RU2710250C1 - Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации - Google Patents

Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации Download PDF

Info

Publication number
RU2710250C1
RU2710250C1 RU2019123309A RU2019123309A RU2710250C1 RU 2710250 C1 RU2710250 C1 RU 2710250C1 RU 2019123309 A RU2019123309 A RU 2019123309A RU 2019123309 A RU2019123309 A RU 2019123309A RU 2710250 C1 RU2710250 C1 RU 2710250C1
Authority
RU
Russia
Prior art keywords
zinc
lead
dust
extraction
carbon
Prior art date
Application number
RU2019123309A
Other languages
English (en)
Inventor
Лаура Михайловна Симонян
Надежда Владимировна Демидова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2019123309A priority Critical patent/RU2710250C1/ru
Application granted granted Critical
Publication of RU2710250C1 publication Critical patent/RU2710250C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к технологии и устройству для селективного получения цинка и свинца (или их оксидов) из пыли металлургического производства и отходов производства цинка аналогичного состава. Непрерывное безуглеродное селективное извлечение цинка и свинца из пыли электросталеплавильного производства включает селективное извлечение свинца и цинка, протекающее в двух последовательно расположенных реакционных зонах. Используют электросталеплавильную пыль, содержащую не более 3% углерода с отношением содержания кислорода к содержанию углерода в диапазоне 12,7-25. Пыль подают со скоростью 3,0-3,5 т/ч в первую реакционную зону, нагревают до 1350-1400±10 К и извлекают свинец. Затем пыль, очищенную от свинца, подают во вторую реакционную зону через конусный шнековый измельчитель, накопительный бункер и секторный питатель, в которой пыль нагревают до 1800-2050±10 К и извлекают цинк. После этого пыль, очищенную от свинца и цинка, направляют в накопитель. Изобретения позволяют повысить степень извлечения цинка и свинца из сталеплавильной пыли. 2 н.п. ф-лы, 2 ил., 6 пр.

