RU2708002C1 - Ротационная магнитная холодильная машина - Google Patents

Ротационная магнитная холодильная машина Download PDF

Info

Publication number
RU2708002C1
RU2708002C1 RU2018147363A RU2018147363A RU2708002C1 RU 2708002 C1 RU2708002 C1 RU 2708002C1 RU 2018147363 A RU2018147363 A RU 2018147363A RU 2018147363 A RU2018147363 A RU 2018147363A RU 2708002 C1 RU2708002 C1 RU 2708002C1
Authority
RU
Russia
Prior art keywords
rotor
coolant
magnetocaloric
magnetic
inlet
Prior art date
Application number
RU2018147363A
Other languages
English (en)
Inventor
Дмитрий Сергеевич Яшкин
Евгений Павлович Красноперов
Сергей Викторович Шавкин
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority to RU2018147363A priority Critical patent/RU2708002C1/ru
Application granted granted Critical
Publication of RU2708002C1 publication Critical patent/RU2708002C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

Изобретение относится к холодильной технике, а именно к холодильным машинам, использующим магнитный материал в качестве рабочего тела и магнитокалорический эффект для охлаждения. Ротационная магнитная холодильная машина содержит корпус, внутри которого размещен ротор, систему теплоносителя, состоящую из подводящих и отводящих патрубков, и магнитную систему. В пазы ротора, вращающегося посредством сцепления зубчатой передачи с приводной шестерней, вставлены магнитнокалорические пластины, проходящие при вращении ротора через магнитное поле, образованное сверхпроводящими магнитами, расположенными вокруг корпуса и ротора. Ротор представляет собой кожух, в верхней части которого расположены отверстия для впуска теплоносителя, а нижняя закрыта кольцом отвода теплоносителя, во внутренней части которого расположены смачиваемый материал, канал движения теплоносителя, входное и выходное отверстия для прохода теплоносителя. В качестве теплоносителя используют воду. На магнитнокалорические пластины нанесено гидрофобное покрытие. Технический результат заключается в увеличении хладопроизводительности. 2 з.п. ф-лы, 2 ил.

