RU2711741C1 - Способ обесфторивания воды - Google Patents

Способ обесфторивания воды Download PDF

Info

Publication number
RU2711741C1
RU2711741C1 RU2019130875A RU2019130875A RU2711741C1 RU 2711741 C1 RU2711741 C1 RU 2711741C1 RU 2019130875 A RU2019130875 A RU 2019130875A RU 2019130875 A RU2019130875 A RU 2019130875A RU 2711741 C1 RU2711741 C1 RU 2711741C1
Authority
RU
Russia
Prior art keywords
water
sorbent
layer
thickness
sorption
Prior art date
Application number
RU2019130875A
Other languages
English (en)
Inventor
Виктор Васильевич Ревин
Петр Васильевич Сенин
Александр Викторович Долганов
Original Assignee
Виктор Васильевич Ревин
Петр Васильевич Сенин
Александр Викторович Долганов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Васильевич Ревин, Петр Васильевич Сенин, Александр Викторович Долганов filed Critical Виктор Васильевич Ревин
Priority to RU2019130875A priority Critical patent/RU2711741C1/ru
Application granted granted Critical
Publication of RU2711741C1 publication Critical patent/RU2711741C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Изобретение относится к водоочистке. Способ обесфторивания воды включает фильтрацию воды через фильтрующую конструкцию цилиндрической формы, в которой расположена система, состоящая из слоя диоксида кремния толщиной 5 см, слоя гранулированного активированного угля толщиной 10 см и слоя сорбента толщиной 0,5 см. Сорбент включает материал на основе бактериальной целлюлозы, модифицированной нанослоем оксида алюминия AlO. Изобретение позволяет удалить ионы фтора из природной и водопроводной воды, обеспечить повышенную адсорбционную емкость и безопасность обесфторивания. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к биотехнологии, а именно к очистке природной и водопроводной воды от избыточного содержания ионов фтора, может быть использовано для обесфторирования воды.
В настоящее время в России и в мировой практике продолжается использование воды с достаточным содержанием фтора, а для ее обесфторирования используют различные фильтры, в которых сорбенты имеют низкий ресурс потребления, низкую абсорбционную емкость и очень высокую стоимость. Большинство известных фильтров не удаляют ионы фтора, но, при этом заявляя, что «делают» воду безопасной (например, фильтры «АКВАФОР», Alumac 320).
Известен сорбент для очистки воды, который состоит из несферических частиц оксида алюминия и частиц волокнистого материала, содержит компонент с отрицательным зарядом поверхности и модификатор, выбранный из ряда оксид или гидрооксид магния, кремния или их смеси. В качестве компонента с отрицательным зарядом поверхности используют оксид или гидроксид кремния, железа, марганца, хрома или их смеси. Способ получения сорбента заключается в том, что несферические частицы оксида алюминия смешивают с частицами волокнистого материала, перед смешиванием обоих компонентов к волокнистому материалу добавляют компонент с отрицательным зарядом поверхности, в процессе смешивания трех компонентов производят активацию получаемой смеси электрическим током или ультразвуком, после чего вводят модификатор, выбранный из ряда оксид или гидрооксид магния, кремния или их смеси, и снова все перемешивают (RU 2242276, МПК B01J 20/06, B01J 20/08, B01D 39/02, B01D 39/06, опубл. 20.12.2004).
Известен способ получения углеродного сорбента для обесфторивания воды, в котором  ископаемый природный уголь фракции 0,3-2,0 мм модифицируют путем последовательной обработки растворами лимонной кислоты, карбоната натрия и сульфата алюминия. Сорбционная емкость полученного сорбента по фтору составляет 1,5 мг на 1 г сорбента при скорости фильтрации воды 8-12 м/час (RU 2424053, МПК В01J 20/20, B01J20/30, C02F1/28, опубл. 20.07.2011).