Description

Изобретение относится к технологии и устройству для селективного получения цинка и свинца (или их оксидов) из пыли металлургического производства (преимущественно электросталеплавильного) и отходов производства цинка аналогичного состава без дополнительного введения восстановителя. Извлечение свинца протекает при использовании топлива в барабанной вращающейся печи; цинка - с помощью плазменного или дугового источника энергии. Способ селективного извлечения цинка и свинца из пыли обеспечивается при контроле давления и температуры процесса в каждой реакционной зоне. Устройство для реализации рассматриваемого способа состоит из барабанной вращающейся печи, камеры, оснащенной струйным плазматроном, систем газоочистки с рукавными фильтрами для сбора конденсата свинца и цинка (их оксидов). Изобретение позволяет раздельно получить порошки цинка и свинца (их оксидов) без введения дополнительного восстановителя, а полученный железосодержащий продукт после грануляции вернуть в металлургическое производство.
Аналогом изобретения является вельц-процесс, позволяющий перерабатывать материалы, содержащие цинк и свинец, при котором материал с восстановителем и флюсами во вращающейся трубчатой печи нагревают до температур возгонки металлов (1100-1300°С), которые затем улавливаются в виде пыли. Недостатки данного способа: невозможность применения технологии для селективного извлечения цветных металлов, высокие показатели расхода восстановителя и флюсов.
Аналогом изобретения служит процесс выделения оксидов цинка и свинца из пыли, образующейся в сталеплавильном и литейном производствах, который заключается в изготовлении брикетов из пыли и углеродсодержащего связующего, дальнейшего их упрочнения при температуре 315°С, извлечении цинка и свинца при температуре 1370°С с дальнейшим окислением металлов до оксидов и их улавливании в пылесборнике (Svend Bergsoe. Method for treating flue dust containing lead. Paul Bergsoe & Son AJS. US 4013456 A. May. 22, 1977). Недостатками данного способа являются: совместное извлечение цветных металлов из пыли, высокая энергоемкость и ресурсоемкость процесса (необходимо введение восстановителя и флюсов).
Прототипом изобретения служит устройство для селективного получения цинка и свинца из пыли электросталеплавильного производства (Симонян Л.М., Шкурко Е.Ф., Алпатова А.А. RU 2623509), в котором материал проходит две реакционные камеры, позволяющие проводить последовательное извлечение свинца и цинка. Недостатки: высокая трудоемкость достижения селективного извлечения цинка и свинца в виду сложности управления температурой процесса в первой реакционной зоне.
Технический результат первого изобретения заключается в возможности непрерывного селективного извлечения цинка и свинца из электросталеплавильной пыли.
Технический результат второго изобретения заключается в возможности повышения степени извлечения свинца и цинка из электросталеплавильной пыли за счет регулирования мощности топливосжигающего устройства в первой зоне и плазматрона во второй зоне (т.е. создании на оси дуги требуемой температуры) и скорости подачи пыли (лежит в интервале 3,0-3,5 т/час для переработки 30000 т пыли в год).
Технический результат в первом изобретении достигается тем, что способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства, характеризуется тем, что селективное извлечение протекает в двух последовательно расположенных реакционных зонах, отличающийся тем, что электросталеплавильная пыль, содержащая не более 3% углерода и характеризующаяся отношением содержания кислорода к содержанию углерода в диапазоне 12,7-25 со скоростью 3,0-3,5 т/час подают в первую реакционную зону, нагревают до 1350-1400±10 К, извлекают свинец, затем электросталеплавильную пыль, очищенную от свинца, подают во вторую реакционную зону через конусный шнековый измельчитель, накопительный бункер и секторный питатель, в которой пыль нагревают до 1800-2050±10 К, извлекают цинк, после этого пыль, очищенную от свинца и цинка, направляют в накопитель, из которого ее удаляют с помощью выпускной летки и доставляют на грануляцию.
Для определения условий селективного извлечения цинка и свинца из электросталеплавильной пыли приведен график зависимости температуры испарения соединений цинка и свинца от отношения содержания кислорода к содержанию углерода в электросталеплавильной пыли (Фиг. 1). При условии, что содержание углерода в пыли менее 3%, определяется отношение содержания кислорода к содержанию углерода. Если это значение лежит в интервале 12,7-25, селективное извлечение цветных металлов возможно. Через значение, равное отношению содержания кислорода к содержанию углерода перпендикулярно оси абсцисс проводят прямую, которая пересекает температурные кривые извлечения свинца и цинка. Значения оси ординат в точках пересечения кривых показывают термодинамически рассчитанные температуры извлечения свинца и цинка. Если разница между температурами извлечения свинца и цинка более 400 К, можно говорить о селективном извлечении свинца и цинка. Если разница температур менее 400 К, можно реализовать только селективное извлечение цинка.
