RU2710759C1 - Жаропрочный сплав на никелевой основе и изделие, выполненное из него - Google Patents

Жаропрочный сплав на никелевой основе и изделие, выполненное из него Download PDF

Info

Publication number
RU2710759C1
RU2710759C1 RU2019106365A RU2019106365A RU2710759C1 RU 2710759 C1 RU2710759 C1 RU 2710759C1 RU 2019106365 A RU2019106365 A RU 2019106365A RU 2019106365 A RU2019106365 A RU 2019106365A RU 2710759 C1 RU2710759 C1 RU 2710759C1
Authority
RU
Russia
Prior art keywords
alloy
nickel
temperature
heat
rhenium
Prior art date
Application number
RU2019106365A
Other languages
English (en)
Inventor
Евгений Николаевич Каблов
Николай Васильевич Петрушин
Евгений Сергеевич Елютин
Original Assignee
Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") filed Critical Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК")
Priority to RU2019106365A priority Critical patent/RU2710759C1/ru
Application granted granted Critical
Publication of RU2710759C1 publication Critical patent/RU2710759C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов, и может быть использовано при изготовлении лопаток газотурбинных двигателей, длительно работающих при температурах до 1200°С. Жаропрочный сплав на основе никеля содержит, мас. %: хром 1,3-3,3, кобальт 4,5-9,0, алюминий 5,3-5,9, вольфрам 0,2-2,0, молибден 0,5-2,5, тантал 7,0-10,0, рений 8,0-12,0, лантан 0,002-0,1, рутений 2,0-7,0, никель – остальное. Сплав характеризуется длительной прочностью σ110 МПа при температуре 1200°С. Обеспечивает возможность изготовления турбинных лопаток с монокристаллической структурой с их последующей термической и/или баротермической обработкой. 2 н.п. ф-лы, 2 табл., 1 пр.