Известен способ обесфторивания воды, в котором осуществляют ее фильтрация через слой активированного оксида алюминия с последующим удалением сорбированного фтора раствором сернокислого алюминия (Золотова Е.Ф. Очистка воды от железа, фтора марганца и сероводорода / Е.Ф. Золотова, Г.Б. Асс. – М.: Стройиздат, 1975. - 101 c.).
Известен продукт для обработки воды, который представляет собой состоящий из макрочастиц материал, имеющий удельную площадь поверхности, равную по крайней мере 1,0 м2/г, или изделие, полученное связыванием такого состоящего из макрочастиц материала, и имеющий нерастворимое покрытие из гидратированного оксида трехвалентного железа. Предпочтительно, состоящий из макрочастиц материал представляет собой материал на основе оксида алюминия.  Использование активированного оксида алюминия, покрытого железом, делает возможным большее удаление фтора, чем в случае необработанного активированного оксида алюминия, в частности, при уровнях добавления среды, равных 0,1 г и выше (RU 2225251, МПК B01J 20/06, В01J 20/08, С02А 1/28, опубл. 10.03.2004).
Известен из уровня техники адсорбент для очистки водных систем от тяжелых металлов, представляющий собой смесь волокон наноалюминия и соединения железа и/или марганца (US 2005029198, МПК B01J 20/06, B01J 20/08, C02F 1/42, опубл. 10.02.2005).
Недостатками известных решений являются малая сорбционная емкость, сложность приготовления сорбента, а также дороговизна конечного продукта.
Технический результат заключается в удалении ионов фтора из природной и водопроводной воды за счет селективного связывания фторид-ионов в способе обесфторивания воды, который обладает высокой характеристикой адсорбционной емкости, является безопасным, простым и доступным, за счет использования бактериальной целлюлозы, модифицированной нанослоем оксида алюминия (Al2O3).
Сущность изобретения заключается в том, что способ обесфторивания воды включает фильтрацию воды через фильтрующую конструкцию цилиндрической формы, в которой расположена система, состоящая из слоя диоксида кремния толщиной 5 см, слоя гранулированного активированного угля толщиной 10 см и слоя сорбента толщиной 0,5 см. Сорбент включает материал на основе бактериальной целлюлозы, модифицированной нанослоем Al2O3. Толщина нанослоя Al2O3 составляет, предпочтительно, 50 нм или 100 нм.
Новизна заявленного способа заключается в использовании в качестве матрицы материала на основе бактериальной целлюлозы, обладающей уникальной комбинацией необходимых свойств: высокая степень кристалличности с большим количеством на поверхности «якорных» гидроксильных групп, что способствует образованию прочного наноразмерного слоя из Al2O3.
На фиг. 1 показана зависимость значений адсорбционной емкости от толщины слоя Al2O3 на биополимере; на фиг. 2 - зависимость значений адсорбционной емкости от рН в присутствии материалов, содержащих 50 нм и 100 нм; на фиг. 3 - сорбция фторид-ионов из водного раствора в зависимости от времени в присутствии материалов, содержащих 50 нм и 100 нм; на фиг. 4 представлено определение лимитирующей стадии изучаемых процессов сорбции фторид ионов модифицированной бактериальной целлюлозой (1 - 100 нм Al2O3, 2 - 50 нм Al2O3).
Изобретение осуществляется следующим образом. Способ обесфторивания воды включает фильтрацию воды через фильтрующую конструкцию цилиндрической формы, размером 250×65 мм, в которой расположена система, состоящая из слоя высокодисперсного порошка диоксида кремния толщиной 5 см (365 г), слоя гранулированного активированного угля толщиной 10 см (189 г) и слоя сорбента толщиной 0,5 см (24,9 г). Сорбент включает материал на основе бактериальной целлюлозы, модифицированной нанослоем Al2O3. Толщина нанослоя Al2O3 составляет, предпочтительно, 50 нм или 100 нм.
Применяют следующие материалы.
