RU2710029C2 - Способ изготовления гибко-плоского электронагревателя - Google Patents

Способ изготовления гибко-плоского электронагревателя Download PDF

Info

Publication number
RU2710029C2
RU2710029C2 RU2018140353A RU2018140353A RU2710029C2 RU 2710029 C2 RU2710029 C2 RU 2710029C2 RU 2018140353 A RU2018140353 A RU 2018140353A RU 2018140353 A RU2018140353 A RU 2018140353A RU 2710029 C2 RU2710029 C2 RU 2710029C2
Authority
RU
Russia
Prior art keywords
flexible
pressing
stage
electric heater
material containing
Prior art date
Application number
RU2018140353A
Other languages
English (en)
Other versions
RU2018140353A (ru
RU2018140353A3 (ru
Inventor
Николай Владимирович Луконин
Иван Яковлевич Шестаков
Валерий Филиппович Шевердов
Павел Сергеевич Морозов
Александр Иванович Лавриненко
Original Assignee
Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" filed Critical Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"
Priority to RU2018140353A priority Critical patent/RU2710029C2/ru
Publication of RU2018140353A publication Critical patent/RU2018140353A/ru
Publication of RU2018140353A3 publication Critical patent/RU2018140353A3/ru
Application granted granted Critical
Publication of RU2710029C2 publication Critical patent/RU2710029C2/ru

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/36Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

Изобретение относится к областям электротермии и космического машиностроения и может быть использовано при изготовления гибких, плоских, гибко-плоских электронагревателей, поддерживающих в работоспособном состоянии радиоэлектронную аппаратуру космического аппарата при воздействии условий космического пространства. Технический результат - создание нового способа изготовления гибко-плоского электронагревателя с применением расширенного диапазона температур прессования, давления и времени прессования, с расширенной номенклатурой применяемых конструкционных материалов, с улучшенными прочностными характеристиками (например, гибкостью, стойкостью к механическим воздействиям), с высокой надежностью электронагревателя в процессе эксплуатации в составе нагревательных устройств космического и общего машиностроения. Достигается тем, что в основе конструкции обогревателя лежит гибкая стеклоткань без пропитки, гибкая стеклоткань, пропитанная олигомерным материалом, содержащим эпоксидные группы, отвержденная до стадии В, проводящий слой в виде рисунка из материала с высоким сопротивлением, токовыводы из гибкого провода. При этом применены материалы, позволяющие расширить границы температуры прессования до 130 - 200°С, время прессования до 150 мин и давление от 20 до 150 N/см2. В частности, в качестве конструкционной основы применена гибкая стеклоткань, получаемая переплетением большого числа нитей, пропитанная олигомерным материалом, содержащим эпоксидные группы, отвержденная до стадии В. 3 з.п. ф-лы.