Description

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе и получаемым методом направленной кристаллизации из них изделий с монокристаллической структурой, например, турбинных лопаток газотурбинных двигателей, работающих длительно при температурах до 1200°С.
Разработка высокоэффективных жаропрочных сплавов на никелевой основе для получения рабочих турбинных лопаток с монокристаллической структурой является важнейшим фактором создания конкурентоспособных авиационных газотурбинных двигателей (ГТД) нового поколения. Именно температурная способность материала рабочих лопаток турбины определяет максимальную температуру рабочего газа на входе в турбину и, следовательно - удельную мощность, экономичность, экологичность и ресурс ГТД.
Максимальная температура газа перед турбиной высокого давления в современных авиационных газотурбинных двигателях достигает 1600°С. Дальнейшее, существенно более высокое повышение рабочей температуры газа на входе в турбину может быть достигнуто путем применения монокристаллических лопаток из жаропрочного сплава на основе никеля с высоким уровнем длительной прочности при рабочей температуре 1200°С.
Из уровня техники известен жаропрочный сплав на основе никеля (RU 2402624 С1, опуб. 27.10.2010 С22С 19/05), предназначенный для изготовления методом направленной кристаллизации лопаток газовых турбин с монокристаллической структурой, работающих длительно при температурах до 1150°С, следующего химического состава, масс. %:
Хром 2,4-4,5
Кобальт 5,0-6,0
Алюминий 5,4-6,0
Вольфрам 3,5-4,5
Молибден 2,8-3,8
Тантал 5,3-6,3
Рений 5,8-6,8
Рутений 4,6-6,4
Церий 0,001-0,02
Лантан 0,002-0,1
Неодим 0,0005-0,01
Иттрий 0,002-0,02
Углерод 0,002-0,05
Бор 0,0004-0,004
Магний и/или кальций 0,001-0,009
Никель Остальное
Недостатком данного сплава является невысокая жаропрочность при рабочей температуре 1200°С, не удовлетворяющая современным требованиям, предъявляемым к жаропрочным сплавам для лопаток с монокристаллической структурой газотурбинных двигателей нового поколения: дополнительные исследования показали, что время до разрушения при испытании на длительную прочность при напряжении 80 МПа известного сплава составляет 16 ч.
Из патента (US 8771440 В2, опуб. 08.07.2014 С22С 19/05) известен жаропрочный сплав на никелевой основе, предназначенный для литья монокристаллических лопаток газотурбинных двигателей, работающих длительно при высоких температурах, следующего химического состава, масс. %:
Хром 2,5-8,5
Кобальт 0-9,9
Алюминий 5,0-7,0
Вольфрам 4,0-10,0
Молибден 1,1-4,5
Тантал 4,0-10,0
Рений 3,1-8,0
Рутений 1,0-14,0
Гафний 0-2,0
Ниобий 0-4,0
Никель Остальное
Недостатком данного сплава является невысокая технологичность при литье деталей с монокристаллической структурой, а именно низкий выход годных по макроструктуре структуре монокристаллических отливок, обусловленный повышенным суммарным (до 4,5 масс. %) содержанием алюминия гафния, ниобия и титана. Повышенное суммарное содержание алюминия гафния, ниобия и титана в сплаве приводит к тому, что они, сегрегируя в процессе направленной кристаллизации в междендритные области отливки лопатки из сплава, способствуют образованию значительного количества неравновесной эвтектической (перитектической) γ'-фазы типа Ni3(Al,Ti,Nb,Hf) с низкой температурой плавления.
Наиболее близким аналогом заявленного изобретения является жаропрочный сплав на никелевой основе, известный из патента (RU 2220220 С1, опуб. 27.12.2003 С22С 19/05), предназначенный для изготовления лопаток газовых турбин с монокристаллической структурой, следующего химического состава, масс. %:
Хром 2,0-3,0
Кобальт 9,5-13,0
Алюминий 5,3-5,9
Вольфрам 0,1-0,9
Молибден 1,0-2,0
Тантал 7,0-10,0
Рений 11,1-13,0
Церий 0,002-0,02
Лантан 0,021-0,2
Иттрий 0,002-0,02
Углерод 0,002-0,02
Бор 0,0004-0,004
Никель остальное
Недостатком данного сплава является склонность к образованию при направленной кристаллизации сплава и монокристаллических отливок изделий из сплава вредной топологически плотноупакованной (ТПУ) δ-фазы перитектического происхождения на основе рения, выделения которой располагаются в дендритах первого порядка монокристаллической отливки и не растворяются при последующей высокотемпературной гомогенизирующей термической обработке. Сплав, имеет невысокую жаропрочность при рабочей температуре 1200°С.
Технической проблемой, решение которой обеспечивается при осуществлении предлагаемого изобретения и не может быть реализовано при использовании прототипа является создание сплава на никелевой основе с повышенными физико-химическими свойствами и технологичностью, необходимыми для повышения эксплуатационных характеристик монокристаллических лопаток газовых турбин, работающих при температуре 1200°С.
Техническим результатом предлагаемого изобретения является разработка жаропрочного сплава на основе никеля с повышенной длительной прочностью при температуре 1200°С, с возможностью получать из данного сплава турбинные лопатки с монокристаллической структурой, а также проводить их термическую и/или баротермическую обработку.
Заявленный технический результат достигается тем, что жаропрочный сплав на основе никеля, содержит хром, кобальт, алюминий, вольфрам, молибден, тантал, рений, лантан, рутений при следующем соотношении компонентов, масс. %:
Хром 1,3-3,3
Кобальт 4,5-9,0
Алюминий 5,3-5,9
Вольфрам 0,2-2,0
Молибден 0,5-2,5
Тантал 7,0-10,0
Рений 8,0-12,0
Лантан 0,002-0,1
Рутений 2,0-7,0
Никель остальное
Также предлагается изделие, выполненное из заявленного жаропрочного сплава на никелевой основе, имеющее монокристаллическую структуру.
Авторами заявленного изобретения было установлено, что пониженное содержание кобальта в предлагаемом сплаве обеспечивает повышение термической стабильности γ'-фазы (повышению температуры ее полного растворения в γ-фазе), сопротивления высокотемпературному окислению и также способствует достижению более высоких показателей высокотемпературной длительной прочности.
Пониженное содержание лантана, в предлагаемом сплаве способствует повышению температуры солидуса сплава, что позволяет проводить гомогенизирующую термическую и/или баротермическую обработку при более высокой температуре с целью более полного устранения сегрегационной неоднородности легирующих элементов сплава по дендритным ячейкам отливок монокристаллических изделий из сплава без опасности оплавления.
