RU2711000C1 - Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач - Google Patents

Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач Download PDF

Info

Publication number
RU2711000C1
RU2711000C1 RU2019116260A RU2019116260A RU2711000C1 RU 2711000 C1 RU2711000 C1 RU 2711000C1 RU 2019116260 A RU2019116260 A RU 2019116260A RU 2019116260 A RU2019116260 A RU 2019116260A RU 2711000 C1 RU2711000 C1 RU 2711000C1
Authority
RU
Russia
Prior art keywords
deviations
output signals
signs
estimates
integral
Prior art date
Application number
RU2019116260A
Other languages
English (en)
Inventor
Сергей Викторович Шалобанов
Сергей Сергеевич Шалобанов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет"
Priority to RU2019116260A priority Critical patent/RU2711000C1/ru
Application granted granted Critical
Publication of RU2711000C1 publication Critical patent/RU2711000C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing

Abstract

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач, фиксируют число блоков системы, определяют время контроля и параметр интегрального преобразования сигналов. Фиксируют число контрольных точек системы, регистрируют реакцию объекта диагностирования и реакцию исправной системы в этих точках. Определяют интегральные оценки выходных сигналов исправной системы. Определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для контрольных точек от номинальных значений. Вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы. Определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков. Определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков. Вычисляют признаки наличия неисправного блока. Улучшается помехоустойчивость способа. 1 ил.