Технический результат во втором изобретении достигается тем, что устройство для безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства содержит две последовательно расположенные реакционные зоны извлечения свинца и цинка и характеризуется тем, что вторая реакционная зона представляет собой камеру, имеющую наклонную стенку, напротив которой размещен водоохлаждаемый струйный плазмотрон, а в верхней части камеры расположена система улавливания паров цинка, отличающееся тем, что первая реакционная зона извлечения свинца представляет собой барабанную вращающуюся печь, имеющую уклон 3-6° в сторону выгрузки, которая соединена с топочной камерой, оснащенной топливосжигающим устройством, а со стороны загрузки шихты расположена система улавливания паров свинца, при этом наклонная стенка камеры для извлечения цинка расположена под углом 20-40°, а нижняя часть камеры оборудована накопителем с выпускной леткой, наряду с этим вторая реакционная зона извлечения цинка соединяется с реакционной зоной извлечения свинца посредством конусного шнекового измельчителя, накопительного бункера и секторного питателя.
Реализация поясняется чертежами, где Фиг. 1 - График зависимости температуры испарения соединений цинка и свинца от отношения содержания кислорода к содержанию углерода в электросталеплавильной пыли; Фиг. 2 - Устройство для селективного извлечения свинца и цинка, где 1 - загрузочный бункер для пыли, содержащей цинк и свинец; 2 - шнековый питатель; 3 - труба для подачи во вращающуюся печь шихты самотеком; 4 - барабан печи; 5 - топочная камера; 6 - топливосжигающее устройство; 7 - скребок для съема материала; 8 - система улавливания паров свинца (оксида свинца); 9, 11 - накопительный бункер; 10 - конусный шнековый измельчитель; 12 - секторный питатель, обеспечивающий скорость подачи пыли и создающий газовый затвор; 13 - реакционная камера испарения цинка; 14 - струйный водоохлаждаемый п лазматрон; 15, 16 - подача плазмообразующего газа; 17 - подача воды на охлаждение; 18 - отвод воды; 19 - система улавливания паров цинка (оксида цинка); 20 - датчики температуры и уровня очищенного от свинца и цинка расплава; 21 - накопитель расплава; 22 - летка для выпуска расплава из накопителя.
Технология осуществляется следующим образом.
Из бункера (1) посредством шнекового питателя (2) по наклонной трубе (3) пыль подходящего состава (соотношение кислорода к углероду в исходном сырье в диапазоне 12,7-25 при содержании углерода не более 3%) подается в барабан печи (4), оснащенной топочной камерой (5). Требуемые температуры процесса (1350-1400±10 К) обеспечиваются за счет сжигания топлива с помощью топливосжигающего устройства (6). При вращении печи материал перемещается от загрузочного края к разгрузочному, попадая в накопительный бункер (9). Для удобства разгрузочный край барабана оснащен скребком для съема материала (7), так как возможно его налипание на стенках барабана за счет расплавления легкоплавких соединений. В процессе движения материала в барабане происходит извлечение свинца (оксида свинца), который попадает в систему улавливания паров (8). Очищенная от свинца пыль из накопительного бункера (9) попадает в конусный шнековый измельчитель (10), затем в накопительный бункер (11), из которого с помощью секторного питателя (12) измельченный материал попадает в реакционную камеру испарения цинка (13). Извлечение цинка из пыли осуществляется за счет использования струйного водоохлаждаемого плазматрона (14). Извлечение цинка в зоне оси дуги плазматрона (14) при этом протекает в диапазоне температур 1800-2050±10 К. В результате цинк (оксид цинка) удаляется из пыли и попадает в систему улавливания паров (19). Пыль, подвергнутая обработке плазматроном (14) становится железосодержащим расплавом и стекает в накопитель (21). Контроль уровня расплава и его температуры осуществляется с помощью датчиков (20). По достижению заданного уровня расплав выпускается с помощью летки (22). Очищенный от свинца и цинка железосодержащий расплав поступает на грануляцию, а затем в агломерационное производство, уловленные цинк и свинец (или их оксиды) - на заводы цветной металлургии для получения слитков цинка и свинца.
Предложенный способ проверен на электросталеплавильной пыли разного состава экспериментально и с помощью программной системы для моделирования фазового и химического равновесия «Terra».
Пример 1.
Электросталеплавильная пыль, содержащая, % масс: Fe - 24,9; Zn - 12,0; Pb - 2,1; С - 7,9 (остальные: S - 1,6; Mn - 2,3; Si - 6,3; Na - 1,1; Mg - 1,5; Са - 4,3; K - 1,1; Al - 0,57; Р - 0,1; Cr - 0,23; Cu - 0,15; Ti - 0,06; Ni - 0,035; V - 0,016; О, предположительно, 33,74). Расчетное соотношение кислорода к углероду - 4,3. Предположительно 10% цинка присутствует в виде фазы ZnS, испарение которой протекает при Т=1501 К. Для селективного извлечения цинка и свинца из электросталеплавильной пыли разница между температурами удаления цинка (оксида цинка) и свинца (оксида свинца) должна быть не менее 400 К. Полученные по результатам моделирования температуры испарения свинца и цинка составляют 1396 К и 1380 К, соответственно, т.е. разница менее 400 К и предлагаемая технология не может быть применена для селективного извлечения свинца и цинка для пыли, рассмотренной в примере, т.е. с содержанием углерода ~ 8%.