Description

Изобретение относится к областям электротермии и космического машиностроения и может быть использовано при изготовления гибких, плоских, гибко-плоских электронагревателей, поддерживающих в работоспособном состоянии радиоэлектронную аппаратуру космического аппарата при воздействии условий космического пространства, а так же оптимизации конструкции, направленной на использование отечественных материалов в производстве современных образцов космической техники мирового уровня. Изобретение может быть использовано в других областях техники, где изготавливают и применяют нагревательные электрические элементы с заданными геометрическими свойствами (размерами), прочностными характеристиками (гибкость, стойкость к механическим воздействиям), нормируемой тепловой отдачей и уменьшенными затратами при производстве.
В настоящее время известен способ изготовления плоского электронагревателя со спиралью (патент RU 2006186 С1), который заключается в формировании плоского основания с канавочным профилем его боковых кромок, навивке нитяного резистивного элемента на плоское основание с заведением спиралей резистивного элемента в его канавки, соединении с токоподводами, нанесении на них электроизоляционного покрытия и формовки пакета, при этом при формировании плоского основания перфорируют кромочные прорези с заглубленными канавками с образованием боковых лепестков между ними, затем последовательно при навивке нитяного резистивного элемента боковые лепестки либо все сразу попарно, либо последовательно попарно отгибают в противоположные стороны и в промежутки между ними заводят нити резистивного элемента, их петли, фиксируют под натяжением в заглубленных канавках, возвращают лепестки в исходное положение, при котором лепестки боковинами образуют замок над нитями резистивного элемента, затем последовательно наносят электроизоляционные слои и формуют весь пакет при нагревании под давлением между плитами пресса.
К недостаткам способа изготовления электронагревателя следует отнести проблему обеспечения надежной электроизоляции нитяного резистивного элемента, его петель, размещенных в боковых кромочных канавках, из-за разнородности материалов плоского основания и электроизоляционных слоев, усадочных явлений, при интенсивном нагреве происходит растрескивание межслойной изоляции и отрыв ее слоев, что приводит к пробою изоляции и выходу электронагревателя из строя. Способ обладает повышенной сложностью и трудоемкостью при изготовлении. Изготовление плоского полимерного электронагревателя с выступающими клеммными токоподводами требует обеспечения точных геометрических параметров законцовок токоподводов.
Известен способ изготовления пластинчатого электронагревателя (патент RU 2230439 С2), включающий намотку под натяжением по спирали нитяного резистивного элемента с подсоединением его к электродам с токоподводами, формирование электроизоляционных слоев покрытия из стеклоткани и полимерного связующего и прессование пакета слоев под плитами пресса, один из электроизоляционных слоев покрытия из стеклоткани, пропитанной полимерным связующим, наматывают на цилиндрическую оправку, в виде с оболочки выпуклой радиусной кривизны, закрепляют на ней с параллельным расположением между собой электроды с токоподводами с ориентацией их вдоль ее образующих, наматывают поверх нитяной резистивный элемент, частично отверждают оболочку с образованием на ней тонкого слоя полимерного связующего, омоноличивающего и надежно фиксирующего нитяной резистивный элемент в сформированном положении, разрезают оболочку между электродами с пересечением витков нитяного резистивного элемента, снимают с оправки в виде криволинейного сегмента выпуклой радиусной кривизны, выпрямляют его под плитами пресса, накладывают недостающие слои стеклоткани, пропитанные полимерным связующим, покрытия с противоположной стороны нитяного резистивного элемента и прессуют весь пакет слоев, но он обладает рядом недостатков, снижающих его надежность, увеличивающих трудоемкость изготовления.
К недостаткам способа изготовления электронагревателя следует отнести возможность нарушения структуры нитяного резистивного элемента при изготовлении из неметаллического материала, состоящего из волокон, смещение из заданного положения, в том числе нитяного резистивного элемента из металлического материала при прессовании. При этом наблюдаются разрывы волокон нити резистивного элемента, или искривление нити в результате текучести и перераспределения полимерного связующего под давлением прессования, что увеличивает разброс температурных характеристик по полю нагревателя, при разрывах нити снижает мощность электронагревателя, его надежность.
Известен способ изготовления плоского полимерного электронагревателя (патент RU 2234820 С2), по которому на полимерный резистивный слой устанавливают параллельно расположенные токоподводы из полосок фольги, затем наносят с обеих сторон изоляционное покрытие, оставляя выступающими из него клеммные концы токоподводов, и прессуют все слои при соответствующих их материалам температурных и временных режимах, из гибкого нагревательного элемента в виде токопроводящей ткани по утку вырезают фрагмент резистивного слоя и в массиве изоляционных нитей, контактирующих с одной стороны с дополнительными электродами, а с другой стороны - с массивом комплексных электропроводящих полимерных нитей, вырубают периферийные зоны всех токораспределительных и часть периферийных зон промежуточных и краевых электродов, причем зоны вырубки металлизированных нитей краевых и промежуточных электродов размещают с чередованием то с одной, то с другой стороны массива из комплексных электропроводящих полимерных нитей с образованием коммутационной гребенки заданного резистивного слоя.