Отсутствие церия, иттрия, углерода и бора в предлагаемом сплаве также приводит к повышению температуры солидуса сплава, что способствует проведению гомогенизирующей термической и/или баротермической обработки отливок монокристаллических изделий из сплава при более высокой температуре без опасности их оплавления. Кроме того, отсутствие углерода и бора благоприятствует повышению сопротивления механической и термической усталости монокристаллических изделий из сплава благодаря устранению возможности образования карбидов и боридов, являющихся концентраторами напряжений и очагами зарождения трещин.
Дополнительное легировании рутением предлагаемого сплава в заявленных соотношениях остальных легирующих элементов повышает длительную прочность при рабочей температуре 1200°С за счет устранения образования при направленной кристаллизации сплава и монокристаллических отливок изделий из сплава вредной δ-фазы перитектического происхождения на основе рения и, следовательно, повышается эффективность диффузионного механизма твердорастворного упрочнения сплава.
Исследованиями методами дифференциального термического анализа и растровой электронной микроскопии было обнаружено, что легирование заявляемого сплава рутением с указанных интервалах приводит к уменьшению температуры ликвидуса сплава, тем самым уменьшатся склонность сплава к образованию при направленной кристаллизации избыточной δ-фазы на основе рения перитектического происхождения. В результате наблюдается значительное повышение высокотемпературной (1200°С) длительной прочности, что способствует повышению высокотемпературной длительной прочности сплава и изделия с монокристаллической структурой из него. Кроме того, введение в состав сплава рутения, имеющего низкий коэффициент диффузии и растворяющегося как и рений в основном в γ-твердом растворе сплава и материала изделия из него, понижает диффузионную подвижность атомов компонентов сплава в этой фазе, что способствует повышению сопротивления высокотемпературной ползучести и длительной прочности.
Пример осуществления
В вакуумной индукционной печи были осуществлены три плавки предлагаемого сплава и одна плавка сплава-прототипа. Химический состав предлагаемого сплава и сплава-прототипа приведен в таблице 1. Из выплавленных сплавов изготавливали образцы для исследований методами дифференциального термического анализа, по результатам которых определяли температуру ликвидуса TL. Далее выплавленные сплавы переплавляли в вакуумной установке для направленной кристаллизации и получали изделия с монокристаллической структурой кристаллографической ориентации <001> в виде цилиндрических отливок диаметром 16 мм и длиной 185 мм. Далее из этих отливок изготавливали образцы для исследований методами дифференциального термического анализа и количественной металлографии, по результатам которых определяли температуру солидуса TS и объемную долю выделений перитектической δ-фазы Vδ.
Figure 00000001
Figure 00000002
Figure 00000003
С учетом измеренной температуры солидуса полученные монокристаллические отливки из сплавов подвергали термической обработке, включающей высокотемпературный гомогенизирующий отжиг и двухступенчатое старение. Из термически обработанных таким образом отливок изготавливали образцы для механических испытаний (длина образца 70 мм, рабочая база 25 мм, рабочий диаметр 5 мм) на растяжение и длительную прочность.
Испытания образцов сплавов на растяжение проводили при температуре 1200°С в атмосфере воздуха, по результатам которых определяли предел прочности, предел текучести, относительное удлинение и сужение.
Испытания образцов сплавов на длительную прочность проводили в атмосфере воздуха при температурах 975 и 1200°С и напряжениях 440 МПа и 80 МПа соответственно.
По результатам испытаний на длительную прочность определяли время до разрушения при указанных температурах и напряжениях.
Полученные характеристики композиций заявляемого сплава и изделий, выполненных из него, и сплава-прототипа приведены в таблице №2.
Как видно из таблицы 2, предлагаемый сплав и изделие, выполненного из него имеет более низкие значения температуры ликвидуса (на 23-34°С) и более высокие значения температуры солидуса (на 25-33°С) и характеризуется практически отсутствием выделений избыточной δ-фазы на основе рения перитектического происхождения, чем сплав по прототипу. Кроме того, значения параметра ΔЕ, характеризующие фазовую стабильность, у предлагаемого сплава меньше критических, что свидетельствует об отсутствии склонности его к выделению вредных ТПУ фаз. Параметр ΔЕ определяли по формуле:
Figure 00000004
где Zi, Ai, Ei - соответственно атомная концентрация, атомная масса и количество валентных электронов i-го химического элемента в сплаве; i - любой из указанных ниже химических элементов (например, в порядке перечисления элементов i=1 - Cr, 2 - Со и т.д. для Al, W, Мо, Та, Re, Ru, Ni); n=9 (количество указанных выше химических элементов).
Установлено, что предпочтительное содержание в предлагаемом сплаве хрома, кобальта, алюминия, вольфрама, молибдена, тантала, рения, рутения и никеля соответствует предпочтительным значениям параметра ΔЕ, характеризующего фазовую стабильность никелевого жаропрочного сплава, которые лежат в пределах от -0,10 до 0.
В результате действия легирующего элемента рутения при заявленном соотношении остальных легирующих элементов и, следовательно, улучшения физико-химических свойств, технологичности и стабилизации фазового состава значения характеристик кратковременной прочности σ0,2 и σВ при температуре 1200°С предлагаемого сплава и изделия, выполненного из него соответственно на 46% и 41% больше, чем у сплава и изделия из него, известного из прототипа. Характеристика длительной прочности -время до разрушения предлагаемого сплава больше в 1,5 раза при температуре 975°С и в 3,3 раза при температуре 1200°С, чем сплава известного из прототипа. Технологическое преимущество предлагаемого сплава заключается в повышенном значении температуры солидуса и, как следствие, возможности проводить гомогенизирующую термическую и/или баротермическую обработку при более высокой температуре с целью более полного устранения сегрегационной неоднородности легирующих элементов сплава по дендритным ячейкам отливок монокристаллических изделий из сплава без опасности оплавления.
Таким образом, предлагаемый жаропрочный сплав на основе никеля значительно превосходит сплав-прототип по характеристикам кратковременной и длительной прочности при температуре 1200°С. Это позволяет использовать предлагаемый сплав для производства турбинных монокристаллических рабочих лопаток газотурбинных двигателей, длительно работающих при температурах до 1200°С.
Изделия из предлагаемого сплава имеют повышенную высокотемпературную длительную прочность, и, следовательно, надежность и ресурс при более высокой рабочей температуре.