Пример 2.
Электросталеплавильная пыль, содержащая, % масс: Fe - 39,5; Zn - 13,5; Pb - 0,80; С - 2,9 (остальные: S - 0,46; Са - 5,9; Mn - 2,6; Si - 1,3; Na - 2,8; Mg - 1,5; Cl - 1,8; K - 1,0; Al - 0,2; P - 0,1; Cr - 0,2; Cu - 0,2; Ti - 0,05; О, предположительно, 25,19). Расчетное соотношение кислорода к углероду - 8,7. Полученные по результатам моделирования температуры полного испарения свинца и цинка - 1389 К и 1557 К, соответственно. Так как разница между температурами извлечения свинца и цинка составляет менее 400 К, то извлечение свинца будет сопровождаться значительным извлечением цинка, т.е. предлагаемая технология не может быть применена для селективного извлечения свинца и цинка для пыли, рассмотренной в примере.
Пример 3.
Электросталеплавильная пыль, содержащая, % масс: Fe - 39,9; Zn - 13,7; Pb - 0,80; С - 2,0; (остальные: S - 0,47; Са - 6,0; Mn - 2,6; Si - 1,3; Na - 2,8; Mg - 1,5; Cl - 1,8; K - 1,0; Al - 0,2; P - 0,1; Cr - 0,2; Cu - 0,2; Ti - 0,05; О, предположительно, 25,38). Расчетное соотношение кислорода к углероду - 12,7. Полученные по результатам моделирования температуры полного испарения свинца и цинка - 1398 К и 1803 К, соответственно. Так как разница между температурами извлечения свинца и цинка составляет 405 К, т.е. более 400 К, то предлагаемая технология может быть применена для селективного извлечения свинца и цинка для пыли, рассмотренной в примере.
Пример 4.
Электросталеплавильная пыль, содержащая, % масс: Fe - 40,8; Zn - 14,0; Pb - 0,80; С - 1,0 (остальные: S - 0,47; Са - 6,3; Mn - 2,6; Si - 1,4; Na - 2,8; Mg - 1,5; Cl - 1,8; K - 1,0; Al - 0,2; P - 0,1; Cr - 0,2; Cu - 0,2; Ti - 0,05; О, предположительно, 24,98). Расчетное соотношение кислорода к углероду - 25. Полученные по результатам моделирования температуры испарения свинца и цинка - 1406 К и 2035 К, соответственно. Так как разница между температурами извлечения свинца и цинка существенно превышает 400 К, то предлагаемая технология может быть применена для селективного извлечения свинца и цинка для состава пыли, рассмотренного в примере.
Пример 5.
Электросталеплавильная пыль, содержащая, % масс: Fe - 40,8; Zn - 14,0; Pb - 0,80; С - 1,43 (остальные: S - 0,48; Са - 6,1; Мп - 2,7; Si - 1,3; Na - 2,9; Mg - 1,5; Cl - 1,8; K - 1,0; Al - 0,2; P - 0,1; Cr - 0,2; Cu - 0,2; Ti - 0,05; О, предположительно, 24,44). Расчетное соотношение кислорода к углероду - 17,1. Полученные по результатам моделирования температуры испарения свинца и цинка - 1412 К и 1837 К, соответственно. Так как разница между температурами извлечения свинца и цинка превышает 400 К, то предлагаемая технология может быть применена для селективного извлечения свинца и цинка для состава пыли, рассмотренного в примере.
Пример 6.
6.1. Электросталеплавильная пыль, содержащая, % масс: Fe - 40,0; Zn -13,7; Pb - 0,80; С - 1,74 (остальные: S - 0,47; Са - 6,0; Mn - 2,6; Si - 1,3; Na - 2,8; Mg - 1,5; Cl - 1,8; K - 1,0; Al - 0,2; P - 0,1; Cr - 0,2; Cu - 0,2; Ti - 0,05; О, предположительно, 25,74). Расчетное соотношение кислорода к углероду - 14,8. По результатам моделирования получены температуры полного испарения свинца и цинка - 1402 К и 1815 К, соответственно. Так как разница между температурами извлечения свинца и цинка составляет более 400 К, то предлагаемая технология может быть применена для селективного извлечения свинца и цинка для пыли, рассмотренной в примере.
6.2. Экспериментальное подтверждение расчетов.
Опыты для подтверждения селективного извлечения свинца в низкотемпературной первой зоне проведены в муфельной печи СНОЛ 3/11 - В (нагрев до температуры 1423 К в воздушной атмосфере, скорость нагрева - 5 К/мин; выдержка - 60 минут). Вторая высокотемпературная зона, необходимая для извлечения цинка достигалась в лабораторной плазменно-дуговой установке (U=30 В, I=117 А; р=0,75 - 1,0 атм.; расход аргона - 2 л/мин., продолжительность нагрева - 40 с; расчетная температура дуги на оси - 5500 К). Полученные степени извлечения составили: свинца - 83,5% (с извлечением 4,9% цинка); цинка - 99,3% (без свинца).
Относительно низкая степень извлечения свинца предположительно связана с недостатком времени, необходимого для более полного протекания процесса (этот недостаток устраняется во вращающихся печах). Частичное извлечение цинка при температуре 1423 К возможно связано с неточным соблюдением температурного режима (температура превышала заданное значение на 21 К, т.к. регулировка не позволяла установить заданную температуру).
Доказана сопоставимость результатов моделирования и эксперимента, что показывает перспективную возможность применения рассматриваемой технологии на практике с незначительной корректировкой для отдельно взятых составов электросталеплавильной пыли, удовлетворяющих описанным требованиям.
Примечание. При содержании углерода менее 2% возможно селективное извлечение цинка и свинца, при содержании углерода в интервале 2-3% - селективно извлекается цинк, в то время как в свинец может перейти до 5% цинка.

