздействия переменного магнитного поля, узла катушек, создающих переменное поле, управляющее движением магнитных наночастиц, управляемых источников постоянного и переменного тока низкой частоты для питания соответствующих катушек, согласно изобретению, что узел катушек, создающих переменное магнитное поле, генерирует магнитное поле с угловой частотой меньше любой из двух величин – 1000 с-1 и ωc=μμ0H a /(6ηVHD). (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), обеспечивая периодическую механическую переориентацию магнитных наночастиц.
Сущность изобретения поясняется прилагаемыми схемами, которые отражают возможный вариант осуществления способа и устройства, но не ограничивают всю полноту данной заявки.
Фиг. 1. Блок-схема одного из возможных вариантов исполнения устройства для осуществления заявляемого способа.
Фиг. 2. Результаты моделирования методом конечных элементов градиентного магнитного поля, создаваемого системой магнитов (1), изображенной на фиг. 1.
Фиг. 3. График изменения магнитного поля вдоль оси z, соединяющей центры магнитов.
Фиг. 4. График изменения магнитного поля вдоль оси х перпендикулярной оси, соединяющей центры магнитов.
Один из вариантов реализации заявляемого устройства для обеспечения выполнения способа локализации воздействия НЧ ПМП представлен на фиг. 1, который, между тем, не ограничивает всю полноту заявки. Указанные далее обозначения относятся к фиг. 1.
Основными компонентами заявляемого устройства являются: узел 1, создающий градиентное поле
Figure 00000010
с точкой нулевого поля, узел 2, состоящий из нескольких пар катушек Гельмгольца, расположенных вдоль одной, двух или трех осей и создающих магнитное поле Hb, которое изменяет положение нулевой точки градиентного поля, и узел 3, создающий НЧ ПМП с амплитудой
Figure 00000011
которое управляет движением МНЧ.
Узел 1, создающий градиентное магнитное поле с нулевой точкой может располагаться таким образом, чтобы направление максимального градиента как совпадало с осью, соединяющей одну пару катушек смещающего узла 2 для обеспечения легкого доступа в рабочую область, так и перпендикулярно к осям, соединяющим обе пары катушек узла 2. В зависимости от технической задачи управляющий магнитный узел 3 может помещаться в смещающий магнитный узел 2 и наоборот. Для обеспечения наибольшей локализации, т.е. для максимального уменьшения области воздействия ПМП, узел 1, создающий градиентное магнитное поле, может помещаться внутрь узлов 2 и 3.
Узел 1, создающий градиентное поле
Figure 00000012
может быть реализован как с помощью постоянных магнитов, расположенных одноименными полюсами навстречу друг другу, так и с помощью электромагнитных катушек с противоположным направлением тока в них. Узел 1 может быть реализован с помощью электромагнитных катушек, подключенных к регулируемому источнику постоянного тока, что позволит изменять размеры области локализации воздействия ПМП за счет изменения тока в них, влекущего изменение градиента магнитного поля. Магнитное поле такой системы, реализованной, например, на постоянных магнитах, имеет такое распределение (фиг. 2-4), что в центре системы поверхности постоянной напряженности представляют собой эллипсоиды вращения, окружающие область пониженной, по сравнению с остальной системой, напряженности поля. Центром этой области и является точка нулевого поля.
Узел 2, изменяющий положение нулевой точки градиентного поля
Figure 00000013
состоит из пар катушек Гельмгольца с взаимно ортогональными осями, которые создают перпендикулярно направленные внутри устройства однородные магнитные поля, изменяющие положение нулевой точки относительно ее положения, когда узел 2 отключен от источника питания. Катушки узла 2 подключаются последовательно к источникам постоянного тока (Источники питания 4 и 5), управляемых программно или вручную. Каждая пара катушек Гельмгольца смещающего узла 2 отвечает за смещение области воздействия ПМП вдоль определенной оси и подключаются к независимому источнику питания.
Узел 3 состоит из пары катушек, также расположенных в системе Гельмгольца, которые запитаны от регулируемого источника переменного тока (Источник питания 6). Причем угловая частота переменного тока, генерируемого источником питания 6, устанавливается ниже
Figure 00000014
