RU2706720C1 - Способ атомно-эмиссионного анализа растворов - Google Patents
Способ атомно-эмиссионного анализа растворов Download PDFInfo
- Publication number
- RU2706720C1 RU2706720C1 RU2019111193A RU2019111193A RU2706720C1 RU 2706720 C1 RU2706720 C1 RU 2706720C1 RU 2019111193 A RU2019111193 A RU 2019111193A RU 2019111193 A RU2019111193 A RU 2019111193A RU 2706720 C1 RU2706720 C1 RU 2706720C1
- Authority
- RU
- Russia
- Prior art keywords
- solutions
- analyzed
- functional groups
- atomic emission
- analysis
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/74—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Изобретение относится к аналитической химии, может быть использовано для инструментального анализа растворов - атомно-эмиссионной спектрометрии. В способе атомно-эмиссионного анализа растворов, включающем введение органической присадки в исходный анализируемый раствор перед его распылением в плазменный атомизатор, в качестве присадки используется гидрозоль наноионита с размерами частиц в диапазоне 10-300 нм и исходной концентрацией 1-100 ммоль/л по функциональным группам, причем на 10 мл анализируемого раствора вводят от 0.001 мл до 1 мл гидрозоля для создания в анализируемом растворе концентрации наноионита 0.01-10.0 ммоль/л по функциональным группам. Достигается повышение чувствительности анализа и снижение на него затрат за счет использования малых количеств присадок в анализируемый раствор и отказа от сложной пробоподготовки относительно больших количеств анализируемых растворов. 1 з.п. ф-лы, 10 ил., 1 табл., 5 пр.
Description
Изобретение относится к аналитической химии и может быть использовано для инструментального анализа растворов - атомно-эмиссионной спектрометрии (АЭС). Также используют аббревиатуру ОЭС (оптическая эмиссионная спектроскопия). Широко распространен вариант с атомизацией в индуктивно связанной плазме (ИСП АЭС, ИСП ОЭС).
Известен способ спектрометрического анализа, в котором низкие пределы определения элементов достигаются за счет пробоподготовки [Ю.А. Золотов, Г.И. Цизин, Е.И. Моросанова, С.Г. Дмитриенко, Сорбционное концентрирование микрокомпонентов для целей химического анализа, Усп. химии, 2005, Т. 74, №1, С. 41-66]. В способе через колонку со слоем концентрирующего сорбента пропускают анализируемый раствор, содержащий следовые количества определяемых элементов (аналитов), так, чтобы объем исходного раствора многократно превышал объем сорбционного слоя. Через отработанный до «проскока» аналитов сорбент пропускают десорбирующий (регенерирующий) раствор меньшего объема; полученный раствор без подготовки, или после дополнительной подготовки, подвергают инструментальному анализу. Степень повышения концентраций определяемых элементов определяется соотношением объемов исходного раствора и конечного раствора, вводимого в плазму для атомно-эмиссионного анализа.
Известен способ [Danuta Baralkiewicz, Anetta Kanecka-Hanc, Hanka Gramowska, ICP slurry introduction for simple and rapid determination of Pb, Mg and Ca in plant roots, CEJC, 2007, V. 5, No. 4, P. 1148-1157], в соответствии с которым в плазму для атомной эмиссии вводят предварительно подготовленные субмикро-частицы анализируемых твердых тел, измельченных руд, металлов, в виде водных или органических суспензий, с использованием ИСП-АЭС (ИСП-ОЭС), аналитических приборов, снабженных системами для ввода пульпы (slurry sampling или slurry injection) со специальными распылителями (небулайзерами) для суспензий.
В способе [И.Е. Васильева, Е.В. Шабанова, Прямое атомно-эмиссионное определение серебра и золота в геологических образцах Заводская лаборатория. Диагностика материалов, 2005. Т. 71, №10. С. 10-16] в атомизатор прибора для эмиссионного анализа, дугового типа, равномерно вдувают предварительно приготовленные сверхтонкие сухие порошки анализируемых веществ, обеспечивая при этом возможность счета и измерения интенсивности излучения всех возникающих при этом одиночных вспышек.
Основным и общим недостатком вышеприведенных способов является трудоемкость, связанная с пробоподготовкой. Кроме того, анализ твердых материалов требует специального дополнительного оборудования для их равномерного введения в плазму и правильного определения концентраций элементов.