Claims (2)

1. Способ непрерывного безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства, включающий селективное извлечение свинца и цинка, протекающее в двух последовательно расположенных реакционных зонах, отличающийся тем, что используют электросталеплавильную пыль, содержащую не более 3% углерода с отношением содержания кислорода к содержанию углерода в диапазоне 12,7-25, пыль подают со скоростью 3,0-3,5 т/ч в первую реакционную зону, нагревают до 1350-1400±10 К и извлекают свинец, затем пыль, очищенную от свинца, подают во вторую реакционную зону через конусный шнековый измельчитель, накопительный бункер и секторный питатель, в которой пыль нагревают до 1800-2050±10 К и извлекают цинк, после этого пыль, очищенную от свинца и цинка, направляют в накопитель.
2. Устройство для непрерывного безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства, содержащее две последовательно расположенные реакционные зоны извлечения свинца и цинка, при этом вторая реакционная зона представляет собой камеру, имеющую наклонную стенку, напротив которой размещен водоохлаждаемый струйный плазмотрон, а в верхней части камеры расположена система улавливания паров цинка, отличающееся тем, что первая реакционная зона извлечения свинца представляет собой барабанную вращающуюся печь, имеющую уклон 3-6° в сторону выгрузки, которая соединена с топочной камерой, оснащенной топливосжигающим устройством, а со стороны загрузки шихты расположена система улавливания паров свинца, при этом наклонная стенка камеры для извлечения цинка расположена под углом 20-40°, а нижняя часть камеры оборудована накопителем с выпускной леткой, наряду с этим вторая реакционная зона извлечения цинка соединяется с реакционной зоной извлечения свинца посредством конусного шнекового измельчителя, накопительного бункера и секторного питателя.
RU2019123309A 2019-07-24 2019-07-24 Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации RU2710250C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019123309A RU2710250C1 (ru) 2019-07-24 2019-07-24 Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019123309A RU2710250C1 (ru) 2019-07-24 2019-07-24 Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2710250C1 true RU2710250C1 (ru) 2019-12-25