1. Бактериальную целлюлозу получают путем культивирования штамма бактерий Gluconacetobacter sucrofermentans H-110 в статистических условиях на среде с мелассой в концентрации 45 г/л с последующим получением гель-пленки бактериальной целлюлозы. Полученную гель-пленку бактериальной целлюлозы очищают обработкой 0,5 % NaOH при температуре 80°С в течение 60 мин. Штамм депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером ВКПМ В-11267 (RU 2523606, МПК С12N 1/20, С12Р 19/04, С12R 1/01, опубл. 20.07.2014).
2. Высокодисперсный порошок диоксида кремния марки «Аэросил A300» (Evonik, Германия). Аэросил – высокодисперсный, высокоактивный, аморфный, пирогенный диоксид кремния (SiO2), получаемый пламенным гидролизом четыреххлористого кремния (SiCl4) высокой чистоты. Белый, аморфный, непористый, индифферентный порошок; содержание SiO2 99,8 %, имеет высокую дисперсность (диаметр частиц 7 нм, имеют сферическую форму), удельная адсорбционная поверхность составляет 300±30 м2/г; насыпной объем приблизительно 50 г/л, плотность - 2,36 г/см3; рН водной суспензии 4,0; показатель преломления составляет 1,46. Аэросил не растворяется в воде, кислотах и разбавленных щелочах. При концентрации аэросила в воде в количестве 10-12 % образуется маловязкая текучая суспензия, при 17 % - полужесткая масса, при 20 % - крупчатая, которая при растирании превращается в гомогенную мазеобразный массу.
3. Гранулированный активированный уголь марки «GAC» (США). Порошок активированного угля содержит гранулы, размер которых составляет менее приблизительно 1 мм. Цвет: черные гранулы, плотность 0,5 г/см3, удельный вес 65 г/см3, зольность менее 0,5 %, йодный индекс 850-900, влажность 0,7-2,0 %.
Сорбент получают следующим образом. Для модификации поверхности бактериальной целлюлозы в камеру, содержащую инертный газ азот, помещают образец бактериальной целлюлозы, далее его обрабатывают органопроизводными алюминия. В таком состоянии образец выдерживают в течение 1 мин, с последующей обработкой его деионизированной водой. Полученный материал сушат в сушильном шкафу в течение 10 мин при температуре 75°С. Органопроизводные алюминия обладая свойствами кислот Льюиса химически взаимодействуют с гидроксильными группами бактериальной целлюлозы и остаются на ее поверхности. При добавлении воды, органопроизводные алюминия подвергаются очень быстрому процессу гидролиза, с образованием наноразмерного слоя, состоящего из Al2O3, то есть происходит модификация поверхности бактериальной целлюлозы Al2O3 с толщиной 50 нм или 100 нм.
Сорбент для удаления фторид-ионов из воды на основе бактериальной целлюлозы и Al2O3 обладает следующими характеристиками. Внешне – это пористый материал с развитой удельной поверхностью, на которую равномерно нанесен нанослой Al2O3 толщиной 50 нм или 100 нм. Равномерное нанесение нанослоя Al2O3 обеспечивает длительный срок эксплуатации заявленного сорбента (3 года) с низкими ежегодными потерями. Адсорбционная емкость полученного материала будет составлять 80 мг/г в пересчете на сорбент. Для обеспечения полного удаления фторид-ионов, плотность материала составляет 0,1 г/см3. Применительно к очистке водопроводной воды, интенсивность восходящего потока воды должна быть 3 л/с·м2. Питьевая вода после очистки заявленным способом соответствует требованиям СанПиН 2.1.4.1074-01. Технологическими требованиями к производству сорбента должно быть наличие химической лаборатории с оптимальными условиями в помещении (температура воздуха 22°С; относительная влажность воздуха 50 %; скорость движения воздуха не более 0,1 м/с). Также в лаборатории необходимо наличие ионного анализатора для определения элементного состава воды после ее пропускания через разработанный сорбент. Предварительной подготовки перед очисткой воды не требуется. При транспортировке должны быть обеспечены условия, исключающие удары по корпусу фильтрующей системы. Хранить сорбент необходимо при температуре не выше 30°С в твердой таре цилиндрической формы объемом 800 мл. Строгих требований по эксплуатации сорбента не требуется. Необходимо контролировать «чистоту» сорбента, так как он способен забиваться загрязнениями, что приведет к выходу из строя фильтрующей конструкции. В таких случаях, необходимо вручную запускать промывку загрузки фильтрующей конструкции 0,1 М раствором лимонной кислоты, после чего свойства сорбента полностью регенерируются. Методы утилизации не требуют специальных мероприятий, поскольку разработанный сорбент является природным.