К недостаткам способа изготовления электронагревателя следует отнести недостаточную стабильность температурного поля на рабочей поверхности резистивного слоя, что обусловлено неравномерным распределением тока по массиву комплексных электропроводящих нитей, применение механического способа для вырезания резистивного нагревательного слоя, вырубки зон краевых и промежуточных электродов в металлизированных нитях, вырезание полосок фольги для создания клеммных концов токоподводов, что является трудоемким процессом, требующем соблюдения геометрической точности при выполнении операций, при этом от механического воздействия инструментов, оснастки на заготовках материалов возникают задиры и неровности, влияющие на механическую прочность изделия в целом, возрастает трудоемкость изготовления продукции, установка параллельно расположенных токоподводов из полосок фольги требует обеспечения геометрической точности. Также необходимо отметить, что изготовление плоского полимерного электронагревателя с выступающими клеммными токоподводами требует обеспечения точных геометрических параметров законцовок токоподводов. В противном случае возникают сложности с совмещением ответных частей.
Наиболее близким к заявляемому техническому решению является способ изготовления гибко-плоского электронагревателя (патент RU 2602799 С2), изготовленный из слоев гибкой стеклоткани Э1-30П, гибкой стеклоткани СТП-4-0,062 и проводящего слоя из фольги. Данный способ изготовления гибко-плоского электронагревателя предусматривает ступенчатое прессование собранного основания при температуре 150±10°С, которое на первой ступени осуществляют при давлении 25 Н/см2 в течение 5 мин, а на второй - при давлении 100 Н/см2 в течение 120 мин с последующим охлаждением, рисунок резистивного слоя создают на проводящем слое методом фотолитографии, вытравливают рисунок и паяют гибкие токовыводы, проводят сборку основания с токовыводами со слоем гибкой стеклоткани СТП-4-0,062 и выполняют их ступенчатое прессование при температуре 150±10°С, которое на первой ступени осуществляют при давлении 25 N/см2 в течение 5 мин, а на второй - при давлении 100 N/см2 в течение 120 мин с последующим охлаждением. Известный способ принят в качестве прототипа.
К недостаткам способа изготовления гибкого-плоского нагревателя следует отнести: ограничение в выборе материалов (стеклоткань СТП-4-0,062 и Э1-30П), ограничение по температуре прессования (150±10°С), ограничение по давлению и времени прессования (для первой ступени 25 Н/см2 в течение 5 мин, для второй ступени 100 Н/м2 в течение 120 мин). Недостатки обусловлены примененными материалами (стеклотканью СТП-4-0,062 и Э1-30П), конструктивным решением мест соединений проводящего слоя и гибких токовыводов (соединение концевых частей нагревательного элемента и цепи выводных проводов), выбранными технологическими режимами и способами выполнения работ. Также, необходимо отметить, что изготовление гибко-плоского электронагревателя с технологическими режимами прессования, ограничивающих диапазон температур, давлений и времени, накладывает повышенные требования к технологическому оборудованию и режимам его использования.
Задачей, на решение которой направлено заявляемое изобретение, является создание нового способа изготовления гибко-плоского электронагревателя с применением расширенного диапазона температур прессования, давления и времени прессования, с расширенной номенклатурой применяемых конструкционных материалов, с улучшенными прочностными характеристиками (например, гибкостью, стойкостью к механическим воздействиям), с высокой надежностью электронагревателя в процессе эксплуатации в составе нагревательных устройств космического и общего машиностроения.
Данная задача решается за счет того, что изготовление гибко-плоского электронагревателя, включает сборку основания, состоящего из слоя гибкой стеклоткани без пропитки, слоя гибкой стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В и проводящего слоя из фольги; формирование на проводящем слое рисунка резистивного слоя; первое двухступенчатое прессование основания; пайка к контактным площадкам резистивного слоя гибких токовыводов; второе двухступенчатое прессование на сборке, состоящей из основания с токовыводами и гибкой стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В; прессования выполняют при температуре от 130°С до 200°С, давлении - от 20 N/см2 до 150 N/см2, времени прессования - до 150 минут. В качестве проводящего слоя можно использовать электропроводящую фольгу с высоким сопротивлением; в качестве стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В, можно использовать олигомерный материал или олигомерный материал, отвержденный до стадии В.
Способ изготовления электронагревателя, заключается в последовательном выполнении следующих технологических операций:
1. Нарезают заготовку из гибкой стеклоткани без пропитки; нарезают заготовки из гибкой стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В; нарезают заготовку проводящего слоя из фольги; нарезают заготовки гибких токовыводов из проводов;
2. Собирают основание, в котором проводят укладку заготовки из гибкой стеклоткани без пропитки на нижнюю плиту приспособления для прессования; укладку заготовки гибкой стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В; укладку проводящего слоя из фольги; выполняют соединение верхней и нижней плиты приспособления для прессования;
3. Проводят первое прессование основания в соответствии с допустимыми согласно техническим условиям для используемых стеклотканей и фольги давлением, температурой и длительностью;
4. Вынимают основание из приспособления для прессования;
5. Обрезают облой по периметру основания;
6. Для изготовления гибко-плоского электронагревателя берут основание, прошедшее стадию первого прессования. Выполняют фотошаблон рисунка резистивного слоя; наносят фоторезист на фольгу; экспонируют фоторезист; проявляют фоторезист; вытравливают рисунок резистивного слоя в травильном растворе; промывают основание с удалением остатков травильного раствора и фоторезиста;