Family

ID=69022899

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019123309A RU2710250C1 (ru) 2019-07-24 2019-07-24 Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2710250C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU62150A1 (ru) * 1939-02-05 1941-11-30 А.Л. Цефт Способ обработки цинковой пыли из печей Фабер-дю-Фора
US4013456A (en) * 1974-06-12 1977-03-22 Paul Bergsoe & Son A/S Method for treating flue dust containing lead
RU2359188C2 (ru) * 2006-07-24 2009-06-20 Дочернее Государственное предприятие "Восточный научно-исследовательский горно-металлургический институт цветных металлов" Республиканского Государственного предприятия "Национальный центр по комплексной переработке минерального сырья Республики Казахстан" (ДГП "ВНИИцветмет" РГП "НЦ КПМС РК") Агрегат для переработки пылевидного свинец- и цинксодержащего сырья
RU2465352C2 (ru) * 2009-12-29 2012-10-27 Государственное Предприятие "Украинский Научно-Технический Центр Металлургической Промышленности "Энергосталь" Способ переработки цинк-железосодержащих пылей или шламов металлургического производства
RU2623509C1 (ru) * 2016-06-23 2017-06-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Устройство для селективного получения цинка и свинца из пыли электросталеплавильного производства

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU62150A1 (ru) * 1939-02-05 1941-11-30 А.Л. Цефт Способ обработки цинковой пыли из печей Фабер-дю-Фора
US4013456A (en) * 1974-06-12 1977-03-22 Paul Bergsoe & Son A/S Method for treating flue dust containing lead
RU2359188C2 (ru) * 2006-07-24 2009-06-20 Дочернее Государственное предприятие "Восточный научно-исследовательский горно-металлургический институт цветных металлов" Республиканского Государственного предприятия "Национальный центр по комплексной переработке минерального сырья Республики Казахстан" (ДГП "ВНИИцветмет" РГП "НЦ КПМС РК") Агрегат для переработки пылевидного свинец- и цинксодержащего сырья
RU2465352C2 (ru) * 2009-12-29 2012-10-27 Государственное Предприятие "Украинский Научно-Технический Центр Металлургической Промышленности "Энергосталь" Способ переработки цинк-железосодержащих пылей или шламов металлургического производства
RU2623509C1 (ru) * 2016-06-23 2017-06-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Устройство для селективного получения цинка и свинца из пыли электросталеплавильного производства

Similar Documents

Publication Publication Date Title
US20070062330A1 (en) Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
CN106755665A (zh) 一种利用高温熔渣处理垃圾焚烧飞灰的装置及方法
CN104105802A (zh) 贱金属回收
US4646661A (en) Combustion furnace
CN1333091C (zh) 提取锌的方法和装置
JP3339638B2 (ja) 鋳物ダストから鉛と亜鉛を除く方法及び装置
CN103069023A (zh) 从电炉粉尘回收金属的方法和装置
JPH0380850B2 (ru)
WO2009114155A2 (en) Feed material compostion and handling in a channel induction furnace
RU2710250C1 (ru) Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации
HU217281B (hu) Eljárás és berendezés szilárd szemcsés anyagnak egymáshoz tapadni képes szemcséket tartalmazó, forró gázzal való felhevítésére
JP2008143728A (ja) セメント製造工程からの鉛回収方法及び回収装置
WO2009114156A2 (en) Feed material compostion and handling in a channel induction furnace
WO2009114159A2 (en) Feed material compostion and handling in a channel induction furnace
BE1027793B1 (nl) Verbeterde Oven voor het Uitroken met Plasma Inductie
WO2009114157A2 (en) Feed material compostion and handling in a channel induction furnace
US20070215019A1 (en) Method and Use of an Apparatus for Recovery of Metals or Metal Compounds
JP2005126732A (ja) 金属酸化物含有物質の溶融還元方法および溶融還元装置
JP2001300470A (ja) 廃棄物溶融処理設備における飛灰の処理方法及び装置
KR910004787B1 (ko) 방출가스의 정화방법 및 장치
JP2004090004A (ja) 産業廃棄物処理装置
CA2809121A1 (en) Rotary hearth furnace exhaust gas duct apparatus and method for operating same
JP3844028B2 (ja) 冶金ダスト類から有価金属成分の回収方法
JP4566684B2 (ja) 金属Ni及び/又はCoの回収方法
JP2001149891A (ja) 重金属含有物質を溶融させる方法