С целью определения оптимальной толщины слоя пленки Al2O3 на эффективность сорбционного процесса фторид-ионов, были приготовлены материалы с различными толщинами (варьировалась от 50 нм до 200 нм). Как видно из фиг. 1 максимальное значение адсорбционной емкости достигается при толщине слоя Al2O3 50 нм и 100 нм.
Влияние рН раствора на адсорбцию фторид-ионов было исследовано путем проведения эксперимента при различных значениях рН в присутствии материалов содержащих 50 нм и 100 нм слои и при значениях pH 1,5-8. На фиг. 2 представлена адсорбция фторид-ионов наномодифицированных биополимеров как функция рН раствора. В обоих случаях с увеличением рН, возрастает адсорбционная емкость. Адсорбция фтора на сорбенте максимальна при рН 7, и дальнейшее увеличение рН способствует уменьшению емкости.
Для подбора оптимальных параметров сорбции было изучено оптимальное время процесса в статическом режиме. Как видно на фиг. 3. сорбционная емкость экспоненциально возрастает вплоть да 50 мин и далее она выходит на плато с наступлением состояние равновесия.
Из литературы известно, что механизм сорбции ионов имеет сложный, многостадийный характер и рассмотрение всех стадий процесса трудно осуществимо (Алосманов Р.М. Исследование кинетики сорбции ионов кобальта и никеля фосфорсодержащим катионитом / Р.М. Алосманов // Сорбционные и хроматографические процессы. – 2010. – Т. 10, Вып. 3. – С. 427–432), поэтому, чаще всего, при его изучении широко используются модели, основанные на принципах определения лимитирующей стадии сорбции (СентилКумар П. Кинетика и адсорбционное равновесие в системе водный раствор меди – активный уголь // Известия академии наук. Серия химическая. – 2010. – №10. – С. 1809–1814). Критерием определения стадии, лимитирующей скорость сорбции ионов, является соблюдение линейной зависимости ln(1 − F) от t – для внешнедиффузионных и Гt от t1/2 – для внутридиффузионных. Для внешнедиффузионных процессов, когда стадия, которая контролирует скорость всего процесса, является диффузия в неподвижной пленке раствора вокруг зерна сорбента, кинетическая кривая описывается уравнением (1):
ln(1–F)=–y·t, (1)
где t – время, мин; y– некоторая постоянная для данных условий величина; F – степень достижения равновесия, рассчитываемая как F =at/ap, где аt – количество сорбированного вещества в момент времени t, ммоль/г; ар – количество сорбированного вещества в состоянии равновесия, ммоль/г.
Для процесса, в котором лимитирующей стадией является внутренняя диффузия, служит соблюдение прямoлинейной зависимости в координатах Гt от t1/2, кинетическая кривая описываются уравнением (2):
Гt = Kd·t1/2+A, (2)
где Гt – количество меди (II) на единицу массы сорбента, ммоль/г; Kd – константа скорости внутренней диффузии, ммоль·г-1·мин-0,5; t – время, мин; А – величина, пропорциональная толщине пленки, окружающей зерно сорбента (отрезок, отсекаемый продолжением прямой зависимости Гt = f(t) на оси ординат).
Для определения лимитирующей стадии изучаемых процессов были использованы обе модели.
