RU2706154C1 - Способ разработки залежи высоковязкой нефти или битума - Google Patents
Способ разработки залежи высоковязкой нефти или битума Download PDFInfo
- Publication number
- RU2706154C1 RU2706154C1 RU2019100643A RU2019100643A RU2706154C1 RU 2706154 C1 RU2706154 C1 RU 2706154C1 RU 2019100643 A RU2019100643 A RU 2019100643A RU 2019100643 A RU2019100643 A RU 2019100643A RU 2706154 C1 RU2706154 C1 RU 2706154C1
- Authority
- RU
- Russia
- Prior art keywords
- injection wells
- formation
- vertical injection
- well
- horizontal production
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000010426 asphalt Substances 0.000 title claims abstract description 22
- 238000011161 development Methods 0.000 title abstract description 11
- 238000002347 injection Methods 0.000 claims abstract description 129
- 239000007924 injection Substances 0.000 claims abstract description 129
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 claims abstract description 51
- 238000002156 mixing Methods 0.000 claims abstract description 27
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 23
- 239000007864 aqueous solution Substances 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 15
- 230000035699 permeability Effects 0.000 claims abstract description 10
- 238000010276 construction Methods 0.000 claims abstract description 6
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 5
- 230000008859 change Effects 0.000 claims abstract description 4
- 238000005086 pumping Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000033228 biological regulation Effects 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 238000011084 recovery Methods 0.000 abstract description 4
- 238000006073 displacement reaction Methods 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 244000309464 bull Species 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- -1 alkali metal nitrites Chemical class 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/592—Compositions used in combination with generated heat, e.g. by steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/046—Directional drilling horizontal drilling
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Geophysics (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к нефтедобывающей промышленности. Технический результат - увеличение коэффициента извлечения нефти как на ранней стадии разработки, так и на выработанных месторождениях за счет повышения эффективности теплового воздействия на пласт с одновременным снижением материальных затрат и экономией энергоресурсов, расширение технологических методов теплового воздействия на продуктивный пласт. Способ разработки залежи высоковязкой нефти или битума включает определение нефтенасыщенной толщины пласта, проницаемости пласта, начальных пластовых давления и температуры, строительство горизонтальной добывающей и как минимум двух вертикальных нагнетательных скважин, размещенных над горизонтальной добывающей скважиной на одной плоскости выше ствола горизонтальной добывающей скважины на 5-10 м по сетке с расстоянием от 50 до 200 м друг от друга. Осуществляют изоляцию забоя вертикальных нагнетательных скважин, затем производят перфорацию вертикальных нагнетательных скважин по всему интервалу продуктивного пласта, обеспечивающую закачку рабочего агента в направлении навстречу друг другу. Оснащают горизонтальную добывающую скважину и вертикальные нагнетательные скважины устройствами для контроля температуры и давления в скважине и пласте. В качестве рабочего агента используют два водных раствора веществ, образующих при смешивании друг с другом в области смешения бинарную смесь с выделением энергии. Водные растворы закачивают одновременно раздельно в чередующиеся вертикальные нагнетательные скважины в течение 2-12 ч равномерными потоками. Контролируют температуру и давление в горизонтальной добывающей и вертикальных нагнетательных скважинах, регулируют перемещение области смешения от ствола одной вертикальной нагнетательной скважины к стволу другой изменением давления закачки. 2 ил., 1 пр.
Description
Изобретение относится к нефтедобывающей промышленности, а именно к способам разработки залежи высоковязкой нефти или битума.
Известен способ разработки залежи высоковязкой нефти или битума (патент RU №2637259, МПК C09K 8/592, Е21В 43/24, опубл. 01.12.2017 в бюл. №34), включающий закачку рабочего агента в призабойную зону пласта. В качестве рабочего агента применяют термогазохимический бинарный состав, состоящий из растворов аммониевых солей минеральных кислот и нитритов щелочных металлов с инициирующим раствором. Рабочий агент готовят до начала закачки смешением растворов аммониевых солей минеральных кислот и нитритов щелочных металлов с инициирующим раствором в режиме интенсивного перемешивания. В качестве инициирующего раствора используют растворы альдегидов, содержащие спирты или ацетон, превращающие альдегидные группировки в полуацетали, которые обладают пониженной реакционной способностью, что обеспечивает индукционный период. При этом температура водного раствора аммониевых солей минеральных кислот и нитритов щелочных металлов перед смешением с инициирующим раствором составляет в пределах от минус 10 до 30°С.