7. Проводят предварительные электрические испытания;
8. Проводят пайку гибких токовыводов к резистивному слою подготовленного основания;
9. Проводят второе прессование основания с токовыводами, прошедшего стадию первого прессования, с гибкой стеклотканью, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В, в соответствии с допустимыми согласно техническим условиям для используемых материалов давлением, температурой и длительностью;
10. Проводят окончательные электрические и термовакуумные испытания.
Согласно пунктам 3 и 9 прессование производят двумя ступенями согласно допустимым техническими условиями для используемых материалов давлением, температурой и длительностью. При использовании в качестве материала заготовок слоев гибкой стеклоткани без пропитки, в качестве проводящих слоев фольги, а также при использовании олигомерного материала, содержащего эпоксидные группы, отвержденного до стадии В, допустимыми являются температуры от 130°С до 200°С, давление от 20 N/см2 до 150 N/см2 и длительностью прессования до 150 мин. Данные параметры подбираются экспериментально в установленных пределах. Отклонение в нижнюю или верхнюю сторону от предельных значений приведет к снижению механической гибкости, прочности и качества изготовления электронагревателя.
В качестве примера ниже приведен способ изготовления гибко-плоского электронагревателя с применением конкретных параметров.
1. Заготовительная операция.
- нарезка гибкой стеклоткани без пропитки необходимого размера с учетом технологического припуска 10 мм на каждую сторону;
- нарезка гибкой стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В, необходимого размера с учетом технологического припуска 10 мм на каждую сторону;
- нарезка фольги ДТ от 0,012 до 0,02 МНМц 40-1,5 необходимого размера с учетом технологического припуска 10 мм на каждую сторону;
- нарезка проводов необходимой длины с учетом технологического припуска 20 мм.
2. Сборка основания в последовательности:
- нижняя плита приспособления;
- триацетатцеллюлозная электроизоляционная пленка;
- прокладка;
- листы кабельной бумаги - 2 шт.;
- триацетатцеллюлозная электроизоляционная пленка;
- заготовка из стеклоткани;
- заготовка из стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В;
- заготовка из фольги;
- триацетатцеллюлозная электроизоляционная пленка;
- листы кабельной бумаги - 2 шт.;
- прокладка;
- триацетатцеллюлозная электроизоляционная пленка;
- верхняя плита приспособления.
3. Первое прессование:
- Первая ступень: Температура t = плюс (180±10)°С, время Т = 4 мин; Давление Р = 20 N/cm2.
- Вторая ступень: Температура t = плюс (180±10)°С, время Т = 110 мин; Давление Р = 90 N/cm2.
- Охлаждение: Температура до t = 40°С, время Т = 35 мин;
Давление Р=20 N/cm2.
4. Обрезка облоя по периметру заготовки обогревателя ножницами.
5. На основании производят: изготовление негативного фотошаблона; нанесение фоторезиста; экспонирование фоторезиста; проявление фоторезиста; травление основания электронагревателя в растворе перекиси водорода и соляной кислоты до полного удаления металла с пробельных мест; промывку основания электронагревателя проточной водой в течение 1-2 мин.; удаление фоторезиста; промывка основания электронагревателя проточной водой в течение 1-2 мин.; измерение сопротивления между контактными площадками резистивного слоя основания электронагревателя мультиметром; пайку токовыводов припоем ПОС 61 с флюсом ЛТИ 120 на предварительно облуженную поверхность контактных площадок заготовки электронагревателя.
6. Сборка основания с токовыводами, прошедшего стадию первого прессования, с гибкой стеклотканью, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В:
- нижняя плита приспособления;
- триацетатцеллюлозная электроизоляционная пленка;
- прокладка;
- листы кабельной бумаги - 2 шт.;
- триацетатцеллюлозная электроизоляционная пленка;
- основание с токовыводами;
- заготовка из стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В;
- триацетатцеллюлозная электроизоляционная пленка;
- листы кабельной бумаги - 2 шт.;
- прокладка;
- триацетатцеллюлозная электроизоляционная пленка;
- верхняя плита приспособления.
7. Второе прессование сборки, состоящей из основания с токовыводами, прошедшего стадию первого прессования, и гибкой стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В:
- Первая ступень: температура t = плюс (180±10)°С, время Т = 4 мин, давление Р = 20 N/cm2;
- Вторая ступень: температура t = плюс (180±10)°С, время Т = 110 мин, давление Р = 90 N/cm2;
- Охлаждение: температура до t = 40°С, время Т = 35 мин,
давление Р=20 N/cm2.
8. Измерение сопротивления электронагревателя между выводами мультиметром.
9. Подача испытательного напряжения на выводы электронагревателя с помощью источника питания соответствующей мощности, наблюдение за нагревом участков электронагревателя визуально, контроль за отсутствием участков с разной температурой нагрева с помощью тепловизора.
10. Упаковка готового электронагревателя.
В основе конструкции лежит гибкая стеклоткань без пропитки, гибкая стеклоткань, пропитанная олигомерным материалом, содержащим эпоксидные группы, отвержденная до стадии В, проводящий слой в виде рисунка из материала с высоким сопротивлением, токовыводы из гибкого провода. Принципиально новым в способе изготовления электронагревателя является то, что применены материалы, позволяющие расширить границы температуры прессования до 130°С - 200°С, время прессования до 150 мин. и давление от 20 N/см2 до 150 N/см2. Улучшение прочностных характеристик и надежности достигается использованием в качестве конструкционной основы гибкой стеклоткани, получаемой переплетением большого числа нитей, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В. Дополнительные электрические и термовакуумные испытания гарантируют работоспособность в течение заданного времени.