Указанные недостатки преодолеваются в способе [Guillermo Grindlay, Luis Gras, Juan Mora, M.T.C. de Loos-Vollebregt Carbon-related matrix effects in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part В Atomic Spectroscopy, 2008, V. 63, No. 2, P. 234-243], в котором анализируют непосредственно исходный раствор без изменения содержания в нем определяемых микрокомпонентов, но при этом в этот раствор вводят присадки, повышающие чувствительность метода АЭС.
Наиболее близким к предлагаемому способу по технической сути и достигаемому результату является способ [Helmar Wiltsche, Monika Winkler and Paul Tirk, Matrix effects of carbon and bromine in inductively coupled plasma optical emission. J. Anal. At. Spectrom., 2015, V. 30, P. 2223-2234], в соответствии с которым в исходный анализируемый раствор перед его распылением в плазму дозируют углеродсодержащую органическую жидкость, например метанол, достигая так называемого «углеродного усилительного эффекта (carbon enhancement effect).
Недостатком указанного способа является то, что органические растворители должны дозироваться в больших количествах (например, метанола требуется до 10%), а эффекты усиления сигнала, получаемые лишь для некоторых элементов (главным образом, неметаллов), ограничиваются коэффициентами 2-2.5.
Задачей предложенного способа является повышение чувствительности атомно-эмиссионного анализа и снижение затрат на анализ за счет использования малых количеств присадок в анализируемый раствор и отказа от сложной пробоподготовки относительно больших количеств анализируемых растворов.
Указанная задача решается тем, что в способе атомно-эмиссионного анализа растворов, включающем введение органической присадки в исходный анализируемый раствор перед его распылением в плазменный атомизатор, отличающийся тем, что в качестве присадки используется гидрозоль наноионита с размерами частиц в диапазоне 10-300 нм и концентрацией 1-100 ммоль/л по функциональным группам, который разбавляется в анализируемом растворе до концентрации 0.01-10.0 ммоль/л по функциональным группам.
Целесообразно использовать наноиониты из числа сильнокислотных катионообменников с сульфоновыми или фосфоновыми или смешанными функциональными группами или сильноосновные анионообменники с функциональными группами в виде четвертичных аммониевых оснований.
В качестве присадки используется гидрозоль наноионита - наноразмерного полимерного ионообменника, полученные согласно способу, описанному в А.М. Долгоносов, Р.Х. Хамизов, Н.К. Колотилина, Наноиониты - модификаторы хроматографических фаз и источники аналитического сигнала, Ж. аналит. химии, 2019, Т. 74, №4. С. 285-296.
Наноиониты представляют собой гидрозоли в дистиллированной воде, очищенные от посторонних примесей и имеющие водородную форму в случае катионообменников и форму гидроксил-ионов в случае анионообменников;
Для достижения наилучших результатов используют гидрозоли с размерами частиц наноионита 10-300 нм и концентрацией наноионита 1-100 ммоль/л по функциональным группам, при этом в анализируемый раствор вводят количество гидрозоля, обеспечивающего концентрацию наноионита 0.01-10.0 ммоль/л по функциональным группам.
Особенностью предлагаемого способа, отличающей его от всех известных ранее способов, является обнаруженный впервые авторами эффект усиления интенсивности эмиссии любого определяемого элемента при его перераспределении между фазами раствора и концентрирующего наноионита при общем неизменном содержании этого элемента (аналита) в анализируемой пробе, распыляемой в плазму атомно-эмиссионного спектрометра.
На фигуре 1 представлена микрофотография образцов наноионита катионообменного (НИК);
на фигуре 2 - микрофотография частиц наноионита анионообменного (НИА).
На фигуре 3 - спектральные линии атомной эмиссии элемента Fe (1 мкг/л) до и после введения присадок в анализируемую пробу.
На фигуре 4 - спектральные линии атомной эмиссии элемента Са (1 мкг/л) до и после введения присадок в анализируемую пробу.
На фигуре 5 - семейство спектральных линий для различных концентраций элемента Cd (1-100 мкг/л), демонстрирующих линейность аналитического сигнала (интенсивности спектров) в ИСП-АЭС при использовании предложенного способа.