Description

Область техники
Изобретение относится к холодильной технике, а именно к холодильным машинам, использующим магнитный материал в качестве рабочего тела и магнитокалорический эффект для охлаждения.
Уровень техники
Из уровня техники известен магнитокалорический рефрижератор (патент на полезную модель РФ 67237), содержащий магнитную систему, ротор с крышкой, снабженный каналами для прохода теплоносителя, рабочее тело из материала с магнитокалорическим эффектом, привод ротора, систему теплоносителя с насосом, теплоприемником, размещенным в камере охлаждения, и теплоотдатчиком, отличающийся тем, что рабочее тело выполнено в виде сменных капсул с магнитокалорическим эффектом, смонтированных в омываемых теплоносителем и отделенных друг от друга ячейках в теле ротора, а ось ротора выполнена неподвижной и снабжена каналами для подвода и отвода теплоносителя и уплотнениями, исключающими перетекание теплоносителя по плоскости взаимодействия неподвижной оси и ротора, при этом ротор кинематически связан с приводом, а теплоотдатчик выполнен в виде герметично установленного на роторе обода с внешним и внутренним оребрением и полостью, контактирующую с теплоносителем.
Известно решение, описанное в статье («Development of a rotary magnetic refrigerator)), International journal of refrigeration Volume 33 (2010) pp.294-300), в котором описан магнитокалорический рефрижератор, вкотором магнитное поле создается постоянными магнитами в четырех воздушных зазорах, через которые движется ротор с магнитокалорическими ячейками.
Недостаток описанных выше решений состоит в малом полезном объеме магнитного поля, локализованном в зазоре между полюсами постоянного магнита, либо электромагнита.
Известно решение, описанное в статье (C.Zimm et al Advances in Cryogenic Engineering Vol. 43 p.1759), в котором описан рефрижератор, рабочее тело которого, совершая возвратно-поступательные движения, помещается в магнитное поле и выходит из него, вступая в теплообмен в крайних точках. Недостатком такой системы являются существенные переменные механические нагрузки, вызванные магнитным взаимодействием рабочего тела и магнитного поля.
Наиболее близким по технической сущности к заявляемому изобретению является магнитокалорический рефрижератор (патент на изобретение РФ 2029203), содержащий корпус, внутри которого размещен ротор с каналами, систему прокачки теплоносителя, состоящую из побудителя расхода теплоносителя, теплообменника нагрузки, теплоотдатчика, подводящих и отводящих патрубков, магнитную систему постоянных магнитов.
Из недостатков такой системы следует отметить тот факт, что часть теплоносителя остается в рабочем теле при перемагничивании и понижает эффективность устройства.
Технической проблемой, на решение которой направлено данное изобретение, является повышение эффективности теплообмена за счет упрощения конструкции машины.
Раскрытие изобретения
Технический результат заявленного изобретения заключается в увеличении хладопроизводительности ротационной холодильной машины.
Для достижения технического результата предложена ротационная магнитная холодильная машина, содержащая корпус, внутри которого размещен ротор, систему теплоносителя, состоящую из подводящих и отводящих патрубков, и магнитную систему, при этом, в пазы ротора, вращающегося посредством сцепления зубчатой передачи с приводной шестерней вставлены магнитнокалорические пластины, проходящие при вращении ротора через магнитное поле, образованное сверхпроводящими магнитами, расположенными вокруг корпуса и ротора, при этом ротор представляет собой кожух, в верхней части которого расположены отверстия для впуска теплоносителя, а нижняя закрыта кольцом отвода теплоносителя, во внутренней части которого расположены смачиваемый материал, канал движения теплоносителя, входное и выходное отверстия для прохода теплоносителя.
Кроме того, в качестве теплоносителя используют воду.
Кроме того, на магнитнокалорические пластины нанесено гидрофобное покрытие.
Предложенная конструкция ротационной магнитной холодильной машины совмещает в себе достоинства устройств возвратно-поступательного типа (большой рабочий объем магнитного поля) и ротационного типа (постоянное движение магнитнокалорических пластин через магнитное поле). При этом магнитное поле создается двумя парами сверхпроводящих магнитов, что обеспечивает его необходимую величину, а также реализуется двухступенчатый цикл охлаждения, что увеличивает максимальную разность температур охлаждаемого объема и теплообменника.
Осуществление изобретения
Ротационная магнитная холодильная машина состоит из корпуса 21, изготовленного из нержавеющей стали, внутри которого находится ротор 1, перемещающийся по направляющим роликам (на фиг. 1 не показаны), магнитной системы и системы циркуляции теплоносителя.
Ротор 1 состоит из кожуха 12 изготовленного из немагнитного материала с низкой теплопроводностью, например, полипропилена. Кожух 12 изготавливается разборным на четыре сектора по 90 градусов и со съемным верхом. В нижней его части с внутренней стороны имеется зубчатая передача 14, посредством которой он приводится во вращение с помощью приводной шестерни 20, подсоединенной к мотору (на фиг. 1 не показан). Ось вращения ротора направлена вертикально. В пазы ротора 1 вставлены магнитокалорические пластины 11, которые выполнены из вещества, обладающего магнитокалорическим эффектом. От выбора вещества зависит диапазон рабочих температур. Толщина и периодичность расположения магнитокалорических пластин 11 на роторе 1, а также их количество зависят от геометрических размеров машины, которые определяются требуемой хладопроизводительностью. При вращении ротора 1 каждая магнитокалорическая пластина 11 проходит через сверхпроводящие магниты 2.
Магнитная система состоит из двух пар сверхпроводящих магнитов 2, работающих в режиме захваченного магнитного потока. Каждый магнит помещен в криостат (на фиг. 1 не показан) и охлаждается жидким азотом.
В верхней части кожуха 12 располагаются отверстия для впуска теплоносителя 13. Нижняя наружная часть кожуха 12 закрывается неподвижным кольцом отвода теплоносителя 15, выполненным из того же материала, что и кожух 12 ротора 1. Во внутренней части кольца 15 расположен канал движения теплоносителя 17, по которому тот стекает к выходному отверстию 18 и выходит в патрубок. Теплоноситель в канал 17 попадает через входное отверстие 16, в котором располагается смачиваемый теплоносителем материал 19 (марля), обеспечивающий стекание его в канал.