Claims (5)

1. Жаропрочный сплав на основе никеля, содержащий хром, кобальт, алюминий вольфрам, молибден, тантал, рений, лантан, отличающийся тем, что он дополнительно содержит рутений при следующем соотношении компонентов, мас. %:
Хром 1,3-3,3 Кобальт 4,5-9,0 Алюминий 5,3-5,9 Вольфрам 0,2-2,0 Молибден 0,5-2,5
Тантал 7,0-10,0
Рений 8,0-12,0 Лантан 0,002-0,1 Рутений 2,0-7,0 Никель остальное
2. Изделие из жаропрочного сплава на основе никеля, имеющего монокристаллическую структуру, отличающееся тем, что оно выполнено из сплава по п. 1.
RU2019106365A 2019-03-06 2019-03-06 Жаропрочный сплав на никелевой основе и изделие, выполненное из него RU2710759C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019106365A RU2710759C1 (ru) 2019-03-06 2019-03-06 Жаропрочный сплав на никелевой основе и изделие, выполненное из него

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019106365A RU2710759C1 (ru) 2019-03-06 2019-03-06 Жаропрочный сплав на никелевой основе и изделие, выполненное из него

Publications (1)

Publication Number Publication Date
RU2710759C1 true RU2710759C1 (ru) 2020-01-13

Family

ID=69171268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019106365A RU2710759C1 (ru) 2019-03-06 2019-03-06 Жаропрочный сплав на никелевой основе и изделие, выполненное из него

Country Status (1)

Country Link
RU (1) RU2710759C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2821248C1 (ru) * 2024-03-14 2024-06-18 Общество с ограниченной ответственностью Научно-технический центр "Технологии Специальной Металлургии" Литейный жаропрочный никелевый сплав с монокристальной структурой для лопаток газотурбинных двигателей