Claims (4)

1. Способ изготовления гибко-плоского электронагревателя, включающий сборку основания, состоящего из слоев гибкой стеклоткани и проводящего слоя из фольги, формирование на проводящем слое рисунка резистивного слоя, первое двухступенчатое прессование основания, пайка к контактным площадкам резистивного слоя гибких токовыводов, второе двухступенчатое прессование, отличающийся тем, что в качестве гибкой стеклоткани используют гибкую стеклоткань без пропитки и гибкую стеклоткань, пропитанную олигомерным материалом, содержащим эпоксидные группы, отвержденную до стадии В, прессование оснований выполняют при температуре от 130 до 200°С, давлении - от 20 до 150 N/см2, времени прессования - до 150 мин, второе двухступенчатое прессование выполняют на сборке, состоящей из основания с токовыводами и гибкой стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В.
2. Способ по п. 1, отличающийся тем, что в качестве проводящего слоя используют электропроводящую фольгу с высоким сопротивлением.
3. Способ по п. 1, отличающийся тем, что в качестве стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В, используется олигомерный материал, отвержденный до стадии В.
4. Способ по п. 1, отличающийся тем, что в качестве стеклоткани, пропитанной олигомерным материалом, содержащим эпоксидные группы, отвержденной до стадии В, используется олигомерный материал.
RU2018140353A 2018-11-15 2018-11-15 Способ изготовления гибко-плоского электронагревателя RU2710029C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018140353A RU2710029C2 (ru) 2018-11-15 2018-11-15 Способ изготовления гибко-плоского электронагревателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018140353A RU2710029C2 (ru) 2018-11-15 2018-11-15 Способ изготовления гибко-плоского электронагревателя

Publications (3)

Publication Number Publication Date
RU2018140353A RU2018140353A (ru) 2019-08-29
RU2018140353A3 RU2018140353A3 (ru) 2019-10-14
RU2710029C2 true RU2710029C2 (ru) 2019-12-24

Family

ID=67903220

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018140353A RU2710029C2 (ru) 2018-11-15 2018-11-15 Способ изготовления гибко-плоского электронагревателя

Country Status (1)

Country Link
RU (1) RU2710029C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2737666C1 (ru) * 2020-03-26 2020-12-02 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва" Гибко-плоский электронагреватель
RU2762623C1 (ru) * 2021-06-15 2021-12-21 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф.Решетнёва» Радиационный гибко-плоский электронагреватель