Над каналом теплоносителя 17 расположена брызгоулавливающая полость, имеющая глухую стенку сразу за входным отверстием 16. Расположение в кольце 15 входного 16 и выходного 18 отверстий и стенки за ними определяет линию движения теплоносителя.
К выходным отверстиям 18 кольца отвода теплоносителя 15 подсоединены выходные патрубки 3, 5, 8, 10.
Входные патрубки 4, 6, 7, 9 расположены напротив отверстий для впуска теплоносителя 13 ротора 1.
Входной патрубок 9 соединен с выходным патрубком 8, а входной патрубок 6 соединен с выходным патрубком 3 шлангами (на фиг. 1 не показаны) и образуют промежуточные контуры нагрева и охлаждения.
Входной 7 и выходной 5 патрубки соединены шлангами (на фиг. 1 не показаны) с термостатом (на фиг. 1 не показан) и образуют горячий контур.
Входной 4 и выходной 10 патрубки соединены шлангами (на фиг. 1 не показаны) с теплообменником охлаждаемого объема (на фиг. 1 не показан) и образуют холодный контур.
Циркуляцию теплоносителя в контурах обеспечивают включенные в каждый контур насосы (на фиг. 1 не показаны).
Рассмотрим работу одной из магнитнокалорических пластин 11.
Теплоноситель горячего контура поступает к ротору 1 через входной патрубок горячего контура 7 и, проходя через отверстие 13, заполняет пространство между магнитнокалорическими пластинами 11, нагревая их до температуры Тг. В процессе вращения, магнитнокалорическая пластина 11 оказывается внутри одного из сверхпроводящих магнитов 2. Магнитокалорическая пластина 11 в магнитном поле нагревается за счет магнитокалорического эффекта и отдает тепло теплоносителю. После этого горячий теплоноситель удаляется из ротора 1 через входное отверстие 16, канал теплоносителя 17, выходное отверстие 18 и далее через выходной патрубок горячего контура 5 в термостат (на фиг. 1 не показан). Материал 19 (марля), обеспечивает стекание теплоносителя в канал, а также не допускает разбрызгивание его по стенкам. На его место, через отверстия для впуска теплоносителя 13 поступает теплоноситель промежуточного контура с температурой Тп, который охлаждает магнитокалорическую пластину 11 до своей температуры, забирая лишнее тепло. Теплоноситель промежуточного контура через входное отверстие канала теплоносителя 16 стекает в канал теплоносителя 17, находясь внутри второго сверхпроводящего магнита 2, и выходит через выходное отверстие 18 и выходной патрубок промежуточного контура 3 в систему промежуточного контура. На его место в магнитнокалорическую пластину 11 через входной патрубок холодного контура 4 и отверстие для впуска теплоносителя 13 поступает теплоноситель холодного контура, охлаждая магнитнокалорическую пластину 11 до температуры Тх. Вращаясь, магнитнокалорическая пластина 11 выходит из магнитного поля сверхпроводящего магнита, тем самым размагничивается и вследствие магнитокалорического эффекта забирает тепло у холодного теплоносителя, причем больше, чем отдало ему в предыдущей фазе цикла. Холодный теплоноситель через канал теплоносителя 17, выходное отверстие 18 и выходной патрубок холодного теплоносителя 10 выходит во внешнюю систему охлаждения (на фиг. 1 не показана), а в магнитнокалорическую пластину 11 через отверстие для впуска теплоносителя 13 и через входной патрубок промежуточного контура 9 снова поступает теплоноситель промежуточного контура. Он вновь нагревает магнитнокалорическую пластину 11 до температуры Тп и выходит, пройдя через входное отверстие канала теплоносителя 16, канал теплоносителя 17 и выходное отверстие теплоносителя 18 через выходной патрубок промежуточного контура 8 в систему промежуточного контура. На его место из термостата (на фиг. 1 не показан) через входной патрубок горячего контура 7, отверстие для впуска теплоносителя 13 в магнитнокалорическую пластину 11 поступает теплоноситель горячего контура, который нагревает магнитнокалорическую пластину И до температуры Тг, отдавая ей тепло меньшее, чем потом получит при намагничивании магнитнокалорической пластины 11. Цикл повторяется.
Вторая пара сверхпроводящих магнитов 2 находится на противоположной стороне машины и конструктивно полностью дублирует первую, тем самым удваивая хладопроизводительность машины.
Хладопроизводительные свойства зависят от выбора вещества, толщины, количества и периодичности расположения магнитокалорических пластин 11 на роторе 1, а также величины магнитного поля, создаваемого сверхпроводящими магнитами 2.
При габаритных размерах машины радиусе ротора 1-30 см, радиусе сечения ротора 1-3 см, толщине магнитокалорических пластин 11, изготовленных из гадолиния 0,25 мм, периодичности пластин 11-2 мм (общее количество пластин - 1000 шт. ), магнитном поле 1,5 Тл -максимальная хладопроизводительность составит более 200 Вт. При этом максимальная разность температур составит около 6 К, а максимальные усилия будут не выше 10 Н.
При радиусе ротора 1 - 1 м, радиусе сечения ротора 1-10 см, толщине пластин 11 - 0,25 мм, периодичности пластин 11-1 мм (всего 8500 шт. ) - максимальная хладопроизводительность составит уже 10 кВт.
Таким образом, заявленное изобретение решает указанный технический результат - увеличение хладопроизводительности за счет отсутствия при в работе машины фазы «простоя» магнитного поля.
Краткое описание чертежей
На фиг.1 показана схема ротационной магнитной холодильной машины (вид сверху), где:
1 - ротор;
2 - сверхпроводящие магниты;
3 - выходной патрубок нагрева промежуточного контура;
4 - входной патрубок холодного контура;
5 - выходной патрубок горячего контура;
6 - входной патрубок нагрева промежуточного контура;
7 - входной патрубок горячего контура;
8 - выходной патрубок охлаждения промежуточного контура;
9 - входной патрубок охлаждения промежуточного контура;
10 - выходной патрубок холодного контура;
11 - магнитокалорические пластины;
20 - приводная шестерня;
21 - корпус.
Стрелкой показано направление движения ротора. На фиг.2 показано поперечное сечение ротора, где:
12 - разборный кожух;
13 - отверстие для впуска теплоносителя;
14 - зубчатая передача;
15 - кольцо отвода теплоносителя;
16 - входное отверстие канала теплоносителя;
17 - канал теплоносителя;
18 - выходное отверстие канала теплоносителя;
19 - смачиваемый теплоносителем материал.

