RU2711407C1 - Способ тепловакуумных испытаний космического аппарата - Google Patents

Способ тепловакуумных испытаний космического аппарата Download PDF

Info

Publication number
RU2711407C1
RU2711407C1 RU2019106963A RU2019106963A RU2711407C1 RU 2711407 C1 RU2711407 C1 RU 2711407C1 RU 2019106963 A RU2019106963 A RU 2019106963A RU 2019106963 A RU2019106963 A RU 2019106963A RU 2711407 C1 RU2711407 C1 RU 2711407C1
Authority
RU
Russia
Prior art keywords
heat
bench
spacecraft
heaters
honeycomb panels
Prior art date
Application number
RU2019106963A
Other languages
English (en)
Inventor
Сергей Эдуардович Зайцев
Вячеслав Михайлович Пожалов
Александр Сергеевич Смирнов
Надежда Петровна Данилова
Валерий Игоревич Волков
Игорь Александрович Кочнев
Андрей Евгеньевич Гуреев
Original Assignee
Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" filed Critical Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения"
Priority to RU2019106963A priority Critical patent/RU2711407C1/ru
Application granted granted Critical
Publication of RU2711407C1 publication Critical patent/RU2711407C1/ru

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Изобретение относится к наземным испытаниям космических аппаратов (КА), корпус которых выполнен с боковыми гранями из сотопанелей (СП), содержащих аксиальные (вертикальные) и горизонтальные коллекторные тепловые трубы. На СП установлены тепловые эквиваленты или штатные приборы КА. В первом режиме в нижних зонах СП включают стендовые нагреватели с суммарным тепловыделением (ТВ), равным штатному ТВ приборов соответствующих СП. При этом приборы не включают. Во втором режиме увеличивают мощность нагревателей СП до двойного суммарного ТВ приборов этих СП. Одновременно задействуют стендовые охладители для поглощения ТВ стендовых нагревателей. Регулируя нагрузки нагревателей и охладителей, добиваются совпадения значений средних температур СП в обоих режимах. Затем включают установленные на СП приборы со штатным ТВ и одновременно снижают ТВ стендовых нагревателей до штатного ТВ приборов. Указанное управление подводом и отводом тепла от СП позволяет стабилизировать работу аксиальных тепловых труб в условиях гравитации. Технический результат заключается в обеспечении необходимой достоверности испытаний КА при одновременном снижении затрат на их проведение. 2 ил.

