RU2712538C2 - Способ очистки природных вод от органических водорастворимых веществ - Google Patents

Способ очистки природных вод от органических водорастворимых веществ Download PDF

Info

Publication number
RU2712538C2
RU2712538C2 RU2018112529A RU2018112529A RU2712538C2 RU 2712538 C2 RU2712538 C2 RU 2712538C2 RU 2018112529 A RU2018112529 A RU 2018112529A RU 2018112529 A RU2018112529 A RU 2018112529A RU 2712538 C2 RU2712538 C2 RU 2712538C2
Authority
RU
Russia
Prior art keywords
water
purification
exchangers
exchange resin
anion
Prior art date
Application number
RU2018112529A
Other languages
English (en)
Other versions
RU2018112529A3 (ru
RU2018112529A (ru
Inventor
Владимир Фёдорович Воржев
Владимир Константинович Астанин
Юрий Александрович Стекольников
Наталья Юрьевна Стекольникова
Виталий Валерьевич Емцев
Эдуард Михайлович Санников
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Елецкий государственный университет им. И.А. Бунина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Елецкий государственный университет им. И.А. Бунина" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Елецкий государственный университет им. И.А. Бунина"
Priority to RU2018112529A priority Critical patent/RU2712538C2/ru
Publication of RU2018112529A3 publication Critical patent/RU2018112529A3/ru
Publication of RU2018112529A publication Critical patent/RU2018112529A/ru
Application granted granted Critical
Publication of RU2712538C2 publication Critical patent/RU2712538C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Изобретение может быть использовано для очистки природной воды в электронно-гальванической промышленности. Воду подвергают ионообменной сорбции путём её фильтрации через анионит марки ИА-1 в хлоридной форме, а затем через узел финишной очистки из смеси катионита КУ-2-8 и анионита АВ-17-8. Упрощается процесс очистки воды за счёт исключения стадии коагуляции. Достигается степень очистки от органических веществ 88,8-90,8 %. 3 ил., 4 табл.