Известный способ позволяет успешно прогревать лишь часть пласта в непосредственной близости к забою скважины, а прогрева продуктивной части пласта не происходит.
Известен способ разработки залежи высоковязкой нефти или битума (патент RU №2206728, МПК Е21В 43/24, опубл. 20.06.2003 в бюл. №17), включающий спуск в обсадную колонну двух колонн насосно-компрессорных труб, причем первую спускают до начала, а вторую через первую до конца интервала перфорации и подают по ней теплоноситель, а в пространство между обсадной и первой колонной насосно-компрессорных труб подают газ, продукцию поднимают по пространству между колоннами насосно-компрессорных труб. После обеспечения заданной приемистости подъем продукции прекращают, закачку теплоносителя продолжают до расчетной величины. При этом подачу газа продолжают, заполняют им пространство между колоннами насосно-компрессорных труб и поддерживают в таком состоянии. Затем скважину останавливают на термокапиллярную пропитку до начала интенсивного снижения подвижности флюида в призабойной зоне. Сбрасывают давление в скважине, отбирают поступающую в нее продукцию до уменьшения дебита, полученного на естественном режиме работы пласта. Цикл закачки теплоносителя и отбора продукции повторяют до создания с добывающей скважиной зоны с подвижным флюидом. После чего скважину переводят в нагнетательную, а отбор продукции осуществляют через добывающую скважину.
Известный способ позволяет отобрать нефть из залежи на относительно небольшом расстоянии от скважины. При этом большая часть залежи остается практически не охваченной воздействием, как следствие, неполная, неравномерная выработка залежи. Применение газа в качестве наиболее легкого и подвижного рабочего агента создает предпосылки для создания в продуктивном пласте каналов (языков) прохождения рабочего агента и разогретой нефти, образования застойных невырабатываемых зон, что снижает нефтеотдачу залежи.
Известен способ разработки залежи высоковязкой нефти или битума (патент RU №2399755, МПК Е21В 43/243, опубл. 20.09.2010 в бюл. №26), включающий бурение и обустройство вертикальной и горизонтальной скважин таким образом, что забой вертикальной скважины располагают над забоем горизонтальной скважины на расчетном расстоянии по вертикали от 3 до 7 м. Создают область прогрева и обеспечивают продвижение ее по пласту параллельно стволу горизонтальной скважины за счет закачки вытесняющего агента в вертикальную скважину. Организуют отбор жидкости посредством горизонтальной скважины. Согласно изобретению в качестве агента применяют горюче-окислительную смесь - ГОС, например смесь мочевины, азотной кислоты, уксусной кислоты, воды и аммиачной селитры, горящую под действием температуры или инициатора горения - ИГ, например состава, содержащего алюминий и оксид хрома, причем до начала добычи подают ГОС и ИГ со смешением перед закачкой в пласт по вертикальной и горизонтальной скважинам для розжига и прогрева межскважинной зоны до температуры 100-200°С, в зависимости от типа ГОС и ИГ, и установления гидродинамической связи между скважинами, после чего горизонтальную скважину переводят под добычу жидкости, а в вертикальную скважину продолжают подачу ГОС и ИГ для поддержания горения и разогрева залежи до температуры самостоятельного горения ГОС - до 250-300°С, после чего подачу ИГ прекращают и продолжают закачку ГОС для поддержания продвижения горения параллельно стволу горизонтальной скважины.
Недостатками способа являются:
- сложность контроля за процессом горения;
- большие энергетические потери тепла в непродуктивных участках;
- прорыв газов горения, который может сорвать работу насосов и в целом повысить износ оборудования, в т.ч. за счет коррозии.