Description

Техническое решение относится к области космической техники, а именно к тепловакуумным испытаниям (ТВИ) космических аппаратов (КА).
Учет компоновки и конструктивных особенностей проектируемых КА негерметичного исполнения, корпус которых выполнен в виде прямоугольного параллелепипеда с боковыми гранями из сотопанелей, содержащих тепловые трубы и сопряженных в тепловом отношении коллекторными тепловыми трубами, позволяет предложить новый, по мнению авторов, способ ТВИ с улучшенными технико-экономическими показателями.
Известен способ ТВИ КА, заключающийся в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, воздействии на КА с помощью имитатора внешних тепловых потоков определенной ранее тепловым расчетом температуры с одновременным воспроизведением внутреннего теплового нагружения КА (см. патент РФ 2564056, B64G 7/00, 2015, «Способ тепловакуумных испытаний космического аппарата»). Реализация этого технического решения снижает трудо- и энергозатраты при обеспечении необходимой степени достоверности ТВИ, но способ приемлем только для КА микро- и малого класса - массой до 100 кг и энергопотреблением до 100 Вт и корпус которых не имеет тепловых труб, расположенных в разных плоскостях. При этом отсутствует возможность определить температурные поля оснащенных аппаратурой или тепловыми имитаторами панелей корпуса КА большего размера и повышенного энерговыделения.
Известен также подход к проведению ТВИ негерметичных автоматических КА, заключающийся в отработке системы обеспечения теплового режима (СОТР) с целью определения достаточности холодопроизводительности радиационных теплообменников и температурных полей посадочных мест аппаратуры (см. ГОСТ Р 56519-2015. Аппараты космические автоматические. Тепловакуумная отработка. Общие требования, стр. 14). Документ содержит рекомендации по обеспечению возможности проведения тепловакуумных испытаний развертки СОТР, т.е. сотопанелей со встроенными тепловыми трубами (ТТ) в одной горизонтальной плоскости (при использовании в СОТР угловых, коллекторных и артериальных ТТ, не лежащих горизонтально). Также аналог содержит требования к методологии тепловакуумной отработки, которая должна разрабатываться с учетом влияния гравитации на работу элементов СОТР негерметичных КА (там же стр. 7 п. 5.6).
Однако этот подход к ТВИ с горизонтальной разверткой сотопанелей корпуса КА обладает следующими недостатками:
1) для испытаний крупных КА требуются горизонтальные вакуумные камеры больших размеров;
2) из имитаторов внешних тепловых потоков можно использовать только индивидуальные нагреватели сотопанелей;
3) необходимо проектировать и изготавливать специальные стендовые (не штатные) коллекторные трубы и стендовую кабельную сеть;
4) полностью исключается теплообмен излучением между сотопанелями и приборами;
5) отсутствует тепловая связь (по коллекторным тепловым трубам) между крайними сотопанелями, что влияет на теплообмен между всеми сотопанелями.
Технической задачей предложенного решения является устранение указанных недостатков, обеспечение необходимой степени достоверности ТВИ при одновременном снижении стоимости испытаний.
Поставленная техническая задача достигнута тем, что в способе тепловакуумных испытаний КА, заключающемся в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, воздействии на КА натурных тепловых потоков с помощью размещенного в вакуумной камере имитатора внешних тепловых потоков, воспроизведении внутреннего теплового нагружения КА, соответствующего штатной циклограмме энергопотребления КА в орбитальном полете, осуществляемого включением приборов КА с помощью наземной контрольно-проверочной аппаратуры, КА, корпус которого выполнен в виде прямоугольного параллелепипеда с боковыми гранями из сотопанелей, содержащих продольные тепловые трубы, и оснащен тепловыми эквивалентами или штатными образцами приборов и содержит несколько поясов коллекторных тепловых труб, перпендикулярных тепловым трубам сотопанелей, предварительно снабжают стендовыми нагревателями, расположенными в нижних зонах сотопанелей, и стендовыми охладителями, расположенными в верхних зонах сотопанелей, и устанавливают его в вакуумной камере вертикально с расположением боковых граней корпуса перпендикулярно земной поверхности, после создания в вакуумной камере необходимых внешних условий испытаний включают стендовые нагреватели с тепловыделением, эквивалентным суммарному тепловыделению приборов соответствующих сотопанелей при штатной эксплуатации, без включения приборов и определяют температурные поля сотопанелей, далее увеличивают подаваемую на стендовые нагреватели сотопанелей мощность до значения двойного суммарного тепловыделения приборов соответствующих сотопанелей и одновременно задействуют стендовые