Description

Изобретение относится к технологии очистки природных вод от органических веществ и может быть использовано для очистки вод в электронной, гальванической промышленности от широкого спектра органических веществ.
Цель изобретения: разработка технологий ионообменной очистки от органических веществ, одновременно обессоливании с повышением степени очистки. Способ очистки воды включает: ее фильтрацию через механический фильтр, ионообменную сорбцию на фильтрах с пористым анионитом ИА-3-С1, фильтрах - Н - катионитовых с катеонитом КУ-2-8, декарбонизаторе, фильтрах с анионитом фильтре смешанного действия КУ-2-8+АВ-17-8. Использование анионита в солевой форме позволяет исключить из технологии обработки воды стадию коагуляции и сэкономить материальные ресурсы.
Техническое решение относится к способам удаления из природной воды гумусовых кислот и ее одновременного обессоливания. Наиболее близкими по технической сущности и совокупности существенных признаков являются способ очистки воды от гуминовых и фульвокислот при имущественной сорбцией на высокоосновных катионитах (Мамченко А.В. Сорбция гумусовых соединений ионитами. Журнал Химия и технология воды. 1993 т. 15 №4. с. 270-294) эта технология позволяет получать высокоочищенную воду, но отличается высокой стоимостью и не обеспечивает очистку воды от всего спектра органических веществ присутствующих в природной воде. Технической задачей предлагаемого способа является очистка природной воды от высокомолекулярных и мало молекулярных водорастворимых органических веществ, снижения расходов на реактивы обезвреживание отходов или стоков содержащих их путем многократного использования в процессе ионообменной очистки.
Это достигается тем, что очистку природной воды осуществляют путем ионообменной сорбции, используя, согласно техническому решению следующую схему изображенную на фиг. 1, где 1 - фильтр механического действия; 2 - фильтр из пористого анионита ИА-3-С1; 3 - фильтры Н-катионитовый и с катионитами КУ-2-8; 4 - фильтр декарбонизации; 5 -фильтры с анионитами; 6 - фильтры смешанного действия (КУ-2-8+АВ-17-8, ФСД-П).
Нами исследована сорбция фульвокислот анионитами: АВ-17-10П, ИА-1, ИА-2, ИА-3, АВ-17-2П, АНТ-511, Wofatit AD-41 для обоснования режимов удаления фульвокислот из природной воды с целью ее применения в гальваническом производстве. Как следует из фиг. 1, природная вода для нужд гальванического производства обрабатывалась сульфатом аммония, пропускалась через фильтр с активным углем, и анионит ИА-3 в хлоридной форме. Коагуляцией удаляется 50% органических веществ, анионитом ИА-3 сорбируется 40-50%. Предложенная схема хорошо работает в промышленных условиях. При этом было снижено содержание ФК в воде до 80%.
Традиционная схема водоподготовки включает фильтрацию через механический фильтр, первичную обработку коагуляцией Ab (804)3, отстой, а затем пропускание через фильтр с активированным углем. Коагуляцией удаляется только около 50% примесей (по окисляемости). Замена активированного угля анионитом ИА-1 в хлоридной форме позволила удалить еще около 40-50% примесей органических веществ, что в сумме дает степень очистки 70-75%. Дальнейшая водоподготовка проводится деионизацией на катионите КУ-2-8 в водородной форме и анионитах в гидроксильной форме.
Использование анионита ИА-3 в солевой хлоридной форме в начале технологической схемы оказалось очень эффективном и позволило исключить из процесса стадию коагуляции. Остаточное содержание органических веществ в воде было аналогично комбинированному действию
коагуляции и сорбции органических веществ на анионите ИА-1.
Таким образом, полученные результаты (табл 1) позволяют рекомендовать использование следующей технологической схемы водоподготовки (фиг. 2 (способ 1), где 1 - ФСД-1; 2 - декарбонизатор; 3 - ОН - анионит; 4 - ФСД - II).
Figure 00000001
Способ 1. Эффективная сорбция гумусовых веществ от рН происходит в оптимальном интервале, по этому, анионит ИА-1 (ИА-3) должен занять место в технологической линейке после Н - фильтра.
