RU2713028C1 - Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика - Google Patents

Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика Download PDF

Info

Publication number
RU2713028C1
RU2713028C1 RU2019115721A RU2019115721A RU2713028C1 RU 2713028 C1 RU2713028 C1 RU 2713028C1 RU 2019115721 A RU2019115721 A RU 2019115721A RU 2019115721 A RU2019115721 A RU 2019115721A RU 2713028 C1 RU2713028 C1 RU 2713028C1
Authority
RU
Russia
Prior art keywords
signal
cos
interference signal
phase
signals
Prior art date
Application number
RU2019115721A
Other languages
English (en)
Inventor
Георгий Петрович Мирошниченко
Михаил Юрьевич Плотников
Антон Валерьевич Волков
Original Assignee
Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" filed Critical Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority to RU2019115721A priority Critical patent/RU2713028C1/ru
Application granted granted Critical
Publication of RU2713028C1 publication Critical patent/RU2713028C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

Изобретение относится к области волоконной оптики и может быть использовано для регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков. Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика включает измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ωt) и cos(2ωt), где ω- их циклическая частота, и с их помощью преобразование синхронным детектированием измеренного интерференционного сигнала в два сигнала S(t)=-BJ(C)sin(ϕ(t)) и S(t)=-BJ(C)cos(ϕ(t)), где В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S(t) и S(t) - первая и вторая гармоники интерференционного сигнала, J(C) и J(C) - функции Бесселя первого рода первого и второго порядков, ϕ(t) - измеряемый фазовый сигнал, формируют два дополнительных сигнала вспомогательной фазовой модуляции cos(3ωt) и cos(4ωt) и с их помощью синхронным детектированием преобразуют измеренный интерференционный сигнал I(t) в два сигнала S(t)=BJ(C)sin(ϕ(t)) и S(t)=BJ(C)cos(ϕ(t)), где S(t) и S(t) - третья и четвертая гармоники интерференционного сигнала, J(С) и J(C) - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулойТехнический результат – повышение точности измерений фазовых сигналов путем устранения влияния измерения глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне ее значений от 0,9 до 5 радиан. 3 ил.