Наиболее близким по технической сущности и достигаемому результату является способ разработки залежи высоковязкой нефти и битума (патент RU №2435950, МПК Е21В 43/24, опубл. 10.12.2011 в бюл. №34), включающий строительство горизонтальной добывающей и как минимум двух вертикальных нагнетательных скважин, размещенных над горизонтальной добывающей скважиной на одной плоскости выше ствола горизонтальной добывающей скважины на 5-10 м по сетке с расстоянием от 50 до 200 м друг от друга, перфорацию вертикальных нагнетательных скважин по всему интервалу продуктивного пласта, оснащение горизонтальной добывающей скважины датчиками температуры, закачку рабочего агента в вертикальные нагнетательные скважины, контроль температуры в горизонтальной добывающей скважине, регулирование равномерного прогрева пласта и отбор продукции из горизонтальной добывающей скважины, изоляцию забоя вертикальных нагнетательных скважин. При этом контроль температуры в горизонтальной добывающей скважине осуществляют с анализом температуры по участкам, соответствующим нагнетательным скважинам. При достижении на участке температуры, близкой к температуре прорыва, соответствующую данной зоне нагнетательную скважину от забоя изолируют в интервале 5-15 м. В дальнейшем контроль температур в добывающей скважине и поинтервальное отсечение в нагнетательных скважинах производят аналогично до полного и равномерного прогрева пласта.
Известное техническое решение обеспечивает контроль температуры в добывающей скважине, исключающий прорыв пара к добывающей скважине. Однако известный способ не позволяет контролировать и регулировать процесс теплового воздействия, что влияет на равномерность охвата пласта тепловым воздействием и эффективность разогрева пласта, также закачка пара в пласт может привести к повышению обводненности добываемой продукции, а при поинтервальном отсечении нагнетательных скважин происходит непроизводительный расход пара на повторный прогрев остывшего продуктивного пласта, что приводит к снижению эффективности способа, увеличению материальных затрат. Также для применения известного способа требуется специальное оборудование по подготовке воды, имеющее высокую пропускную способность, что также увеличивает материальные и энергетические затраты, в том числе, на прогрев воды до состояния пара необходимого качества.
Технической задачей изобретения является повышение эффективности добычи высоковязкой нефти или битума (увеличение коэффициента извлечения нефти) как на ранней стадии разработки, так и на выработанных месторождениях за счет повышения эффективности теплового воздействия на пласт высоковязкой нефти или битума, снижения материальных затрат и экономии энергоресурсов. Также способ позволяет расширить технологические методы теплового воздействия на продуктивный пласт.
Техническая задача решается способом разработки залежи высоковязкой нефти или битума, включающим строительство горизонтальной добывающей и как минимум двух вертикальных нагнетательных скважин, размещенных над горизонтальной добывающей скважиной на одной плоскости выше ствола горизонтальной добывающей скважины на 5-10 м по сетке с расстоянием от 50 до 200 м друг от друга, перфорацию вертикальных нагнетательных скважин по всему интервалу продуктивного пласта, оснащение горизонтальной добывающей скважины датчиками температуры, закачку рабочего агента в вертикальные нагнетательные скважины, контроль температуры в горизонтальной добывающей скважине, регулирование равномерного прогрева пласта и отбор продукции из горизонтальной добывающей скважины, изоляцию забоя вертикальных нагнетательных скважин.
Новым является то, что перед строительством скважин определяют нефтенасыщенную толщину пласта, проницаемость пласта, начальные пластовые давление и температуру, до перфорации осуществляют изоляцию забоя вертикальных нагнетательных скважин, затем производят перфорацию вертикальных нагнетательных скважин, обеспечивающую закачку рабочего агента в направлении навстречу друг другу, дополнительно оснащают горизонтальную добывающую скважину устройствами для контроля давления в скважине и пласте, а вертикальные нагнетательные скважины - устройствами для контроля температуры и давления в скважине и пласте, в качестве рабочего агента используют два водных раствора веществ, образующих при смешивании друг с другом в области смешения бинарную смесь с выделением энергии, при этом водные растворы закачивают одновременно раздельно в чередующиеся вертикальные нагнетательные скважины в течение 2-24 ч равномерными потоками, контролируют температуру и давление в горизонтальной добывающей и вертикальных нагнетательных скважинах, регулируют перемещение области смешения от ствола одной вертикальной нагнетательной скважины к стволу другой изменением давления закачки.
На фиг. 1, 2 изображена схема реализации способа разработки залежи высоковязкой нефти или битума.
Сущность способа заключается в следующем.
Проводят комплекс геофизических исследований на залежи высоковязкой нефти или битума и исследования керна. Определяют нефтенасыщенную толщину пласта, проницаемость пласта, начальные пластовые давление и температуру, общую толщину пласта, плотность нефти в пластовых условиях, коэффициенты динамической вязкости нефти и воды в пластовых условиях, значения проницаемости и пористости по керну в продуктивном пласте.