Способ 2. Из за больших обменных емкостей анионитов типа ИА-3, для их перевода из ОН- в Cl- форму расходуется большое количество HCl. Установлено, что можно переводить в Cl-форму не всю загрузку фильтра. Остальная часть анионита в фильтре переходит в солевые формы путем поглощения анионов из кислой Н-катионированной воды. При этом необходимые расходы HCl уменьшаются в 8 раз, поскольку нет сброса сточных вод и не требуется отмывка фильтра.
Способ 3. Способ на (фиг. 2), позволяет одновременно подкислять воду до рН 3-Н-, с удалением катионов и гумусовых кислот на одном фильтре (на ФСД-I): Используется смесь равных объемов катионита КУ-2-8 в Н-формах и анионита ИА-3 в С1-формах. Подготовку к работе осуществляли следующим образом: проводили разделение катионитов и анионитов, далее подавали воду снизу с выводами в верхние дренажные устройства (фиг. 3). Аниониты располагаются вверху, а сверху вниз через слои анионитов пропускали растворы щелочи и воды с выводами в средние дренажи. Потом, через катиониты снизу вверх пропускали растворы кислот и сбрасывали нейтральные растворы в средние дренажи. В момент появления кислот иониты смешивали, используя сжатый воздух. В это время аниониты ИА-3 - ОН поглощали избытки кислот и переходили в рабочие С1-формы, а катиониты отмывались от HCl. Это позволило снизить расходы на реактивы и обезвреживание технологических отходов путем многократного использования в процессе ионообменной очистки воды. Такой способ регенерации фильтров со смешанными функциями позволяет достичь двух положительных результатов: Исключены сбросы сточных кислых вод после регенерации катионитов; исключены расходы свежего раствора HCl для перевода анионита из ОН- в С1-форму. Десорбцию фульвокислот из пористых анионитов на фенольных основах можно проводить из разбавленных растворов щелочей - 0,25 и 0,5 моль/л, что обуславливает возможность использования отработанного регенерата обессоливающих ОН - фильтров. Тогда свежие растворы щелочи для десорбции гумусовых веществ из пористых анионитов не расходуются, что снижает сбросы щелочи в сточные воды в 2-3 раза. Варианты усовершенствования процессов удаления органических веществ из водных растворов и их промышленная реализация в соответствии с предлагаемой технологией могут быть следующими. Сорбционное удаление гумусовых кислот из воды, как и ее обессоливание, можно проводить различными вариантами, что можно рекомендовать для внедрения на гальванических предприятиях. Варианты схемы конкретной реализации способа ионообменной очистки и обессоливания представлены в табл. 2.
Figure 00000002
Повторное использование регенератов ионитовых фильтров в системе оборотной регенерации позволило свести к минимуму ущерб окружающей среде за счет уменьшения сброса реагентов в водоемы и решить на этой стадии задачу охраны природы. Однако в общем случае вопрос о применении ионитов для очистки технологических сред в каждом конкретном случае должен опираться на экологическую оценку и сравнение с другими методами.
Установлено, что воды с растворенным в них кислородом оказывают заметное влияние на свойства анионита АВ-17-8. Выявлена повышенная селективность анионитов к легко и трудно окисляющимся фракциям органических веществ природных вод. При этом после обработки воды анионитом АВ-17-2П в ОН-форме, в отличие от низкоосновных, в фильтратах не содержатся фракции ФК с карбоксильной группой. Выяснено также, что высокоосновные аниониты являются сорбционно активными к тем веществам, которые не сорбируются на низкоосновных анионитах. Более глубокое удаление гумусового и другого органического вещества из воды необходимо проводить при сочетании анионитов разных типов и углей. В связи с большей сорбционной способностью к органическим веществам и для предотвращения отравления обессоливающих высокоосновных анионитов в качестве первых ступеней очистки вод нужно применять низкоосновные аниониты. Изменение содержания ФК (Со=21,6 мг/дм3) при последовательных фильтрациях растворов через высокоосновные и низкоосновные аниониты показано в табл.3.
Figure 00000003