Description

Изобретение относится к области волоконной оптики и может быть использовано для измерения фазовых сигналов волоконно-оптических интерферометрических датчиков.
Интерференционный сигнал волоконно-оптического интерферометрического фазового датчика на входе фотоприемного устройства описывается следующем выражением:
Figure 00000001
где А и В - коэффициенты, пропорциональные мощности оптического излучения и амплитуде интерференционного сигнала на фотоприемнике; С - глубина вспомогательной фазовой модуляции; ω0 - циклическая частота сигнала вспомогательной фазовой модуляции; ϕ(t) - измеряемый фазовый сигнал; t - время.
При воздействии гармонического сигнала на чувствительное плечо волоконно-оптического фазового интерферометрического датчика (интерферометра), измеряемый фазовый сигнал ϕ(t) выражается формулой:
Figure 00000002
где D - амплитуда измеряемого фазового сигнала; ω - циклическая частота измеряемого фазового сигнала; ϕ0 - положение рабочей точки интерферометра.
При появлении температурных градиентов и механических напряжений происходит изменение положения рабочей точки интерферометрического датчика, в результате чего появляются гармонические искажения при измерении фазовых сигналов датчика. Для решения этой проблемы в опорное плечо датчика, устанавливается фазовый модулятор, который вносит сигнал вспомогательной фазовой модуляции в интерференционный сигнал I(t) с глубиной вспомогательной модуляции С и циклической частотой ω0. Вследствие температурных и механических воздействий на фазовый модулятор происходит дрейф значения глубины вспомогательной модуляции, что приводит к появлению искажений в измеряемом фазовом сигнале и невозможности его измерения.
Известен способ измерения фазовых сигналов с помощью волоконно-оптических интерферометрических датчиков при оптимальном значении глубины вспомогательной модуляции [статья Christian, Timothy R., Philip A. Frank, and Brian H. Houston. "Real-time analog and digital demodulator for interferometric fiber optic sensors", Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation. Vol. 2191. International Society for Optics and Photonics, 1994]. Способ заключается следующем: производится измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t), которые с помощью синхронного детектирования преобразуют измеренный интерференционный сигнал в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(С) и J2(C) - функции Бесселя первого рода первого и второго порядков. При оптимальном значении глубины вспомогательной фазовой модуляции (С=2,63 радиан) из гармоник интерференционного сигнала S1(t) и S2(t) формируется измеряемый фазовый сигнал, который описывается следующей формулой:
Figure 00000003
в котором соотношение функции Бесселя первого рода первого и второго порядка равняется единице (J1(C)/J2(C)=1). При оптимальной глубине вспомогательной модуляции С=2,63 радиан значения функции Бесселя первого рода первого и второго порядка равны между собой (J1(C)=J2(C)) и формула (3) может быть упрощена и записана, как ϕ(t)=arctan[tan(ϕ(t)].
Недостатком известного способа является невозможность измерения фазовых сигналов при неоптимальной глубине вспомогательной фазовой модуляции, что приводит к гармоническим искажениям в выходном сигнале волоконно-оптического интерферометрического датчика.
Известен способ измерения фазовых сигналов волоконно-оптических интерферометрических датчиков независимо от глубины вспомогательной фазовой модуляции, выбранный в качестве прототипа [статья Не, J., Wang, L., Li, F., & Liu, Y., "An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability", Journal of Lightwave Technology, 28(22), 2010]. Способ заключается в следующем: производится измерение интерференционного сигнала I(f), с помощью синхронного детектирования преобразуют измеренный интерференционный сигнал в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(С) и J2(C) - функции Бесселя первого рода первого и второго порядков, производится преобразование гармоник интерференционного сигнала S1(t) и S2(t) в сигнал E(t) согласно следующей формуле: E(t)=S1(t)/S2(t) и преобразование гармоник интерференционного сигнала S1(t) и S2(t) при помощи дифференцирования в пару сигналов dS1(t)/dt=-BJ1(C)sin(ϕ(t))dϕ(t)/dt и dS2(t)/dt=-BJ2(C)cos(ϕ(t))dϕ(t)/dt, где dS1(t)/dt и dS2(t)/dt - производные первой и второй гармоник интерференционного сигнала, dϕ(t)/dt - производная измеряемого фазового сигнала. Далее из гармоник интерференционного сигнала S1(t) и S2(t), и их производных dS1(t)/dt и dS2(t)/dt формируют коэффициент К по следующей формуле:
Figure 00000004
с помощью которого и сигнала E(t) формируют измеряемый фазовый сигнал, как
Figure 00000005
Недостатками известного способа являются использование только двух гармоник интерференционного сигнала S1(t) и S2(t), что ограничивает рабочий диапазон глубин вспомогательной фазовой модуляции в диапазоне от 1,5 до 3,5 радиан.
Решаемая техническая проблема - совершенствование способов измерения выходного фазового сигнала волоконно-оптического интерферометрического датчика.
Достигаемый технический результат - повышение точности измерения выходного фазового сигнала волоконно-оптического интерферометрического датчика.
Технический результат достигается тем, что обеспечивается увеличение точности измерений выходного фазового сигнала волоконно-оптического интерферометрического датчика путем устранения влияния изменения глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне ее значений от 0,9 до 5 радиан.
Поставленная задача решается следующим образом.
В способе измерения фазового сигнала волоконно-оптического интерферометрического датчика, включающем измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t), где ω0 - их циклическая частота, сформированные сигналы при помощи синхронного детектирования преобразуют измеренный интерференционный сигнал в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(C) и J2(C) - функции Бесселя первого рода первого и второго порядков, ϕ(t) - измеряемый фазовый сигнал, формируют два дополнительных сигнала вспомогательной фазовой модуляции cos(3ω0t) и cos(4ω0t), которые преобразуют измеренный интерференционный сигнал I(t) в два сигнала S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)), где S3(t) и S4(t) - третья и четвертая гармоники интерференционного сигнала, J3(C) и J4(C) - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой:
Figure 00000006
Сущность заявляемого способа поясняется следующим.
Производится измерение интерференционного сигнала I(t), и формирование четырех сигналов вспомогательной фазовой модуляции cos(ω0t), cos(2ω0t), cos(3ω0t) и cos(4ω0t), которые при помощи синхронного детектирования преобразуют измеренный интерференционный сигнал в четыре сигнала S1(t)=-BJ1(C)sin(ϕ(t)), S2(t)=-BJ2(C)cos(ϕ(t)), S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)) и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой:
Figure 00000007
Сущность заявляемого способа поясняется чертежами.
На фиг. 1 представлена структурная схема устройства, осуществляющего заявляемый способ.
На фиг. 2. представлен измеряемый фазовый сигнал и его спектр, полученные с помощью заявляемого способа, где по оси X отложены значения времени в секундах, а по оси Y - значения выходного измеряемого фазового сигнала в радианах.