Description

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.
Известен способ поиска неисправного блока в непрерывной динамической системе (Способ поиска неисправного блока в непрерывной динамической системе: пат. 2439647 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2011100409/08; заявл. 11.01.2011; опубл. 10.01.2012, Бюл. №1).
Недостатком этого способа является то, что он использует вычисление знаков передач сигналов от выходов блоков до контрольных точек.
Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в динамической системе (Способ поиска неисправного блока в динамической системе: пат. 2435189 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2009123999/08; заявл. 23.06.2009; опубл. 27.11.2011, Бюл. №33).
Недостатком этого способа является то, что он обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.
Технической задачей, на решение которой направлено данное изобретение, является улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем увеличения различимости дефектов.
Поставленная задача достигается тем, что предварительно регистрируют реакцию заведомо исправной системы ƒjном(t), j=1, …, k на интервале t∈[0,TК] в k контрольных точках, и определяют интегральные оценки выходных сигналов Fjном(α), j=1, …, k системы, для чего в момент подачи входного сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек с весами e-αt, где
Figure 00000001
путем подачи на первые входы k блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fjном(α), j=1, …, k регистрируют, фиксируют число m блоков системы, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученных в результате пробных отклонений для m дефектов блоков, для чего поочередно в каждый блок динамической системы вводят пробное отклонение параметра передаточной функции и находят интегральные оценки выходных сигналов системы для параметра интегрирования α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений Pji(α), j=1, …, k; i=1, …, m регистрируют, определяют отклонения интегральных оценок выходных сигналов модели, полученных в результате пробных отклонений параметров разных структурных блоков ΔPji(α)=Pji(α)-Fjном(α), j=1, …, k; i=1, …, m, определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров соответствующих блоков ΔPji=sign(ΔPji(α)), j=1, …, k; i=1, …, m, определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученных в результате пробных отклонений параметров соответствующих блоков
Figure 00000002
j=1, …, k; i=1, …, m замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k для параметра интегрирования α, определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fjα)-Fjном(α), j=1, …, k, j=1, …, k, j=1, …, k определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=sigbn(ΔFj(α)), j=1, …, k, j=1, …, определяют нормированные значения знаков отклонений интегральных оценок сигналов контролируемой системы из соотношения
Figure 00000003
j=1, …, k, определяют диагностические признаки из соотношения
Figure 00000004
i=1, …, m, по минимуму значения диагностического признака определяют неисправный блок.
Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:
1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных m динамических блоков.
2. Предварительно определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.
3. Определяют параметр интегрального преобразования сигналов из соотношения
Figure 00000005
4. Фиксируют число контрольных точек k.
5. Предварительно определяют нормированные векторы
Figure 00000006
знаков отклонений интегральных оценок выходных сигналов модели, полученных в результате пробных отклонений параметров i-го блока каждого из m блоков и определенного выше параметра интегрального преобразования α для чего выполняют пункты 6-11.
6. Подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.
7. Регистрируют реакцию системы ƒjном(t), j=1, …, k на интервале t∈[0,TK] в k контрольных точках и определяют интегральные оценки выходных сигналов Fjном(α), j=1, …, k системы. Для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами e-αt, где
Figure 00000001
для чего сигналы системы управления подают на первые входы k блоков перемножения, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fjном(α), j=1, …, k регистрируют.
8. Определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате пробных отклонений параметров каждого из m блоков, для чего поочередно для каждого структурного блока динамической системы вводят пробное отклонение параметра передаточной функции и выполняют пункты 6 и 7 для одного и того же тестового сигнала x(t). Полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений Pji(α), j=1, …, k; i=1, …, m регистрируют.
9. Определяют отклонения интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров структурных блоков ΔPji(α)=Pji(α)-Fjном(α), j=1, …, k; i=1, …, m.
10. Определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков по формуле: ΔPji=sign(ΔPji(α)), j=1, …, k; i=1, …, m,
11. Определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков по формуле:
Figure 00000007
j=1, …, k; i=1, …, m.
12. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал x(t).
13. Определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k, осуществляя операции, описанные в пунктах 6 и 7 применительно к контролируемой системе.
14. Определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fjα)-Fjном(α), j=1, …, k, j=1, …, k, j=1, …, k.
15. Определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=sigbn(ΔFj(α)), j=1, …, k, j=1, … k.
16. Вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы по формуле:
Figure 00000003
j=1, …, k.
17. Вычисляют диагностические признаки наличия неисправного структурного блока по формуле:
Figure 00000004
i=1, …, m.
18. По минимуму значения диагностического признака определяют дефектный блок.
Рассмотрим реализацию предлагаемого способа поиска дефекта для системы, структурная схема которой представлена на рисунке (см. фиг.Структурная схема объекта диагностирования).
Передаточные функции блоков:
Figure 00000008
номинальные значения параметров: K1=1; Т1=5 с; K2=1; Т2=1 с; К3=1; Т3=5 с.
При поиске одиночного дефекта в виде отклонения постоянной времени T1=4c (дефект №1) в первом звене путем подачи ступенчатого тестового входного сигнала единичной амплитуды и интегральных оценок сигналов для параметра α=0.5 и Тк=10 с получены значения диагностических признаков на основе введения пробных отклонений и анализа знаков передач при использовании трех контрольных точек, расположенных на выходах блоков: J1=0; J2=0.8889; J3=0.8889. Минимальное значение признака J1 однозначно указывает на наличие дефекта в первом блоке, а разность между третьим и первым, а также вторым и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Тот же дефект, найденный путем введения пробных отклонений в прототипе (Способ поиска неисправного блока в динамической системе: пат. 2435189 Рос. Федерация: МПК7 G05B23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2009123999/08; заявл. 23.06.2009; опубл. 27.11.2011, Бюл. №33), дает следующие значения диагностических признаков: J1=0; J2=0.7829; J3=0.07399. Анализ значений диагностических признаков показывает, что разность между третьим и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Это позволяет сделать вывод, что практическая различимость дефекта первого блока (прототипа) ниже, чем различимость дефекта при использовании заявляемого способа. Различимости дефектов второго и третьего блоков при поиске их заявляемым способом тоже выше, чем в прототипе.
Моделирование процессов поиска дефектов во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале для способа из прототипа (Способ поиска неисправного блока в динамической системе: пат. 2435189 Рос.Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2009123999/08; заявл. 23.06.2009; опубл. 27.11.2011, Бюл. №33):
При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.7829; J2=0; J3=0.7462.
При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.07404; J2=0.7464; J3=0.
Моделирование процессов поиска дефектов заявляемым способом во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале дает следующие значения диагностических признаков:
При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.8889; J2=0; J3=0.8889.
При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.8889; J2=0.8889; J3=0.
Минимальное значение диагностического признака во всех случаях правильно указывает на дефектный блок.

Claims (1)

  1. Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач, основанный на том, что фиксируют число блоков m, входящих в состав системы, определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы, определяют параметр интегрального преобразования сигналов из соотношения
    Figure 00000009
    используют тестовый сигнал на интервале t∈[0,TК], в качестве динамических характеристик системы используют интегральные оценки сигналов, полученные для вещественных значений параметра α, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и реакцию заведомо исправной системы ƒj ном(t), j=1, …, k на интервале t∈[0,TK] в k контрольных точках, определяют интегральные оценки выходных сигналов Fj ном(α), j=1, …, k исправной системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами e-αt, где
    Figure 00000010
    путем подачи на первые входы k блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1, …, k регистрируют, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k для параметра α, определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном(α), j=1, …, k, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате пробных отклонений параметров блоков, для чего поочередно для каждого блока динамической системы вводят пробное отклонение параметра его передаточной функции и находят интегральные оценки выходных сигналов системы для параметра α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений Pji(α), j=1, …, k; i=1, …, m регистрируют, определяют отклонения интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров соответствующих блоков ΔPji(α)=Pji(α)-Fj ном(α), j=1, …, k; i=1, …, m, определяют диагностические признаки, по минимуму значения диагностического признака определяют дефектный блок, отличающийся тем, что определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj=sign(ΔFj(α)), j=1, …, k, вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы
    Figure 00000011
    j=1, …, k определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков ΔPji=sign(ΔPji(α)), j=1, …, k; i=1, …, m, определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков
    Figure 00000012
    j=1, …, k; i=1, …, m, вычисляют диагностические признаки наличия неисправного структурного блока
    Figure 00000013
    i=1, …, m.
RU2019116260A 2019-05-27 2019-05-27 Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач RU2711000C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019116260A RU2711000C1 (ru) 2019-05-27 2019-05-27 Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019116260A RU2711000C1 (ru) 2019-05-27 2019-05-27 Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач

Publications (1)

Publication Number Publication Date
RU2711000C1 true RU2711000C1 (ru) 2020-01-14

Family

ID=69171313

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019116260A RU2711000C1 (ru) 2019-05-27 2019-05-27 Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач

Country Status (1)

Country Link
RU (1) RU2711000C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969341A2 (en) * 1998-07-01 2000-01-05 Adaptive Audio, Inc. Method and apparatus for dynamical system analysis
WO2008083019A1 (en) * 2007-01-02 2008-07-10 Hypertherm, Inc. Automated self test for a thermal processing system
RU2435189C2 (ru) * 2009-06-23 2011-11-27 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе
RU2444774C1 (ru) * 2011-01-13 2012-03-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в дискретной динамической системе
RU2464616C1 (ru) * 2011-11-01 2012-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправностей динамического блока в непрерывной системе
RU2506623C1 (ru) * 2012-10-08 2014-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в дискретной динамической системе
RU2616501C1 (ru) * 2016-06-22 2017-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" Способ поиска топологического дефекта в непрерывной динамической системе на основе введения пробных отклонений

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969341A2 (en) * 1998-07-01 2000-01-05 Adaptive Audio, Inc. Method and apparatus for dynamical system analysis
WO2008083019A1 (en) * 2007-01-02 2008-07-10 Hypertherm, Inc. Automated self test for a thermal processing system
RU2435189C2 (ru) * 2009-06-23 2011-11-27 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе
RU2444774C1 (ru) * 2011-01-13 2012-03-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в дискретной динамической системе
RU2464616C1 (ru) * 2011-11-01 2012-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправностей динамического блока в непрерывной системе
RU2506623C1 (ru) * 2012-10-08 2014-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в дискретной динамической системе
RU2616501C1 (ru) * 2016-06-22 2017-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" Способ поиска топологического дефекта в непрерывной динамической системе на основе введения пробных отклонений

Similar Documents

Publication Publication Date Title
RU2435189C2 (ru) Способ поиска неисправного блока в динамической системе
RU2429518C1 (ru) Способ поиска неисправностей динамического блока в непрерывной системе
RU2541857C1 (ru) Способ поиска неисправностей в непрерывной динамической системе на основе введения пробных отклонений
RU2450309C1 (ru) Способ поиска неисправностей динамического блока в непрерывной системе
RU2439648C1 (ru) Способ поиска неисправного блока в динамической системе
RU2528135C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
RU2444774C1 (ru) Способ поиска неисправного блока в дискретной динамической системе
RU2473105C1 (ru) Способ поиска неисправностей блоков в непрерывной динамической системе
RU2613630C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений
RU2461861C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе
RU2586859C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
RU2680928C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности
RU2464616C1 (ru) Способ поиска неисправностей динамического блока в непрерывной системе
RU2676365C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений
RU2506623C1 (ru) Способ поиска неисправного блока в дискретной динамической системе
CN108345289B (zh) 一种基于替代数据法的工业过程平稳性检测方法
RU2711000C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач
RU2451319C1 (ru) Способ поиска неисправного блока в динамической системе
RU2541896C1 (ru) Способ поиска неисправного блока в дискретной динамической системе на основе анализа знаков передач сигналов
RU2453898C1 (ru) Способ поиска неисправных блоков в динамической системе
RU2579543C1 (ru) Способ поиска неисправного блока в дискретной динамической системе на основе смены позиции входного сигнала
RU2486568C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе
RU2721217C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала и анализа знаков передач
RU2616512C1 (ru) Способ поиска топологического дефекта в непрерывной динамической системе на основе введения пробных отклонений
RU2613402C1 (ru) Способ поиска топологического дефекта в непрерывной динамической системе на основе функции чувствительности