Видно, что на первых ступенях низкоосновные аниониты очищают до 36,5-75,6%. Данные показывают, что по эффективности применения низкоосновные аниониты на первых ступенях очистки воды от ФК можно расположить в ряд ИА-2<ИА-1<АНТ-51КИА-3. Степени очистки изменяются от 36,7-50,8% для ИА-2 и до 74,1-75,2% для ИА-3 с остаточным содержанием ФК в воде от 10,5-13,8 до 5,5-5,7 мг/дм. Следовательно, снижается негативное воздействие сорбируемых ФК на высокоосновные аниониты, применяемые на вторых ступенях. Так использование анионитов ИА-2 дополнительно сорбирует на высокоосновных анионитах 22,6-29,7% ФК, то ИА-3 уменьшает эти показатели до 13,8-15,9%. Большие величины сорбции вызывают высокую "отравляемость" высокоосновного анионита и повышенные расходы реактивов на последующие стадии регенераций. Обращает на себя внимание, то, что общая степень удаления ФК из воды на двух ступенях сорбции четко коррелируются с их степенью удаления на первой ступени и остаточным содержанием после этой ступени. Поэтому выбор максимально эффективно сорбирующего ФК низкоосновного анионита является наиболее важным моментом при разработке технологии очистки воды от органических веществ.
Комбинированная двухступенчатая анионитная обработка позволяет достичь максимальной степени очистки от ФК (88,8-90,8%) при последовательном применении низкоосновных анионитов ИА-3 и высокоосновных АВ-17-2П. Применение отечественных анионитов, как в гидроксильных, так и в хлоридных формах приводит к результатам аналогичным зарубежным сорбентам.
Выбор анионита ИА-3 для очистки воды от органических веществ по сравнению с ИА-1 обусловлен более чем в 2 раза низким остаточным содержанием ФК в очищенной воде после двухступенчатой очистки и более чем на 10% высокой степенью очистки воды.
Качество очищенной воды зависит от сочетания анионитов и активного угля и на практике определяется окисляемостью или содержанием органического общего углерода. Эти показатели не характеризуют примеси, удаляемые теми или иными способами, так и остающиеся в воде. Поэтому нами изучались сорбенты и составы примесей в очищенной воде на примерах применения активных углей БАУ, КАД-иодный и анионитов ИА-1, ИА-3 (табл.4).
Figure 00000004
Из данных табл.4 следует, что сорбенты не одинаково удаляют разные примеси из речных вод. Так, угли БАУ поглощают сахара, а угли КАД - амино- и карбоновые кислоты (в виде неионизированных молекул). Эти марки активных углей активно поглощают также гумусовые кислоты. Повышение эффекта сорбции амино- и карбоновых кислот на второй ступени анионитами ИА-1, ИА-3 обусловлено преимущественным поглощением конкурирующих гумусовых кислот на первой ступени.
Неэлектролиты и слабые электролиты очищаются активными углями лучше при отсутствии ГК и ФК, которые превышают остальные примеси органической природы.
Из табл.4 следует, что карбоновые кислоты остаются в фильтрате порядка 75%. Доочистка возможна на высокоосновных анионитах, что и наблюдалось нами в процессах модельных испытаний (фиг. 1) при очистках Н-катионированных речных вод на укрупненных лабораторных установках, включающих колонки с низкоосновным (ИА-1-О) и высокоосновным (АВ-17-ОН) анионитами и активным углем. Объемы загрузок колонок - 1 дм. Через каждые колонки пропускалось по 0,2 м3 воды.
Из фиг. 1 следует, что наиболее эффективно поглощение ГК и ФК проходит на анионите ИА-1, карбоновые кислоты лучше поглощаются анионитом АВ-17, чем активными углями СКТ.
Наблюдение за составом примесей в фильтратах показало, что для высокого уровня требований к качеству воды на содержание органических веществ необходимо включать в схему очистки пористые аниониты и активные угли. Предлагается схема ИА-1 (ИА-3)→КУ-2-Н→СКТ→КУ-2-Н→АВ-17-8 для обессоливания воды, которая показала высокую эффективность Приведенные в табл.1-4 данные показывают, что предлагаемый способы 1-3 отличаются высокой степенью очистки природной воды от органических водорастворимых веществ и позволяет получать воду высокого качества, удовлетворяющую требованиям гальваническо-электронной промышленности с одновременным ее обессоливанием и снижением окисляемости.