На фиг. 3 представлена экспериментальная зависимость амплитуды выходного фазового сигнала волоконно-оптического интерферометрического датчика от глубины вспомогательной фазовой модуляции.
Устройство содержит источник оптического излучения 1, оптическую схему 2 волоконно-оптического интерферометрического датчика, фотоприемное устройство (ФПУ) 3, аналого-цифровой преобразователь (АЦП) 4 и блок цифровой обработки сигналов (ЦОС) 5. Источник оптического излучения 1 подключен к входу оптической схемы 2. Выход оптической схемы 2 подключен к входу ФПУ 3, который детектирует оптический интерференционный сигнал на выходе оптической схемы 2 волоконно-оптического интерферометрического датчика и преобразует его в электрический сигнал. Выход ФПУ 3 подключен ко входу АЦП 4, который преобразует аналоговый электрический сигнал в цифровой сигнал. Выход АЦП 4 соединен со входом блока ЦОС 5, который реализован в виде программируемой логической интегральной схемы. Блок ЦОС 5 содержит: опорный генератор 6, блок умножителей 7, фильтр низких частот (ФНЧ) 8, блок преобразования сигналов 9, блок вычисления функции арктангенса 10. Блоки 6-10 реализованы программным способом в программируемой логической интегральной схеме. Вход блока умножителей 7 подключен к выходу АЦП 4. Другой вход блока 7 подключен к выходу опорного генератора 6, который генерирует сигналы вспомогательной фазовой модуляции. Выход блока умножителей 7 подключен ко входу ФНЧ 8, который выделяет четыре гармоники интерференционного сигнала. Выход ФНЧ 8 подключен к входу блока преобразования сигналов 9. Выход блока преобразования сигналов 9 соединен с входом блока вычисления функции арктангенса 10.
Заявляемый способ реализуется следующим образом. Источник оптического излучения 1 генерирует оптический импульс, который попадает в оптическую схему 2 волоконно-оптического интерферометрического датчика. В оптической схеме 2 происходит преобразование внешнего акустического воздействия в измеряемый фазовый сигнал ϕ(t) и формирование интерференционного оптического сигнала, содержащего зарегистрированный фазовый сигнал ϕ(t) и сигнал вспомогательной фазовой модуляции. ФПУ 3 регистрирует интерференционный оптический сигнал, описываемый выражением (1), и преобразует его в электрический аналоговый сигнал, который может быть разложен с помощью известного тригонометрического преобразования:
Figure 00000008
С помощью формулы (5) выражение (1) преобразуется к следующему виду:
Figure 00000009
АЦП 4 преобразует электрический аналоговый сигнал в цифровой сигнал и передает его на вход блока ЦОС 5. На входе блока ЦОС 5 сигнал (6) может быть разложен в ряд с использованием функций Бесселя в соответствии со следующими известными выражениями:
Figure 00000010
Figure 00000011
где J2n(z) и J2n-1(z) - функция Бесселя первого рода порядка 2n и 2n-1, n - порядок функции Бесселя, z - аргумент функции Бесселя. С учетом формул (7) и (8) сигнал (6) может быть преобразован к следующему виду:
Figure 00000012
Блок умножителей 7 формирует четыре сигнала, полученных путем умножения оцифрованного интерференционного сигнала (1) на четыре гармоники сигнала вспомогательной фазовой модуляции с циклическими частотами ω0, 2ω0, 3ω0, и 4ω0, генерируемых опорным генератором 6. Сигналы на выходе блока умножителей 7 могут быть разложены в соответствии с известным тригонометрическим выражением:
Figure 00000013
С учетом выражения (10) на входе ФНЧ 8 четыре сигнала, сформированных блоком умножителей 7, могут быть описаны следующими выражениями:
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
где M1(t), М2(t), M3(t) и M4(t) - четыре сигнала, сформированных блоком умножителей 7.
ФНЧ 8 из сигналов (11-13) выделяет гармоники интерференционного сигнала, описываемые следующими формулами:
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Гармоники интерференционного сигнала (15-18) попадают на вход блока преобразования сигналов 9, где производятся их математические преобразования в соответствии с рекуррентным соотношением для функции Бесселя первого рода и формулой преобразования гармоник интерференционного сигнала:
Figure 00000022
Figure 00000023
где G(t) - сигнал на выходе блока 9, k - порядок функции Бесселя.
Устранение зависимости от глубины вспомогательной фазовой модуляции в сигнале (20) может быть продемонстрировано следующим образом. С помощью выражения (19) сигнал разности между сигналами (17) и (15), и сигнал разности между (16) и (18) могут быть представлены следующими выражениями:
Figure 00000024
Figure 00000025
Выражения знаменателя X1(t) и числителя X2(t) формулы (20), с помощью выражений (21-22), могут быть представлены следующим образом:
Figure 00000026
Figure 00000027
С помощью формул (23-24) сигнал (20) может быть описан следующим образом:
Figure 00000028
Далее сигнал (25) попадает на вход блока вычисления функции арктангенса 10, который формирует выходной измеряемый фазовый сигнал волоконно-оптического интерферометрического датчика в соответствии со следующим выражением:
Figure 00000029
В качестве конкретного примера выполнения предлагается способ измерения фазового сигнала волоконно-оптического интерферометрического датчика вне зависимости от изменений значения глубины вспомогательной фазовой модуляции, в котором в качестве оптической схемы используется массив волоконно-оптических интерферометров Майкельсона, в качестве отражателей используются зеркала Фарадея. В качестве источника оптического излучения используется полупроводниковый поверхностно-излучающий лазер с вертикальным резонатором (VCSEL). В качестве фотоприемника используется фотодиодный модуль PDI-40-RM. Сигналы с фотоприемника обрабатываются с помощью 16-битной АЦП, а сигналы с блока ЦОС 7 - с помощью 12-битного ЦАП. Математический алгоритм способа регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков вне зависимости от изменений значения глубины вспомогательной фазовой модуляции, включающий в себя блоки 5-10, реализован на программируемой логической интегральной схеме.
На фиг. 2 представлена зависимость амплитуды выходного фазового сигнала волоконно-оптического интерферометрического датчика от глубины вспомогательной фазовой модуляции. Зависимость получена в результате изменения глубины вспомогательной модуляции при воздействии на волоконно-оптический интерферометрический датчик измеряемого акустического фазового сигнала. Зависимость позволяет определить рабочий диапазон глубин модуляции для заявляемого способа (Метод 2), а также сравнить его рабочий диапазон с диапазонами аналога (Метод 3) и прототипа (Метод 1). Исходя из представленных результатов, рабочий диапазон глубин модуляции для заявляемого способа составляет от 0,9 до 5 радиан, что превосходит рабочий диапазон глубин вспомогательной модуляции прототипа (от 1,5 до 3,5 рад).
Таким образом, заявляемый способ обеспечивает повышение точности измерения выходного фазового сигнала волоконно-оптического интерферометрического датчика путем устранения влияния изменения значений глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне значений от 0,9 до 5 радиан.