(где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), таким образом, создаваемое узлом 3 НЧ ПМП не вызывает нагрева МНЧ, что позволяет оказывать чисто наномеханическое воздействие, а также использовать разрезанный ферромагнитный сердечник, соединяющий между собой катушки узла 3 и усиливающий НЧ ПМП. Предельная частота ωс зависит от соотношения вращающего момента со стороны НЧ ПМП и вязкого сопротивления со стороны окружающей жидкости. При увеличении частоты выше ωс возрастает роль вязкости и МНЧ начинают совершать стесненные колебания на угол меньший 180°.
Описанное устройство позволяет создавать локально действующее на магнитные наночастицы НЧ ПМП, что позволяет оказывать наномеханическое воздействие на отдельные биомакромолекулы, молекулярные структуры и клетки в выбранном ограниченном объеме биохимической системы или организме с введенными в нее МНЧ за счет периодической переориентации МНЧ в НЧ ПМП, создаваемом узлом 3. Узел 2 позволяет выбирать область воздействия внутри рабочего пространства и производить последовательный обход всей биохимической системы при соответствующем программном управлении. Управление всеми источниками питания может быть реализовано при помощи персонального компьютера.
Заявляемый способ реализуют следующим образом:
1. Создают устройство, состоящее, как минимум, из: магнитного узла 1, создающего градиентное поле с нулевой точкой с помощью постоянных магнитов или электромагнитных катушек в системе Максвелла с изменяемой величиной тока в них и узла 3, создающего НЧ ПМП, которое управляет движением МНЧ.
2. Вводят в объект (например, в микроорганизмы, клеточные культуры, лабораторное животное или в человека), искусственно синтезированные функционализованные МНЧ, микроустройства на их основе или магниточувсвительные объекты природного происхождения.
3. Помещают объект в область действия управляющего движением магнитных наночастиц НЧ ПМП, создаваемого узлом 3 устройства, построенного согласно п. 1.
4. Включают генерацию узлом 3 управляющего движением магнитных наночастиц НЧ ПМП с амплитудой
Figure 00000015
, при этом МНЧ, находящиеся в области пространства радиусом R* с напряженностью меньше амплитуды управляющего поля будут совершать вращательно-колебательные движения, оказывая локальное наномеханическое воздействие на конъюгированные с ними молекулы и молекулярные структуры объекта (Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Klyachko N.L., Majouga A.G., Master A.M., Sokolsky M., Kabanov A.V. (2015). Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. JournalofControlledRelease, 219, 43-60), а МНЧ расположенные вне этой области, будут находиться в «замороженном» состоянии (поляризованы постоянным полем
Figure 00000016
), соответственно не оказывая никакого воздействия биохимическую систему. При этом амплитуда НЧ ПМП имеет амплитуду
Figure 00000017
и угловую частоту меньше любой (или меньшей) из двух величин - 1000 с-1 и
Figure 00000014
(где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды).
Выполнение пунктов 1-4 обеспечивает наномеханическое воздействие на отдельные молекулы и молекулярные структуры или клетки в выбранном ограниченном объеме биохимической системы с введенными в нее МНЧ за счет периодической переориентации МНЧ в НЧ ПМП.
Способ направлен на создание условий и осуществление локального воздействия ПМП на систему с введенными в нее МНЧ. В частности, такая задача важна для перспективных технологий нанобиобиомедицины. В качестве целевых областей можно выделить регенеративную медицину, адресную доставку и выпуск лекарственных средств, безлекарственную терапию раковых заболеваний с помощью функционализированных МНЧ, действующих локально механически на механочувствительные клеточные структуры, изменяя их функционирование или разрушая мембраны искусственных контейнеров, содержащих терапевтические агенты. Все перечисленные направления подразумевают введение в организм в том или ином виде функционализованных МНЧ, которые имеют тенденцию равномерно распределяться в случае относительно однородной ткани либо скапливаться в определенных органах в случае с живым организмом. Описанная комбинация магнитных полей и последовательность их включения позволяет добиться макролокализации их действия на МНЧ в области с размерами от 1 до 100 мм (в зависимости от устанавливаемых параметров этих полей), а функционализация МНЧ дает возможность действовать селективно на избранные молекулярные мишени, т.е. локализовать действие в объеме порядка 1 нм, что принципиально невозможно в стратегии магнитной гипертермии в высокочастотном магнитном поле.