В случае образца имеющего 100 нм слой Al2O3 (фиг. 4, кривая 1) только на начальном участке зависимости -ln(1−F) от t наблюдается прямолинейный характер функции -ln(1−F)=f(t), что соответствует протеканию процесса по внешнедиффузионному механизму. В дальнейшем прямолинейность кинетической кривой нарушается, что свидетельствует о смене механизма сорбции на внутридиффузионный механизм. Таким образом, полученная закономерность показывает классический смешанно-диффузионный механизм сорбции, то есть диффузия сорбата из раствора к поверхности сорбента через пленку и диффузию сорбата в зерне сорбента. Как показано на фиг. 4 (кривая 2), у образца имеющего 50 нм слой Al2O3 практически на всем интервале сорбции наблюдается прямолинейный характер функции -ln(1−F)=f(t), свидетельствующий о внешнедиффузионном механизме сорбции фторид-ионов образцом 2.
С помощью полученных зависимостей определены кинетические параметры (константы скорости внутренней диффузии Kd), характеризующие внутреннюю диффузию фторид-ионов образцами 1 и 2: Kd 1 = 0,13; Kd 2 = 0,22. Константы скорости внутренней диффузии Kd, найденные по тангенсу угла наклона Гt от t1/2к оси абсцисс, показывают, что скорость внутренней диффузии для образца 2 больше, чем для образца 1.
Получены изотермы сорбции фторид-ионов образцами 1 и 2. В обоих случаях они соответствовали изотермам модели Ленгмюра. Начальные прямолинейные участки кривых показывают, что адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбата, образуя мономолекулярный слой. Участки на изотермах, соответствующие большим концентрациям, отвечают поверхности сорбента полностью насыщенной сорбатом. Средние участки изотерм сорбции соответствуют промежуточным степеням заполнения поверхности сорбента.
О протекании ионообменного механизма сорбции фторид ионов образцами 1 и 2 подтверждают данные ИК-спектроскопического анализа. На ИК-спектрах образцов после сорбции наблюдаются полосы поглощения в области 735 и 740 см-1, относящиеся к антисимметричным валентным колебаниям связи Al–F.
Реализация изобретения представлена нижеследующими примерами.
Пример 1. Очистке подлежит вода, содержащая фторид-ионы в количестве 10 мг/л. Осуществляют сорбцию с использованием заявленного изобретения. Очищенная вода содержит фтор в количестве от 0 до 0,5 мг/л.
Пример 2. Очистке подлежит вода, содержащая фторид- и хлорид ионы в количестве по 10 мг/л. Осуществляют сорбцию с использованием заявленного изобретения. Очищенная вода содержит фтор в количестве от 0 до 0,5 мг/л и 9,5 мг/л хлорид-ионов.
Исследования показали, что при очистке воды, имеющиеся в ней фторид-ионы быстро связываются с аморфным Al2O3 с образованием водонерастворимых соединений. Питьевая вода после очистки с помощью фильтрующей конструкции с использованием заявленного сорбента соответствует требованиям СанПиН 2.1.4.1074-01. Полученные данные показывает высокую селективность сорбента к фторид-ионам.
Таким образом, разработан уникальный сорбент на основе бактериальной целлюлозы, модифицированной нанослоем Al2O3, который помещают в кассету для фильтров кувшинного типа. Данная фильтрующая система будет способна полностью обесфторить воду. Основными техническими параметрами фильтрующей системы являются:
1. Селективность (материал разработан селективно по отношению к фтору).
2. Адсорбционная емкость составляет до 80 мг/г в пересчете на сорбент (рекордная характеристика всех известных сорбентов, представленных на рынке). В сравнении с аналогом, представленном на рынке Alumac 320, который используется только в промышленных масштабах, сорбционная емкость заявленного решения превышает значение в 3 раза.
3. Производительность – 80 л/мин.
4. Максимальная рабочая температура - 60°С.
5. Низкая стоимость конечного продукта (1 000 руб./кг).
По сравнению с известным решением заявленное изобретение позволяет удалять ионы фтора из природной и водопроводной воды, сохраняя ее полезные свойства, за счет селективного связывания фторид-ионов. Предлагаемый способ обладает высокой характеристикой адсорбционной емкости, является безопасным, доступным, за счет дешевизны бактериальной целлюлозы, обладает высоким ресурсом потребления, позволяет сохранять природный баланс питьевой воды. Кроме этого способ является простым в использовании.