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577316B1 (en) * 1992-06-29 1997-08-20 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
RU2220220C1 (ru) * 2002-08-05 2003-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Никелевый жаропрочный сплав, изделие, выполненное из него, и способ термообработки сплава и изделия из него
EP1571297A2 (en) * 2004-03-02 2005-09-07 United Technologies Corporation High elasticity modulus turbine metallic component for high vibratory operation
RU2293782C1 (ru) * 2005-08-15 2007-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Никелевый жаропрочный сплав для монокристаллического литья и изделие, выполненное из него
JP5146867B2 (ja) * 2006-08-18 2013-02-20 独立行政法人物質・材料研究機構 高温耐久性に優れた耐熱部材
JP5467307B2 (ja) * 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とそれよりえられた合金部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577316B1 (en) * 1992-06-29 1997-08-20 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
RU2220220C1 (ru) * 2002-08-05 2003-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Никелевый жаропрочный сплав, изделие, выполненное из него, и способ термообработки сплава и изделия из него
EP1571297A2 (en) * 2004-03-02 2005-09-07 United Technologies Corporation High elasticity modulus turbine metallic component for high vibratory operation
RU2293782C1 (ru) * 2005-08-15 2007-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Никелевый жаропрочный сплав для монокристаллического литья и изделие, выполненное из него
JP5146867B2 (ja) * 2006-08-18 2013-02-20 独立行政法人物質・材料研究機構 高温耐久性に優れた耐熱部材
JP5467307B2 (ja) * 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni基単結晶超合金とそれよりえられた合金部材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2821248C1 (ru) * 2024-03-14 2024-06-18 Общество с ограниченной ответственностью Научно-технический центр "Технологии Специальной Металлургии" Литейный жаропрочный никелевый сплав с монокристальной структурой для лопаток газотурбинных двигателей

Similar Documents

Publication Publication Date Title
US9945019B2 (en) Nickel-based heat-resistant superalloy
RU2289637C2 (ru) Сплав на основе никеля
RU2415959C1 (ru) МОНОКРИСТАЛЛИЧЕСКИЙ СУПЕРСПЛАВ НА ОСНОВЕ Ni И СОДЕРЖАЩАЯ ЕГО ЛОПАТКА ТУРБИНЫ
JP4036091B2 (ja) ニッケル基耐熱合金及びガスタービン翼
JPH07138683A (ja) ニッケルを基本とする単結晶超合金
BR112019021654A2 (pt) Superliga à base de cobalto-níquel endurecível por precipitação e artigo fabricado a partir da superliga à base de cobalto-níquel endurecível por precipitação
RU2484167C1 (ru) СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
KR20040095712A (ko) 니켈계 합금
RU2710759C1 (ru) Жаропрочный сплав на никелевой основе и изделие, выполненное из него
RU2439184C1 (ru) Жаропрочный сплав на никелевой основе для монокристаллического литья
RU2525952C2 (ru) Жаропрочный сплав на основе никеля
RU2434069C1 (ru) Литейный жаропрочный сплав на основе никеля
EP0053948B1 (en) Nickel-chromium-cobalt base alloys and castings thereof
RU2588949C1 (ru) СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
RU2386714C1 (ru) Жаропрочный гранулированный сплав на основе никеля
RU2353691C2 (ru) Состав жаропрочного никелевого сплава (варианты)
RU2672463C1 (ru) Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
RU2434067C1 (ru) СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al
RU2802841C1 (ru) Жаропрочный литейный сплав на никелевой основе и изделие, выполненное из него
RU2383642C1 (ru) Жаропрочный литейный сплав на основе никеля
RU2256717C1 (ru) Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него
RU2768947C1 (ru) Жаропрочный никелевый сплав для литья деталей с монокристаллической структурой
RU2626118C2 (ru) Литейный жаропрочный сплав на основе никеля
RU2153021C1 (ru) Никелевый жаропрочный сплав для монокристального литья
RU2186144C1 (ru) Никелевый жаропрочный сплав для монокристального литья и изделие, выполненное из этого сплава

Legal Events

Date Code Title Description
QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20180706

Effective date: 20210520

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180924

Effective date: 20211018

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20180706

Effective date: 20220426