Claims (9)

1. Способ оказания локального воздействия переменного магнитного поля на биохимическую систему или живой организм с предварительно введенными в них функционализированными магнитными наночастицами, заключающийся в управлении магнитными наночастицами с помощью комбинации постоянного градиентного магнитного поля напряженностью Hg и переменного магнитного поля с амплитудой H a и перемещении области воздействия с помощью регулируемого по напряженности однородного магнитного поля Hb, отличающийся тем, что для локализации воздействия в области радиусом R* осуществляют периодическую переориентацию магнитных наночастиц в низкочастотном переменном магнитном поле с амплитудой H a =R*⋅grad(Hg) и угловой частотой меньше любой (или меньшей) из двух величин - 1000 с-1 и ωc=μμ0H a /(6ηVHD) (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды).
2. Способ по п. 1, отличающийся тем, что перед включением переменного и градиентного магнитных полей предварительно включают постоянное однородное магнитное поле напряженностью H0.
3. Способ по п. 1, отличающийся тем, что переменное магнитное поле с амплитудой H a генерируют в виде последовательных пакетов и пауз с регулируемой длительностью te и tp соответственно.
4. Способ по п. 1, отличающийся тем, что размер области локализации увеличивают или уменьшают путем уменьшения или увеличения величины градиента grad(Hg) локализирующего постоянного магнитного поля Hg соответственно.
5. Способ по п. 1, отличающийся тем, что переменное магнитное поле создают с вращающимся вектором напряженности H a .
6. Способ по п. 1, отличающийся тем, что переменному магнитному полю с амплитудой H a во времени придают вид меандра путем периодического изменения направления вектора H a на противоположное.
7. Способ по п. 1, отличающийся тем, что переменному магнитному полю H a придают вид затухающих во времени колебаний, разделенных паузами.
8. Способ по п. 1, отличающийся тем, что направление градиента grad(Hg) периодически изменяют, причем длительность фронта изменения направления градиента магнитного поля устанавливают меньше, чем продолжительность изменения направления вектора намагниченности магнитных наночастиц.
9. Устройство для локального наномеханического воздействия на биохимические системы, содержащие магнитные наночастицы, состоящее из узла, генерирующего градиентное магнитное поле Hg, узла катушек, создающих однородное магнитное поле Hb, которое изменяет положение области воздействия переменного магнитного поля, узла катушек, создающих переменное поле, которое управляет движением магнитных наночастиц, и управляемых источников постоянного и переменного тока для питания соответствующих катушек, отличающееся тем, что узел катушек, создающих переменное магнитное поле, генерирует магнитное поле с угловой частотой меньше любой из двух величин – 1000 с-1 и ωc=μμ0H a /(6ηVHD) (где μ - магнитный момент магнитной наночастицы, VHD - ее гидродинамический объем, μ0 - магнитная проницаемость вакуума, η - вязкость окружающей среды), обеспечивая периодическую механическую переориентацию магнитных наночастиц.
RU2018112753A 2018-04-09 2018-04-09 Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы RU2713375C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112753A RU2713375C2 (ru) 2018-04-09 2018-04-09 Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112753A RU2713375C2 (ru) 2018-04-09 2018-04-09 Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы

Publications (3)

Publication Number Publication Date
RU2018112753A RU2018112753A (ru) 2019-10-10
RU2018112753A3 RU2018112753A3 (ru) 2019-10-10
RU2713375C2 true RU2713375C2 (ru) 2020-02-04

Family

ID=68205919

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112753A RU2713375C2 (ru) 2018-04-09 2018-04-09 Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы

Country Status (1)