охладители для поглощения тепловыделения стендовых нагревателей, эквивалентного штатному тепловыделению приборов соответствующих сотопанелей, и при этом добиваются совпадения температурных полей сотопанелей в обоих режимах, с последующим включением установленных на сотопанелях приборов со штатным тепловыделением и одновременным снижением тепловыделения стендовых нагревателей до штатного значения тепловыделения приборов, при этом во время испытаний тепловое нагружение и контроль полей температур каждой боковой панели корпуса КА осуществляют индивидуально, а продолжительность режимов испытаний ограничивают условием не превышения температуры приборных блоков допустимого значения, по результатам испытаний, которые получают в виде температурных полей панелей корпуса КА и данных по функционированию агрегатов системы обеспечения теплового режима, уточняют предварительно созданную математическую модель тепловых режимов КА и выполняют тепловые расчеты для штатного КА и натурных условий эксплуатации.
Предложенный способ ТВИ поясняется чертежами фиг. 1 и 2.
На фиг. 1 представлена схема корпуса КА, а на фиг. 2 - схема одной боковой панели корпуса КА.
Фиг. 1 поясняет проведение начального этапа ТВИ, на ней не показаны приборы, которые на этом этапе не включают.
Фиг. 2 поясняет проведение заключительного этапа ТВИ (не показан радиационный теплообменник).
На представленных чертежах введены следующие обозначения:
1 - сотопанель;
2 - аксиальная тепловая труба в сотопанели;
3 - коллекторная тепловая труба;
4 - стендовый нагреватель;
5 - стендовый охладитель;
6 - радиационный теплообменник;
7 - экранно-вакуумная теплоизоляция;
8 - прибор с тепловыделением 100 Вт;
9 - прибор с тепловыделением 50 Вт;
10 - прибор с тепловыделением 80 Вт.
Объектом ТВИ является КА или тепловой макет КА, но в том и другом случае оснащенный штатной системой обеспечения теплового режима, включающей аксиальные ТТ в сотопанелях, различные коллекторные и связующие аксиальные ТТ, нагреватели с системой управления их мощностью, экранно-вакуумную теплоизоляцию (ЭВТИ), радиационные теплообменники (РТО), терморегулирующие покрытия и т.п.
На начальном этапе ТВИ после создания в вакуумной камере необходимых внешних условий испытаний, т.е. создания внешних тепловых потоков, включают только расположенные в нижних зонах сотопанелей стендовые нагреватели с тепловыделением, эквивалентным тепловыделению приборов соответствующих сотопанелей при штатной эксплуатации, а сами приборы не включают.
При такой подаче тепла снизу аксиальные ТТ в сотопанелях будут функционировать в условиях гравитации в режиме термосифона и обеспечивать распределение теплового потока по длине сотопанелей снизу вверх (по вертикали). Одновременно коллекторные ТТ, расположенные в горизонтальной плоскости в верхней части внутренних поверхностей сотопанелей, обеспечивают перераспределение тепла как в пределах каждой из четырех боковых сотопанелей, так и между ними.
Функционирование стендовых нагревателей обуславливает нагрев сотопанелей корпуса КА, с которых через радиационные теплообменники и закрытые ЭВТИ участки корпуса тепловой поток излучением сбрасывается на внутренние стенки вакуумной камеры. При этом между поверхностью КА и вакуумной камерой устанавливается равновесное состояние, обеспечиваемое работой холодильной установки вакуумной камеры, отводящей тепловыделения нагревателей.
Испытания проводятся для различных режимов функционирования КА, в т.ч. для экстремальных тепловых режимов - «горячего» и «холодного».
На этом этапе испытаний определяются средние температуры сотопанелей корпуса КА и достаточность основных параметров СОТР КА - величины площадей радиационных теплообменников и характеристик терморегулирующих покрытий внешних поверхностей КА (РТО и ЭВТИ).
На следующем этапе испытаний на КА воздействуют такими же внешними потоками, как и на первом этапе. Однако, внутреннее тепловое нагружение осуществляют по-другому - увеличивают подаваемую на стендовые нагреватели сотопанелей мощность до значения двойного суммарного тепловыделения приборов соответствующих сотопанелей и одновременно задействуют стендовые охладители для поглощения тепловыделения стендовых нагревателей, эквивалентного штатному тепловыделению приборов соответствующих сотопанелей. При этом, регулируя нагрузки нагревателей и охладителей, добиваются совпадения значений средних температур сотопанелей корпуса КА на обоих этапах.
Далее, включают установленные на сотопанелях приборы со штатным тепловыделением и одновременно снижают тепловыделения стендовых нагревателей до штатного значения тепловыделения приборов.