Claims (2)

1. Способ обесфторивания воды, включающий фильтрацию воды через фильтрующую конструкцию цилиндрической формы, в которой расположена система, состоящая из слоя диоксида кремния толщиной 5 см, слоя гранулированного активированного угля толщиной 10 см и слоя сорбента толщиной 0,5 см, причем сорбент включает материал на основе бактериальной целлюлозы, модифицированной нанослоем оксида алюминия.
2. Способ обесфторивания воды по п. 1, отличающийся тем, что толщина нанослоя оксида алюминия составляет предпочтительно 50 нм или 100 нм.
RU2019130875A 2019-10-01 2019-10-01 Способ обесфторивания воды RU2711741C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019130875A RU2711741C1 (ru) 2019-10-01 2019-10-01 Способ обесфторивания воды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019130875A RU2711741C1 (ru) 2019-10-01 2019-10-01 Способ обесфторивания воды

Publications (1)

Publication Number Publication Date
RU2711741C1 true RU2711741C1 (ru) 2020-01-21

Family

ID=69184040

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019130875A RU2711741C1 (ru) 2019-10-01 2019-10-01 Способ обесфторивания воды

Country Status (1)

Country Link
RU (1) RU2711741C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355505A (ja) * 2001-05-30 2002-12-10 Mitsubishi Paper Mills Ltd 凝集剤
RU2242276C1 (ru) * 2003-11-27 2004-12-20 Лисецкий Владимир Николаевич Сорбент и способ его получения
RU2007124704A (ru) * 2007-06-29 2009-01-10 ЗАО "Конверси " (RU) Способ обесфторивания воды
RU83940U1 (ru) * 2008-10-07 2009-06-27 Учреждение Российской Академии Наук Институт Физики Прочности И Материаловедения Сибирского Отделения Ран (Ифпм Со Ран) Картридж для очистки жидкости (варианты)
RU2424053C1 (ru) * 2009-11-11 2011-07-20 Закрытое акционерное общество "Конверсия" Способ получения углеродного сорбента для обесфторивания воды
RU149627U1 (ru) * 2014-06-03 2015-01-10 Общество с ограниченной ответственностью "Бородино-Юг" Фильтрующий патрон

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355505A (ja) * 2001-05-30 2002-12-10 Mitsubishi Paper Mills Ltd 凝集剤
RU2242276C1 (ru) * 2003-11-27 2004-12-20 Лисецкий Владимир Николаевич Сорбент и способ его получения
RU2007124704A (ru) * 2007-06-29 2009-01-10 ЗАО "Конверси " (RU) Способ обесфторивания воды
RU83940U1 (ru) * 2008-10-07 2009-06-27 Учреждение Российской Академии Наук Институт Физики Прочности И Материаловедения Сибирского Отделения Ран (Ифпм Со Ран) Картридж для очистки жидкости (варианты)
RU2424053C1 (ru) * 2009-11-11 2011-07-20 Закрытое акционерное общество "Конверсия" Способ получения углеродного сорбента для обесфторивания воды
RU149627U1 (ru) * 2014-06-03 2015-01-10 Общество с ограниченной ответственностью "Бородино-Юг" Фильтрующий патрон

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЗОЛОТОВА Е.Ф., Очистка воды от железа, фтора, марганца и сероводорода, Москва, Стройиздат, 1975, с. 108-120. *

Similar Documents

Publication Publication Date Title
Peng et al. Manganese dioxide nanosheet suspension: a novel absorbent for cadmium (II) contamination in waterbody
Khraisheh et al. Remediation of wastewater containing heavy metals using raw and modified diatomite
Yang et al. Effect of pH, ionic strength and temperature on sorption of Pb (II) on NKF-6 zeolite studied by batch technique
Li et al. Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel
Zhang et al. Efficient removal of Pb (II) ions using manganese oxides: the role of crystal structure
JP4714931B2 (ja) 非晶質アルミニウムケイ酸塩の製造方法、及びその方法により得られた非晶質アルミニウムケイ酸塩、並びにそれを用いた吸着剤
Mahmoud et al. Solid–solid crosslinking of carboxymethyl cellulose nanolayer on titanium oxide nanoparticles as a novel biocomposite for efficient removal of toxic heavy metals from water
Jorfi et al. Adsorption of Cr (VI) by natural clinoptilolite zeolite from aqueous solutions: isotherms and kinetics
Esmaeili et al. Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ ferric molybdate nanocomposite
Padilla-Ortega et al. Adsorption of heavy metal ions from aqueous solution onto sepiolite
Aditya et al. Biosorption of chromium onto Erythrina Variegata Orientalis leaf powder
Ismail et al. Heavy metal removal using SiO 2-TiO 2 binary oxide: experimental design approach
Zulfikar et al. Peat water treatment using chitosan-silica composite as an adsorbent
MX2014003589A (es) Composiciones de oxido de magnesio para la purificacion de agua y sus aplicaciones.
Li et al. Hydrophobic-modified montmorillonite coating onto crosslinked chitosan as the core-shell micro-sorbent for iodide adsorptive removal via Pickering emulsion polymerization
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
Ghanavati et al. Thermodynamic and Kinetic Study of Adsorption of Cobalt II using adsorbent of Magnesium Oxide Nanoparticles Deposited on Chitosan
Wang et al. Adsorption of polycarboxylate-based superplasticizer onto natural bentonite
RU2711741C1 (ru) Способ обесфторивания воды
CA2885496C (en) Method for treating solution containing rare earth
Fang-qun et al. Layered double hydroxide (LDH)-coated attapulgite for phosphate removal from aqueous solution
JP2022508188A (ja) フッ化物除去プロセス
EP3328515B1 (en) Chill-proofing composite filter aid and related methods
Tadayon et al. Selective removal mercury (II) from aqueous solution using silica aerogel modified with 4-amino-5-methyl-1, 2, 4-triazole-3 (4H)-thion
RU2596744C1 (ru) Сорбент для очистки сточных вод от соединений хрома(vi)