На фигуре 6 - семейство спектральных линий для различных концентраций элемента Mn (1-100 мкг/л), демонстрирующих линейность аналитического сигнала в ИСП-АЭС при использовании предложенного способа.
На фиг. 7 - спектральные линии эмиссии скандия с концентрациями 10 мкг/л, полученные до и после введения присадки в анализируемую пробу. Приведены также линии воды без и с присадкой НИК.
На фиг. 8 - спектральные линии эмиссии лантана с концентрациями 10 мкг/л, полученные до и после введения присадки в анализируемую пробу. Приведены также линии воды без, и с присадкой НИК.
На фиг. 9 - спектральные линии скандия с концентрациями 0.5 мкг/л, полученные до и после введения присадки в анализируемую пробу.
На фиг. 10 - спектральные линии лантана с концентрациями 0.5 мкг/л, полученные до и после введения присадки в анализируемую пробу.
Пример 1.
С использованием стандартного раствора для атомно-эмиссионного анализа: ICP multi-element standard XVI, производства Merck KGaA (Германия), содержащего 21 элемент, включая цветные и тяжелые металлы, железо, марганец, а также щелочноземельные элементы, по 100 (мг/л) на фоне азотной кислоты 1 моль/л, готовят модельные смешанные растворы с одинаковыми концентрациями по каждому элементу: 1 и 10 мг/л на фоне азотной кислоты с концентрацией 10-3 моль/л. Для приготовления растворов используют воду глубокой очистки (деионизованную, а затем дважды дистиллированную) с электропроводностью не менее 10 МОм. По каждой из концентраций готовят по два раствора объемом по 9.5 мл. В один из них добавляют 0.5 мл воды, а в другой 0.5 мл гидрозоля высокоочищенного катионообменника НИК с концентрацией 0.011 моль/л по сульфоновым функциональным группам в водородной форме, приготовленного в соответствии с патентом РФ №2635865, кл. А61K 31/00, А61K 47/30, А61K 9/51, В82В 3/00, опубл. 2017 г. Для проведения экспериментов по атомно-эмиссионному анализу с индуктивно-связанной плазмой использовали спектрометр ISP-OES Shimadzu 9820 (Япония. Германия). Промывку системы после каждого измерения проводят 0.1 моль/л раствором азотной кислоты.
На фиг. 3 и 4 показаны спектральные линии атомной эмиссии некоторых из элементов. Видно, что присутствие присадки НИК многократно увеличивает интенсивность сигнала.
В таблице приведены коэффициенты усиления для различных элементов при их концентрации в анализируемом растворе 1 мкг/л.
Как видно из таблицы усиление сигнала наблюдается для всех катионобразующих элементов, которые могут концентрироваться на нанокатионите и перераспределяться в анализируемом образце. Для элементов, находящихся в растворе в форме анионов, добавка НИК не дает эффекта.
Пример 2.
Проводят процесс в соответствии с примером 1 за исключением того, что вместо гидрозоля НИК берут гидрозоль НИА (фиг. 2). Коэффициент усиления сигнала для элементов As, Mo, Sb, Se и V - не менее 4.
Пример 3.
Проводят процесс как описано в примере 1 за исключением того, что готовят модельные смешанные растворы с одинаковыми концентрациями по каждому элементу: 1, 5, 10, 20, 50, 100 мг/л. Кроме того используют по 0.1 мл гидрозоля высокоочищенного НИК с концентрацией 0.08 моль/л по сульфоновым функциональным группам, который добавляют в 9.9 мл исходных растворов, полученных разбавлением стандартного раствора. Проверяют линейность изменения интенсивности атомной эмиссии для катионобразующих элементов от концентрации. На фиг. 5 и 6 показаны примеры спектров для марганца и кадмия, подтверждающих такую линейность, что позволяет использовать предложенный способ для проведения анализов, например, методом добавок.
Пример 4.