Вышеизложенные операции по внутреннему тепловому нагружению сотопанелей корпуса КА, а именно - первоначальная двойная тепловая нагрузка от стендовых нагревателей с последующим снижением ее до одинарной и включением приборов со штатным одинарным тепловыделением - необходимы для устойчивой гарантированной работы аксиальных тепловых труб, находящихся в составе сотопанелей и функционирующих в режиме термосифона в условиях земной гравитации.
Установленные и подключенные к системе охлаждения стендовые охладители компенсируют тепловыделение стендовых нагревателей, что позволяет осуществить на этом этапе испытаний штатное тепловое нагружение КА.
Стендовые охладители могут быть выполнены в виде жидкостных теплообменников, функционирующих автономно, т.е. каждый теплообменник поглощает тепловой поток отдельной сотопанели.
Также как и на начальном этапе испытаний, коллекторные ТТ, расположенные в горизонтальной плоскости, обеспечивают перераспределение тепла как в пределах каждой из четырех боковых сотопанелей, так и между ними.
Реализуемое таким образом внутреннее тепловое нагружение сотопанелей корпуса, соответствующее штатному нагружению КА, позволяет определить тепловое состояние и температурные поля посадочных мест аппаратуры с повышенной степенью достоверности.
Индивидуальный контроль за тепловым нагружением приборов и сотопанелей, а также контроль за их фактическими температурами обеспечивает безопасность эксплуатации и сохранность дорогостоящей материальной части, особенно в случае использования в испытаниях штатных приборных блоков.
По результатам испытаний, которые получены с необходимой степенью достоверности, уточняют математическую модель тепловых режимов КА и выполняют тепловые расчеты для натурных условий эксплуатации штатного КА.
Предложенный способ ТВИ КА осуществляют следующим образом. На всех этапах испытаний в вакуумной камере с криоэкранами создают необходимые условия традиционным способом - вакуумирование камеры до давления, исключающего конвективный теплообмен в камере, захолаживание криоэкранов для имитации холода окружающего космического пространства, облучение наружных поверхностей КА тепловыми потоками от имитаторов солнечного и земного излучений.
На начальном этапе включают расположенные в нижних зонах сотопанелей 1 стендовые нагреватели 4 с тепловыделением, суммарным тепловыделениям приборов соответствующих сотопанелей при штатной эксплуатации, а сами приборы не включают. Например, для сотопанели, показанной на фиг. 2, мощность стендового нагревателя 4 составит 100+50+80=230 (Вт). Аксиальные тепловые трубы 2, функционируя в режиме термосифона, распределят тепловой поток по сотопанели, коллекторные тепловые трубы 3 распределят его равномерно по сотопанели и между сотопанелями. При этом на каждой сотопанели с учетом теплообмена через радиационный теплообменник 6 и закрытые ЭВТИ 7 участками сотопанелей корпуса КА со стенками вакуумной камеры установится средняя температура.
На следующем этапе испытаний увеличивают мощность стендовых нагревателей 4 всех боковых сотопанелей, например, для сотопанели, представленной на фиг. 2 стендовый нагреватель 4 задействуют с мощностью тепловыделения 230×2=460 (Вт). Одновременно включают стендовые охладители 5 для поглощения тепловыделения стендовых нагревателей (в примере для представленной панели 230 Вт). Регулируя тепловые мощности нагревателей и охладителей, добиваются совпадения температурных полей сотопанелей в обоих этапах.
Далее включают сами приборы 8, 9, 10 или их тепловые эквиваленты со штатным тепловыделением, например 100, 50 и 80 Вт соответственно, и одновременно снижают мощность тепловыделения стендового нагревателя 4 с 460 до 230 Вт, а стендовый охладитель 5 по-прежнему поглощает 230 Вт.
Аксиальные тепловые трубы 2 и коллекторные тепловые трубы 3 функционируют так же, как и на первом этапе испытаний. При установлении равновесного состояния (с учетом теплообмена через радиационный теплообменник 6 и закрытые ЭВТИ 7 участками корпуса КА) определяют искомые поля температур по сотовым панелям и температуры посадочных мест под приборами.
Для проведения предложенного способа испытаний необходим корпус КА со штатной системой обеспечения теплового режима, что исключает изготовление нештатных агрегатов СОТР и тем самым снижает стоимость изготовления матчасти для ТВИ.
Таким образом, для представленной конструкции КА совокупность предложенных признаков - испытания КА в собранном виде в вертикальном положении без развертывания панелей КА в горизонтальной плоскости, задействование стендовых нагревателей и охладителей представленным способом позволяет использовать для ТВИ штатный корпус КА с минимальными доработками, точнее имитировать теплообмен между сотопанелями корпуса КА, что в итоге обеспечивает необходимую степень достоверности результатов испытаний при одновременном снижении их стоимости.