Claims (1)

  1. Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика, включающий измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t) и с их помощью преобразование синхронным детектированием измеренного интерференционного сигнала в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где ω0 - циклическая частота сигнала вспомогательной фазовой модуляции, В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(C) и J2(C) - функции Бесселя первого рода первого и второго порядков, ϕ(t) - измеряемый фазовый сигнал, отличающийся тем, что формируют два дополнительных сигнала вспомогательной фазовой модуляции cos(3ω0t) и cos(4ω0t), и с их помощью синхронным детектированием преобразуют измеренный интерференционный сигнал I(t) в два дополнительных сигнала S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)), где S3(t) и S4(t) - третья и четвертая гармоники интерференционного сигнала, J3(С) и J4(C) - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой
    Figure 00000030
RU2019115721A 2019-05-22 2019-05-22 Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика RU2713028C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019115721A RU2713028C1 (ru) 2019-05-22 2019-05-22 Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019115721A RU2713028C1 (ru) 2019-05-22 2019-05-22 Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика

Publications (1)

Publication Number Publication Date
RU2713028C1 true RU2713028C1 (ru) 2020-02-03

Family

ID=69624980

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019115721A RU2713028C1 (ru) 2019-05-22 2019-05-22 Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика

Country Status (1)

Country Link
RU (1) RU2713028C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805291C1 (ru) * 2022-12-19 2023-10-13 Публичное акционерное общество "Пермская научно-производственная приборостроительная компания" Устройство измерения параметров волоконно-оптического резонатора с помощью перестраиваемого источника оптического излучения и компенсацией нелинейности перестройки частоты