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2063079C1 (ru) * 1994-01-31 1996-06-27 Акционерное общество "Техна-2" Способ получения многослойного электропроводящего материала
RU2187906C1 (ru) * 2000-11-22 2002-08-20 Семенихин Сергей Петрович Способ изготовления композиционного гибкого электронагревателя поверхностного типа
US20050051536A1 (en) * 2003-09-09 2005-03-10 Klai Enterprises Incorporated Heating elements deposited on a substrate and related method
US20050244587A1 (en) * 2003-09-09 2005-11-03 Shirlin Jack W Heating elements deposited on a substrate and related method
US20130230716A1 (en) * 2010-09-23 2013-09-05 Evonik Degussa Gmbh Prepregs based on storage-stable reactive or highly reactive polyurethane composition with fixed film and the composite component produced therefrom
RU2574758C1 (ru) * 2014-12-16 2016-02-10 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") Склеивающая прокладка сфу
RU2602799C2 (ru) * 2014-04-23 2016-11-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ изготовления гибко-плоского электронагревателя

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2063079C1 (ru) * 1994-01-31 1996-06-27 Акционерное общество "Техна-2" Способ получения многослойного электропроводящего материала
RU2187906C1 (ru) * 2000-11-22 2002-08-20 Семенихин Сергей Петрович Способ изготовления композиционного гибкого электронагревателя поверхностного типа
US20050051536A1 (en) * 2003-09-09 2005-03-10 Klai Enterprises Incorporated Heating elements deposited on a substrate and related method
US20050244587A1 (en) * 2003-09-09 2005-11-03 Shirlin Jack W Heating elements deposited on a substrate and related method
US20130230716A1 (en) * 2010-09-23 2013-09-05 Evonik Degussa Gmbh Prepregs based on storage-stable reactive or highly reactive polyurethane composition with fixed film and the composite component produced therefrom
RU2602799C2 (ru) * 2014-04-23 2016-11-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ изготовления гибко-плоского электронагревателя
RU2574758C1 (ru) * 2014-12-16 2016-02-10 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") Склеивающая прокладка сфу

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2737666C1 (ru) * 2020-03-26 2020-12-02 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва" Гибко-плоский электронагреватель
RU2762623C1 (ru) * 2021-06-15 2021-12-21 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф.Решетнёва» Радиационный гибко-плоский электронагреватель

Also Published As

Publication number Publication date
RU2018140353A (ru) 2019-08-29
RU2018140353A3 (ru) 2019-10-14

Similar Documents

Publication Publication Date Title
RU2710029C2 (ru) Способ изготовления гибко-плоского электронагревателя
RU2602799C2 (ru) Способ изготовления гибко-плоского электронагревателя
US2282759A (en) Antenna loop
CN108648913B (zh) 一种固态铝电解电容器
CN108604786A (zh) 用于具有热塑性绝缘的电缆的接头及其制造方法
US11355298B2 (en) Method of manufacturing an open-cavity fuse using a sacrificial member
RU2535838C2 (ru) Катушка индуктивности и способ её изготовления
US2553762A (en) Electrical heating element and method of making the same
US3541682A (en) Process for manufacturing coil components and transformers
CN108736672B (zh) 空冷水轮发电机真空压力浸渍定子线棒制造方法
RU2737666C1 (ru) Гибко-плоский электронагреватель
US20200212769A1 (en) Repair method for bar or coil of rotating electrical machine
CN107331515A (zh) 一种固体电解质铝电解电容器的制造工艺
KR200418965Y1 (ko) 면상발열체
KR100641693B1 (ko) 면상발열체 및 그 제조방법
US2122604A (en) Electric resistance element and method of making same
US3227986A (en) Single-turn annular resistance elements
KR200226764Y1 (ko) 면상발열체
RU2006186C1 (ru) Плоский электронагреватель и способ его изготовления
RU2230439C2 (ru) Способ изготовления пластинчатого электронагревателя
JP2925792B2 (ja) 高周波電源用薄形コイルの製造方法
JP2001052902A (ja) Ptc特性を有する導電性糸による面状発熱体およびその製造方法
RU2001128150A (ru) Гибкий нагревательный элемент и способ его изготовления
US2024558A (en) Electrical condenser and method of making same
RU2294062C2 (ru) Тканый резистивный элемент и способ его изготовления