Claims (1)

  1. Способ тепловакуумных испытаний космического аппарата (КА), заключающийся в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, воздействии на КА натурных тепловых потоков с помощью размещенного в вакуумной камере имитатора внешних тепловых потоков, воспроизведении внутреннего теплового нагружения КА, соответствующего штатной циклограмме энергопотребления КА в орбитальном полете, осуществляемого включением приборов КА с помощью наземной контрольно-проверочной аппаратуры, отличающийся тем, что КА, корпус которого выполнен в виде прямоугольного параллелепипеда с боковыми гранями из сотопанелей, содержащих продольные тепловые трубы, и оснащен тепловыми эквивалентами или штатными образцами приборов и содержит несколько поясов коллекторных тепловых труб, перпендикулярных тепловым трубам сотопанелей, предварительно снабжают стендовыми нагревателями, расположенными в нижних зонах сотопанелей, и стендовыми охладителями, расположенными в верхних зонах сотопанелей, и устанавливают его в вакуумной камере вертикально с расположением боковых граней корпуса перпендикулярно земной поверхности, после создания в вакуумной камере необходимых внешних условий испытаний включают стендовые нагреватели с тепловыделением, эквивалентным суммарному тепловыделению приборов соответствующих сотопанелей при штатной эксплуатации, без включения приборов и определяют температурные поля сотопанелей, далее увеличивают подаваемую на стендовые нагреватели сотопанелей мощность до значения двойного суммарного тепловыделения приборов соответствующих сотопанелей и одновременно задействуют стендовые охладители для поглощения тепловыделения стендовых нагревателей, эквивалентного штатному тепловыделению приборов соответствующих сотопанелей, и при этом добиваются совпадения температурных полей сотопанелей в обоих режимах, с последующим включением установленных на сотопанелях приборов со штатным тепловыделением и одновременным снижением тепловыделения стендовых нагревателей до штатного значения тепловыделения приборов, при этом во время испытаний тепловое нагружение и контроль полей температур каждой боковой панели корпуса КА осуществляют индивидуально, а продолжительность режимов испытаний ограничивают условием не превышения температуры приборных блоков допустимого значения, по результатам испытаний, которые получают в виде температурных полей панелей корпуса КА и данных по функционированию агрегатов системы обеспечения теплового режима, уточняют предварительно созданную математическую модель тепловых режимов КА и выполняют тепловые расчеты для штатного КА и натурных условий эксплуатации.
RU2019106963A 2019-03-13 2019-03-13 Способ тепловакуумных испытаний космического аппарата RU2711407C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019106963A RU2711407C1 (ru) 2019-03-13 2019-03-13 Способ тепловакуумных испытаний космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019106963A RU2711407C1 (ru) 2019-03-13 2019-03-13 Способ тепловакуумных испытаний космического аппарата

Publications (1)

Publication Number Publication Date
RU2711407C1 true RU2711407C1 (ru) 2020-01-17

Family

ID=69171598

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019106963A RU2711407C1 (ru) 2019-03-13 2019-03-13 Способ тепловакуумных испытаний космического аппарата

Country Status (1)