Country Link
RU (1) RU2713375C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018039A1 (en) * 2002-08-24 2004-03-04 Philips Intellectual Property & Standards Gmbh Method for local heating by means of magnetic particles
WO2010100643A2 (en) * 2009-03-02 2010-09-10 Yeda Research And Development Co. Ltd. Magnetic configuration and timing scheme for transcranial magnetic stimulation
RU114863U1 (ru) * 2011-11-22 2012-04-20 Общество с ограниченной ответственностью "Завод Медсинтез" (ООО "Завод Медсинтез") Устройство для воздействия магнитным полем на биообъекты, содержащие магнитные наночастицы

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018039A1 (en) * 2002-08-24 2004-03-04 Philips Intellectual Property & Standards Gmbh Method for local heating by means of magnetic particles
WO2010100643A2 (en) * 2009-03-02 2010-09-10 Yeda Research And Development Co. Ltd. Magnetic configuration and timing scheme for transcranial magnetic stimulation
RU114863U1 (ru) * 2011-11-22 2012-04-20 Общество с ограниченной ответственностью "Завод Медсинтез" (ООО "Завод Медсинтез") Устройство для воздействия магнитным полем на биообъекты, содержащие магнитные наночастицы

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
КАМЫШЕВ А. Г., Мостовые электрические краны, М., Металлургия, 1972, с. 150. *
КАМЫШЕВ А. Г., Мостовые электрические краны, М., Металлургия, 1972, с. 150. ПРЕОБРАЖЕНСКИЙ А. А., БИШАРД Е. Г., Магнитные материалы и элементы: Учебник для студентов вузов, М., Высш. шк., 1986, с. 148. *
ПРЕОБРАЖЕНСКИЙ А. А., БИШАРД Е. Г., Магнитные материалы и элементы: Учебник для студентов вузов, М., Высш. шк., 1986, с. 148. *

Also Published As

Publication number Publication date
RU2018112753A (ru) 2019-10-10
RU2018112753A3 (ru) 2019-10-10

Similar Documents

Publication Publication Date Title
US11400306B2 (en) Precision delivery of energy utilizing holographic energy teleportation (HET) with time-correlated standing-wave interference and coherent intensity amplification
Sarwar et al. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles
Rotariu et al. Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment
Tabatabaei et al. Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network
Zhang et al. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery
CZ305309B6 (cs) Zařízení pro ošetřování magnetickými poli
IL214839A (en) Devices, systems and methods for providing magnet therapy
CN1678371A (zh) 利用磁性粒子进行局部加热的方法
US20120190911A1 (en) Low temperature hyperthermia system for therapeutic treatment of invasive agents
JP2015529471A (ja) 磁気感応体の集団化および制御
Martel Magnetic therapeutic delivery using navigable agents
Podaru et al. Magnetism in nanomaterials: heat and force from colloidal magnetic particles
JP5750098B2 (ja) 磁性材料の加熱のための装置及び方法
RU2713375C2 (ru) Способ и устройство для локального механического воздействия на биохимические системы, содержащие магнитные наночастицы
Jian et al. A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment
RU114863U1 (ru) Устройство для воздействия магнитным полем на биообъекты, содержащие магнитные наночастицы
Liu et al. Analysis and design of a new hybrid array for magnetic drug targeting
Zhao et al. Magnetoacoustic signal analysis of bio-tissue containing liquid metal
JP2019013776A (ja) 磁気感応体の集団化および制御
Zhigachev et al. A new physical method of localization of nanomechanical action of magnetic nanoparticles controlled by low-frequency magnetic field on mechanically sensitive biochemical systems
Xiong et al. Future trends in magnetic source device design for magnetic targeted drug delivery system
Kwon et al. A novel drug delivery method by using a microrobot incorporated with an acoustically oscillating bubble
Cao et al. Optimization of electric field distribution of multichannel transcranial magnetic stimulation based on genetic algorithm
Gebreel et al. Magnetic fluid based on Fe [sub] 3 O [sub] 4 nanoparticles: Preparation and hyperthermia application
Lukeš et al. Generation of focused shock waves in water for biomedical applications