Claims (3)

1. Ротационная магнитная холодильная машина, содержащая корпус, внутри которого размещен ротор, систему теплоносителя, состоящую из подводящих и отводящих патрубков, и магнитную систему, отличающаяся тем, что в пазы ротора, вращающегося посредством сцепления зубчатой передачи с приводной шестерней, вставлены магнитнокалорические пластины, проходящие при вращении ротора через магнитное поле, образованное сверхпроводящими магнитами, расположенными вокруг корпуса и ротора, при этом ротор представляет собой кожух, в верхней части которого расположены отверстия для впуска теплоносителя, а нижняя закрыта кольцом отвода теплоносителя, во внутренней части которого расположены смачиваемый материал, канал движения теплоносителя, входное и выходное отверстия для прохода теплоносителя.
2. Ротационная магнитная холодильная машина по п. 1, отличающаяся тем, что в качестве теплоносителя используют воду.
3. Ротационная магнитная холодильная машина по п. 1, отличающаяся тем, что на магнитнокалорические пластины нанесено гидрофобное покрытие.
RU2018147363A 2018-12-28 2018-12-28 Ротационная магнитная холодильная машина RU2708002C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018147363A RU2708002C1 (ru) 2018-12-28 2018-12-28 Ротационная магнитная холодильная машина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018147363A RU2708002C1 (ru) 2018-12-28 2018-12-28 Ротационная магнитная холодильная машина