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563664A (en) * 1967-11-09 1971-02-16 James W Campbell Method and apparatus for resolving transducer ambiguity
WO1996041130A1 (en) * 1995-06-07 1996-12-19 Honeywell Inc. Optical power balancing in an interferometric fiber optic gyroscope
US6028668A (en) * 1998-02-04 2000-02-22 Rockwell Collins, Inc. Fiber optic gyroscope having improved readout and modulation index control
CN102072761B (zh) * 2010-12-06 2012-04-18 中国船舶重工集团公司第七一五研究所 一种基于光相位解调仪的相移灵敏度通用校准系统及方法
RU2595320C1 (ru) * 2015-07-16 2016-08-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Способ контроля параметров сигнала волоконно-оптического интерферометрического фазового датчика с перестраиваемым источником оптического излучения
RU2626554C1 (ru) * 2016-04-13 2017-07-28 Негосударственное (частное) образовательное учреждение высшего профессионального образования "Институт радиоэлектроники, сервиса и диагностики" Способ модуляции сигнала

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563664A (en) * 1967-11-09 1971-02-16 James W Campbell Method and apparatus for resolving transducer ambiguity
WO1996041130A1 (en) * 1995-06-07 1996-12-19 Honeywell Inc. Optical power balancing in an interferometric fiber optic gyroscope
US6028668A (en) * 1998-02-04 2000-02-22 Rockwell Collins, Inc. Fiber optic gyroscope having improved readout and modulation index control
CN102072761B (zh) * 2010-12-06 2012-04-18 中国船舶重工集团公司第七一五研究所 一种基于光相位解调仪的相移灵敏度通用校准系统及方法
RU2595320C1 (ru) * 2015-07-16 2016-08-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Способ контроля параметров сигнала волоконно-оптического интерферометрического фазового датчика с перестраиваемым источником оптического излучения
RU2626554C1 (ru) * 2016-04-13 2017-07-28 Негосударственное (частное) образовательное учреждение высшего профессионального образования "Институт радиоэлектроники, сервиса и диагностики" Способ модуляции сигнала

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805291C1 (ru) * 2022-12-19 2023-10-13 Публичное акционерное общество "Пермская научно-производственная приборостроительная компания" Устройство измерения параметров волоконно-оптического резонатора с помощью перестраиваемого источника оптического излучения и компенсацией нелинейности перестройки частоты

Similar Documents

Publication Publication Date Title
Volkov et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors
Nikitenko et al. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors
CN107884059B (zh) 一种光纤激光水听器光路结构及信号解调方法
CN111693255B (zh) 一种激光光源频率漂移的测量装置及方法
Zhang et al. A PGC-DCDM demodulation scheme insensitive to phase modulation depth and carrier phase delay in an EOM-based SPM interferometer
US8023116B1 (en) Resolving quadrature fringes of interferometer signals in real time
Kumar et al. Assessment of dynamic range in interferometric fiber optic hydrophones based on homodyne PGC interrogator
CN110836638A (zh) 相位生成载波反正切中载波相位延迟和伴生调幅消除方法
Yang et al. A PGC demodulation based on differential-cross-multiplying (DCM) and arctangent (ATAN) algorithm with low harmonic distortion and high stability
Gong et al. Improved algorithm for phase generation carrier to eliminate the influence of modulation depth with multi-harmonics frequency mixing
Norgia et al. High-sensitivity vibrometer based on FM self-mixing interferometry
Elaskar et al. FPGA-based high-speed optical fiber sensor based on multitone-mixing interferometry
RU2713028C1 (ru) Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика
US5117440A (en) Digital quadrature phase detection
Celikel et al. Establishment of all digital closed-loop interferometric fiber-optic gyroscope and scale factor comparison for open-loop and all digital closed-loop configurations
Hou et al. Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors
AU2018377066B2 (en) A system for interrogating an interferometer, an interferometric system and a method for interrogating an interferometer
Wang et al. Automatic carrier signal track algorithm in all-digital PGC demodulation scheme for optical interferometric sensors
Li et al. Four-state modulation in fiber optic gyro
JP3247602B2 (ja) 光ファイバセンサシステム
Hussain et al. Fast processing of optical fringe movement in displacement sensors without using an ADC
Meng et al. Research on PGC demodulation algorithm based on high stability.
Bing et al. Improvement of PGC demodulation algorithm based on low harmonic distortion
Zhang et al. Investigation on upper limit of dynamic range of fiber optic interferometric sensors base on the digital heterodyne demodulation scheme
Liu et al. Laser interferometer nanometer vibration measurement experiment based on LabVIEW workbench