С использованием стандартного раствора F2-MEB415128 Inorganic Ventures (США), содержащего группу элементов, включая лантан, редкоземельные металлы и скандий по 100 ppm (мг/л) на фоне азотной кислоты 1 моль/л, готовят модельные смешанные растворы с одинаковыми концентрациями по каждому элементу: 0.5 и 10 ppb на фоне азотной кислоты ОСЧ с концентрацией 10-3 моль/л. Для приготовления растворов используют воду глубокой очистки (деионизованную, а затем дважды дистиллированную) с электропроводностью не менее 10 МОм. По каждой из концентраций готовят по два раствора объемом по 9.9 мл. В один из них добавляют 0.1 воды, а в другой 0.1 мл гидрозоля высокоочищенного НИК с концентрацией 0.08 моль/л по сульфоновым функциональным группам. На фиг. 7 и 8 представлены спектральные линии для скандия и лантана с концентрациями 10 мкг/л анализ которых дает коэффициенты усиления эмиссии 5.2 и 3.5, соответственно. На фиг. 9 и 10 приведены спектры для лантана и скандия с концентрациями 0.5 ppb показывающие, что предложенный метод делает возможным обнаружение и определение следов элементов, которые не обнаруживаются стандартным способом.
Пример 5.
Проводят все операции как в примере 4, за исключением того, что в качестве наноразмерного катионообменника используют частицы со смешанными сульфоново-фосфоновыми группами, изготовленными из хелатообразующего сорбента S957, селективного к редкоземельным металлам. Для всей группы РЗМ получают коэффициенты усиления не менее 5.
Таким образом, предложенный способ позволяет понизить пределы определения металлов и других элементов в растворах способами атомной эмиссии с индуктивно связанной плазмой (ИСП АЭС, ИСП ОЭС) до десятых долей мкг на 1 л анализируемого раствора. Способ характеризуется линейной градуировкой, что позволяет широко использовать метод добавок, улучшающий точность и правильность анализа. Реализация нового способа оказалась возможной благодаря размерам, химической чистоте и высокой сорбционной емкости применяемых гидрозолей наноионитов.
Claims (2)
1. Способ атомно-эмиссионного анализа растворов, включающий введение органической присадки в исходный анализируемый раствор перед его распылением в плазменный атомизатор, отличающийся тем, что в качестве присадки используется гидрозоль наноионита с размерами частиц в диапазоне 10-300 нм и концентрацией 1-100 ммоль/л по функциональным группам, который разбавляется в анализируемом растворе до концентрации 0.01-10.0 ммоль/л по функциональным группам.
2. Способ по п. 1. отличающийся тем, что используют наноиониты из числа сильнокислотных катионообменников с сульфоновыми, или фосфоновыми, или смешанными функциональными группами, или сильноосновные анионообменники с функциональными группами в виде четвертичных аммониевых оснований.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019111193A RU2706720C1 (ru) | 2019-04-15 | 2019-04-15 | Способ атомно-эмиссионного анализа растворов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019111193A RU2706720C1 (ru) | 2019-04-15 | 2019-04-15 | Способ атомно-эмиссионного анализа растворов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2706720C1 true RU2706720C1 (ru) | 2019-11-20 |
Family
ID=68580090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019111193A RU2706720C1 (ru) | 2019-04-15 | 2019-04-15 | Способ атомно-эмиссионного анализа растворов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2706720C1 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0228539A (ja) * | 1988-07-19 | 1990-01-30 | Toho Asechiren Kk | 原子吸光、原子発光分析用高純度アセチレンガス組成物 |
RU2273842C1 (ru) * | 2004-10-08 | 2006-04-10 | Юрий Анатольевич Захаров | Способ спектрального анализа |
RU2487342C1 (ru) * | 2012-01-12 | 2013-07-10 | Открытое Акционерное Общество "Научно-Производственное Предприятие "Буревестник" | Способ эмиссионного анализа элементного состава жидких сред |
-
2019
- 2019-04-15 RU RU2019111193A patent/RU2706720C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0228539A (ja) * | 1988-07-19 | 1990-01-30 | Toho Asechiren Kk | 原子吸光、原子発光分析用高純度アセチレンガス組成物 |
RU2273842C1 (ru) * | 2004-10-08 | 2006-04-10 | Юрий Анатольевич Захаров | Способ спектрального анализа |
RU2487342C1 (ru) * | 2012-01-12 | 2013-07-10 | Открытое Акционерное Общество "Научно-Производственное Предприятие "Буревестник" | Способ эмиссионного анализа элементного состава жидких сред |
Non-Patent Citations (3)
Title |
---|
ДЗЕМА Д.В. и др. Применение высокоосновного наноионита в капиллярном электрофорезе для разделения и концентрирования неорганических анионов. Аналитика и контроль, 2017, т. 21, N 1, с. 41-48. * |