Publications (1)

Publication Number Publication Date
RU2708002C1 true RU2708002C1 (ru) 2019-12-03

Family

ID=68836418

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018147363A RU2708002C1 (ru) 2018-12-28 2018-12-28 Ротационная магнитная холодильная машина

Country Status (1)

Country Link
RU (1) RU2708002C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU138349A1 (ru) * 1960-04-01 1960-11-30 ков В.А. Проскур Воздухоосушитель
RU2029203C1 (ru) * 1992-05-20 1995-02-20 Омское научно-производственное объединение "Сибкриотехника" Магнитокалорический рефрижератор
US6758046B1 (en) * 1988-08-22 2004-07-06 Astronautics Corporation Of America Slush hydrogen production method and apparatus
US20120060512A1 (en) * 2010-06-07 2012-03-15 Jan Vetrovec Magnetocaloric refrigerator
WO2013001061A2 (en) * 2011-06-30 2013-01-03 Camfridge Ltd. Multi-material-blade for active regenerative magneto-caloric or electro-caloric heat engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU138349A1 (ru) * 1960-04-01 1960-11-30 ков В.А. Проскур Воздухоосушитель
US6758046B1 (en) * 1988-08-22 2004-07-06 Astronautics Corporation Of America Slush hydrogen production method and apparatus
RU2029203C1 (ru) * 1992-05-20 1995-02-20 Омское научно-производственное объединение "Сибкриотехника" Магнитокалорический рефрижератор
US20120060512A1 (en) * 2010-06-07 2012-03-15 Jan Vetrovec Magnetocaloric refrigerator
WO2013001061A2 (en) * 2011-06-30 2013-01-03 Camfridge Ltd. Multi-material-blade for active regenerative magneto-caloric or electro-caloric heat engines

Similar Documents

Publication Publication Date Title
US9857106B1 (en) Heat pump valve assembly
US4507927A (en) Low-temperature magnetic refrigerator
Lozano et al. Development of a novel rotary magnetic refrigerator
US8191375B2 (en) Device for generating cold and heat by a magneto-calorific effect
EP1736719A1 (en) Continuously rotary magnetic refrigerator or heat pump
US4956976A (en) Magnetic refrigeration apparatus for He II production
RU2436022C2 (ru) Генератор тепла, содержащий магнитокалорический материал
US4727721A (en) Apparatus for magnetocaloric refrigeration
CN100507406C (zh) 旋转磁体式磁致冷机及其致冷方法
US20160025385A1 (en) Magnetic refrigeration system with separated inlet and outlet flow
EP1736717A1 (en) Continuously rotary magnetic refrigerator and heat pump and process for magnetic heating and/or cooling with such a refrigerator or heat pump
US20100117482A1 (en) Valve apparatus
Zimm et al. The evolution of magnetocaloric heat-pump devices
US10520229B2 (en) Caloric heat pump for an appliance
RU2708002C1 (ru) Ротационная магнитная холодильная машина
KR20110127151A (ko) 자기열량 열 발생기
Tagliafico et al. Performance analysis of a room temperature rotary magnetic refrigerator for two different gadolinium compounds
JP6497526B2 (ja) 磁気熱量熱発生器及び磁気熱量熱発生器によって2次流体と呼ばれる流体を冷却するための方法
JP5253883B2 (ja) 磁気冷凍装置
JP3230158U (ja) 回転型磁気冷凍式冷凍装置
JP2016020768A (ja) 往復流熱交換システム
CN110645734B (zh) 一种旋转式磁制冷冷机及方法
US20110315348A1 (en) Magnetocaloric heat generator
US20190178535A1 (en) Caloric heat pump for an appliance
JP2006112709A (ja) 磁気冷凍装置

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210120

Effective date: 20210120