Country Link
RU (1) RU2711407C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111746828A (zh) * 2020-07-22 2020-10-09 上海航天测控通信研究所 一种卫星载荷真空热平衡试验热控装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332591B1 (en) * 1999-03-11 2001-12-25 Alcatel Method of simulating external thermal fluxes absorbed by external radiating components of a spacecraft in flight, and spacecraft for implementing the method
RU2186005C2 (ru) * 1997-04-10 2002-07-27 Дзе Интернешнл Телекоммуникейшнс Сателлит Организейшн Устройство и способ обеспечения функционирования панельного узла с тепловыми трубами
RU2302984C1 (ru) * 2005-10-07 2007-07-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов
RU2481254C2 (ru) * 2011-08-05 2013-05-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Теплофизическая модель космического аппарата
RU2564056C1 (ru) * 2014-05-30 2015-09-27 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (АО "ВПК "НПО машиностроения") Способ тепловакуумных испытаний космического аппарата

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2186005C2 (ru) * 1997-04-10 2002-07-27 Дзе Интернешнл Телекоммуникейшнс Сателлит Организейшн Устройство и способ обеспечения функционирования панельного узла с тепловыми трубами
US6332591B1 (en) * 1999-03-11 2001-12-25 Alcatel Method of simulating external thermal fluxes absorbed by external radiating components of a spacecraft in flight, and spacecraft for implementing the method
RU2302984C1 (ru) * 2005-10-07 2007-07-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов
RU2481254C2 (ru) * 2011-08-05 2013-05-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Теплофизическая модель космического аппарата
RU2564056C1 (ru) * 2014-05-30 2015-09-27 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (АО "ВПК "НПО машиностроения") Способ тепловакуумных испытаний космического аппарата

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111746828A (zh) * 2020-07-22 2020-10-09 上海航天测控通信研究所 一种卫星载荷真空热平衡试验热控装置
CN111746828B (zh) * 2020-07-22 2022-08-12 上海航天测控通信研究所 一种卫星载荷真空热平衡试验热控装置

Similar Documents

Publication Publication Date Title
Wang et al. Experimental investigation on EV battery cooling and heating by heat pipes
CN112034873B (zh) Meo导航卫星热控系统
CN102564782B (zh) 一种空间辐射换热规律地面常压等效热试验方法
CN110171584A (zh) 批量化生产卫星星座系统真空热试验方法
RU2553411C1 (ru) Стенд для тепловых испытаний радиоэлектронных устройств космических аппаратов
RU2711407C1 (ru) Способ тепловакуумных испытаний космического аппарата
Chaix et al. Development of a two-phase mechanically pumped loop (2ΦMPL) for the thermal dissipation management of spacecraft: Simulation and test results
Xie et al. Design and performance of a modular 1 kilowatt-level thermoelectric generator for geothermal application at medium-low temperature
Lee et al. Thermal vacuum test of ice as a phase change material integrated with a radiator
RU2564056C1 (ru) Способ тепловакуумных испытаний космического аппарата
RU2386572C1 (ru) Система терморегулирования космического аппарата
CN105857644A (zh) 一种热管辐射器的优化设计方法
Wei et al. Analysis and design of module-level liquid cooling system for rectangular Li-ion batteries
RU2481254C2 (ru) Теплофизическая модель космического аппарата
Fellin et al. Proposal of cooling plant, for SPIDER and MITICA experiments
Chan Advanced stirling radioisotope generator emergency heat dump test for nuclear safety consideration
Molina et al. AMS-02 thermal vacuum and thermal balance test in the LSS at ESTEC
Palac et al. Fission surface power technology development update
Park et al. Development of a Virtual Cyber-Physical Testbed for Resilient Extraterrestrial Habitats
Takata et al. Thermal tests of Engineering Test Satellite VII and thermal mathematical model evaluation
Prado Montes et al. Operation of an Eight-Loop Heat Pipe Architecture for High Dissipative Applications
RU2322375C2 (ru) Способ терморегулирования тепловых труб с электронагревателями на приборных панелях космических аппаратов
Van Dyke et al. Phase 1 space fission propulsion system testing and development progress
Savage et al. A variable-conductance heat pipe radiator for MAROTS-Type communication spacecraft
JPH07169489A (ja) 燃料電池の冷却システム