Claims (1)

  1. Способ очистки природной воды от органических соединений, включающий ионообменную сорбцию на фильтрах с пористым анионитом ИА в хлоридной форме, отличающийся тем, что фильтрацию осуществляют через анионит марки ИА-1 в хлоридной форме, а затем через узел финишной очистки из смеси катионита КУ-2-8 и анионита АВ-17-8.
RU2018112529A 2018-04-06 2018-04-06 Способ очистки природных вод от органических водорастворимых веществ RU2712538C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112529A RU2712538C2 (ru) 2018-04-06 2018-04-06 Способ очистки природных вод от органических водорастворимых веществ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112529A RU2712538C2 (ru) 2018-04-06 2018-04-06 Способ очистки природных вод от органических водорастворимых веществ

Publications (3)

Publication Number Publication Date
RU2018112529A3 RU2018112529A3 (ru) 2019-10-08
RU2018112529A RU2018112529A (ru) 2019-10-08
RU2712538C2 true RU2712538C2 (ru) 2020-01-29

Family

ID=68205941

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112529A RU2712538C2 (ru) 2018-04-06 2018-04-06 Способ очистки природных вод от органических водорастворимых веществ

Country Status (1)

Country Link
RU (1) RU2712538C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778602A (en) * 1986-04-28 1988-10-18 Allen Iii Ralph S Method of producing multi-functional filtering medium
RU61583U1 (ru) * 2006-10-09 2007-03-10 Общество с ограниченной ответственностью "Научно-производственная фирма "ЭКОС ВОДГЕО" Система выносной регенерации ионитов водоподготовительных установок
RU2328333C2 (ru) * 2006-04-06 2008-07-10 Общество с ограниченной ответственностью "Фирма Альт Групп" Полифункциональная фильтрующая композиция
JP2015226866A (ja) * 2014-05-30 2015-12-17 栗田工業株式会社 イオン交換装置供給水の評価方法及び運転管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778602A (en) * 1986-04-28 1988-10-18 Allen Iii Ralph S Method of producing multi-functional filtering medium
RU2328333C2 (ru) * 2006-04-06 2008-07-10 Общество с ограниченной ответственностью "Фирма Альт Групп" Полифункциональная фильтрующая композиция
RU61583U1 (ru) * 2006-10-09 2007-03-10 Общество с ограниченной ответственностью "Научно-производственная фирма "ЭКОС ВОДГЕО" Система выносной регенерации ионитов водоподготовительных установок
JP2015226866A (ja) * 2014-05-30 2015-12-17 栗田工業株式会社 イオン交換装置供給水の評価方法及び運転管理方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
АЛИТДИНОВА С.Ю. Авто диссертации "Разработка безопасного способа применения ионообменных смол при водоподготовке в пищевой промышленности". Москва, 2005, разделы: Оглавление, Главы 1, 2, Выводы пп. 1, 2, 3, Заключение. *
АЛИТДИНОВА С.Ю. Автореферат диссертации "Разработка безопасного способа применения ионообменных смол при водоподготовке в пищевой промышленности". Москва, 2005, разделы: Оглавление, Главы 1, 2, Выводы пп. 1, 2, 3, Заключение. АШИРОВ А. Ионообменная очистка сточных вод, растворов и газов. Ленинград, Химия, 1983, с. 91. МАМЧЕНКО А.В. Сорбция гумусовых соединений ионитами. "Химия и технология воды", 1993, 15, N4, с. 270-291. РЯБЧИКОВ Б.Е. Современные методы подготовки воды для промышленного и бытового использования. Москва, ДеЛи принт, 2004, рис. 3.12, с. 173-178. *
АШИРОВ А. Ионообменная очистка сточных вод, растворов и газов. Ленинград, Химия, 1983, с. 91. *
МАМЧЕНКО А.В. Сорбция гумусовых соединений ионитами. "Химия и технология воды", 1993, 15, N4, с. 270-291. *
РЯБЧИКОВ Б.Е. Современные методы подготовки воды для промышленного и бытового использования. Москва, ДеЛи принт, 2004, рис. 3.12, с. 173-178. *

Also Published As

Publication number Publication date
RU2018112529A3 (ru) 2019-10-08
RU2018112529A (ru) 2019-10-08

Similar Documents

Publication Publication Date Title
Katsou et al. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system
US10150685B2 (en) Water reclamation method integrating magnetic resin adsorption and electrosorption
CN106669621B (zh) 一种壳聚糖/沸石分子筛吸附剂的制备方法及应用
CN109734228B (zh) 一种复合污水处理方法
CN105314773A (zh) 一种湿法脱硫废水回收利用方法及其装置
US20130118985A1 (en) Heavy metal removal from waste streams
CN109081467A (zh) 城镇污水处理厂尾水除磷、磷回收系统及吸附除磷、磷回收的方法
CN103288236A (zh) 含盐废水的处理方法
CN103214115A (zh) 一种强酸阳离子交换树脂贫再生的水处理方法
RU2360868C1 (ru) Способ очистки сточных вод от ионов меди
KR100861554B1 (ko) 하수처리장 방류수의 총인을 제거하는 여과ㆍ흡착 다단계 폐수 처리 장치
JP2003093803A (ja) 含油排水処理方法
RU2712538C2 (ru) Способ очистки природных вод от органических водорастворимых веществ
CN116903190A (zh) 一种印染废水高效净化处理的方法
RU2327647C1 (ru) Способ очистки сточных вод от ионов меди
CN103303995A (zh) 一种利用硅藻土对废水进行深度处理的方法
RU2316479C1 (ru) Способ водоподготовки
CN105541056B (zh) 一种去除pcb电路板工业废水中锡的处理方法
RU2399412C2 (ru) Способ получения сорбента для очистки природных и сточных вод
CN112661968B (zh) 一种制备mof吸附材料的方法
KR200211618Y1 (ko) 이온교환체를 이용한 유해 성분의 흡착, 탈착 및 회수 장치
RU2689576C1 (ru) Способ очистки высокомутных мышьяксодержащих сточных вод
CN1485281A (zh) 利用13x分子筛处理氨氮废水的方法
CN103449627B (zh) 一种废水处理方法
CN113087063A (zh) 一种高盐度废水中深度除磷的方法

Legal Events

Date Code Title Description
HC9A Changing information about inventors
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200407