ДЗЕМА Д.В. и др. Применение высокоосновного наноионита в капиллярном электрофорезе для разделения и концентрирования неорганических анионов. Аналитика и контроль, 2017, т. 21, N 1, с. 41-48. МАКЕЕВА Д.В. и др. Наноразмерные иониты - стационарные фазы для капиллярной электрохроматографии. Аналитика и контроль, 2018, т. 22, N 3, c. 273-283. * |
МАКЕЕВА Д.В. и др. Наноразмерные иониты - стационарные фазы для капиллярной * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sereshti et al. | Trace determination of chromium (VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO2 adsorbent for solid phase extraction and UV–vis spectrophotometry | |
Huang et al. | Speciation of inorganic tellurium from seawater by ICP‐MS following magnetic SPE separation and preconcentration | |
Li et al. | Determination of Hg2+ by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry | |
Ai et al. | Advanced oxidation using Fe 3 O 4 magnetic nanoparticles and its application in mercury speciation analysis by high performance liquid chromatography-cold vapor generation atomic fluorescence spectrometry | |
Willie et al. | Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry | |
Pu et al. | Speciation of dissolved iron (II) and iron (III) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination | |
Beiraghi et al. | Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid–liquid microextraction | |
Davudabadi Farahani et al. | Supported hydrophobic ionic liquid on magnetic nanoparticles as a new sorbent for separation and preconcentration of lead and cadmium in milk and water samples | |
Faraji et al. | Preconcentration of trace amounts of lead in water samples with cetyltrimethylammonium bromide coated magnetite nanoparticles and its determination by flame atomic absorption spectrometry | |
Mohammadi et al. | Simultaneous extraction of trace amounts of cobalt, nickel and copper ions using magnetic iron oxide nanoparticles without chelating agent | |
Lu et al. | Flow injection on-line sorption preconcentration coupled with hydride generation atomic fluorescence spectrometry using a polytetrafluoroethylene fiber-packed microcolumn for determination of Se (IV) in natural water | |
Zheng et al. | Dual silica monolithic capillary microextraction (CME) on-line coupled with ICP-MS for sequential determination of inorganic arsenic and selenium species in natural waters | |
Evans et al. | Atomic spectrometry update. Advances in atomic spectrometry and related techniques | |
Pytlakowska et al. | Energy-dispersive X-ray fluorescence spectrometry combined with dispersive liquid–liquid microextraction for simultaneous determination of zinc and copper in water samples | |
Xiong et al. | The study of bismuth ions in drinking water at ultratrace levels by a microwave plasma torch coupled with linear ion trap mass spectrometry | |
Zhang et al. | Improvement on the selectivity and sorption capacity of cadmium by iron loaded carbon nanotubes with detection by electrothermal atomic absorption spectrometry | |
Maher et al. | Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications | |
Tan et al. | Visual test of subparts per billion-level copper (ii) by Fe 3 O 4 magnetic nanoparticle-based solid phase extraction coupled with a functionalized gold nanoparticle probe | |
Liao et al. | Cloud point extraction combined with flow injection vapor generation inductively coupled plasma mass spectrometry for preconcentration and determination of ultra trace Cd, Sb and Hg in water samples | |
Yu et al. | Speciation analysis of tellurium by solid-phase extraction in the presence of ammonium pyrrolidine dithiocarbamate and inductively coupled plasma mass spectrometry | |
Maraschi et al. | Solid-phase extraction of vanadium (V) from tea infusions and wines on immobilized nanometer titanium dioxide followed by ICP-OES analysis | |
Furuta et al. | Flow-injection analysis utilizing a spectrally segmented photodiode-array inductively coupled plasma emission spectrometer—I: Microcolumn preconcentration for the determination of molybdenum | |
RU2706720C1 (ru) | Способ атомно-эмиссионного анализа растворов | |
Akcin et al. | Determination of zinc, nickel and cadmium in natural water samples by flame atomic absorption spectrometry after preconcentration with ion exchange and flotation techniques | |
Wu et al. | Speciation of vanadium in water with quinine modified resin micro-column separation/preconcentration and their determination by fluorination assisted electrothermal vaporization (FETV)–inductively coupled plasma optical emission spectrometry (ICP-OES) |