В зависимости от геолого-физических условий залежи и физико-химических свойств нефти в залежи путем расчетов технологических показателей разработки, например, на геологической и гидродинамической модели, при различных значениях длины горизонтального участка добывающей скважины и значениях проницаемости пласта определяют количество вертикальных нагнетательных скважин, оптимальное расстояние между горизонтальной добывающей и вертикальными нагнетательными скважинами, и между вертикальными нагнетательными скважинами. С учетом размещения скважин определяют давление и объем закачки двух водных растворов, обеспечивающих в залежи зону прогрева в области смешения водных растворов веществ, образованную вблизи одной из нагнетательных скважин по всему интервалу продуктивного пласта.
В подошвенной части продуктивного пласта 1 строят одноустьевую или двухустьевую горизонтальную добывающую скважину 2 и как минимум две вертикальные нагнетательные скважины 3'-3n, обеспечивающие гидродинамическую связь между ними. Количество вертикальных нагнетательных скважин 3'-3n зависит от длины ствола горизонтальной скважины 2 и проницаемости пласта. Условно принимают нумерацию вертикальных нагнетательных скважин последовательно от устья до забоя одноустьевой горизонтальной добывающей скважины 2 либо последовательно от одного из устьев (выбирается произвольно) до другого устья для двухустьевой горизонтальной добывающей скважины 2.
Вертикальные нагнетательные скважины 3'-3n размещают над горизонтальной добывающей скважиной 2 на одной плоскости выше горизонтального ствола добывающей скважины на 5-10 м по сетке с расстоянием от 50 до 200 м друг от друга. При этом расстояние 5-10 м выбирают в зависимости от проницаемости и однородности пласта, исключающих прорыв рабочего агента в горизонтальную добывающую скважину. Вертикальные нагнетательные скважины 3' и 3n размещают с возможностью полного охвата продуктивного пласта тепловым воздействием.
Изолируют забой 4 вертикальных нагнетательных скважин 3'-3n любым известным способом, например, установкой цементного стакана (патент RU №2661935).
Перфорируют вертикальные нагнетательные скважины 3'-3n по всему интервалу продуктивного пласта. Перфорацию осуществляют по образующим ствола вертикальных нагнетательных скважин 3' и 3n, обеспечивающим закачку рабочего агента в направлении навстречу друг другу. Для вертикальных нагнетательных скважин 3''-3n-1 перфорацию осуществляют по образующим ствола скважины в диаметрально противоположном направлении, обеспечивающем закачку рабочего агента навстречу соседним нагнетательным скважинам.
Оснащают горизонтальную добывающую скважину 2 и вертикальные нагнетательные скважины 3'-3n устройствами для контроля температуры, давления в скважине и пласте в режиме реального времени. Применяют в качестве устройства контроля температуры и давления, например, оптико-волоконный кабель с датчиками (на фиг. 1 не показан).
Закачивают в пласт рабочий агент - два водных раствора веществ (С 1 и С 2), образующих при смешивании друг с другом в области смешения 5 бинарную смесь с выделением тепловой энергии, в разные, рядом расположенные вертикальные нагнетательные скважины 3'-3n. Например, в качестве С 1 применяют нитрат, или сульфат, или хлорид аммония, или смесь сульфаминовой кислоты с гидрокарбонатом натрия, а С 2 - нитрит или гидрид щелочного металла (патент RU №2525386).
В состав С 1 и С 2 добавляют один или несколько инициирующих растворов веществ, например, растворы альдегидов, содержащие спирты или ацетон, превращающие альдегидные группировки в полуацетали, для лучшего контроля за экзотермической реакцией (патент RU №2525386).
Водные растворы С 1 и С 2 закачивают одновременно раздельно в рядом расположенные, чередующиеся вертикальные нагнетательные скважины в течение 2-24 ч равномерными потоками. Т.е. производят одновременную закачку С 1 (или С 2) в вертикальные нагнетательные скважины 3' (3'-3n) с нечетным индексом и С 2 (или С 1) в вертикальные скважины 3'' (3''-3n) с четным индексом.
Объем закачиваемых водных растворов веществ должен обеспечивать химическую реакцию между С 1 и С 2 и равномерный прогрев продуктивного пласта в области смешения 5. С 1 и С 2 в области смешения 5 вступают в химическую реакцию с выделением газа и тепла, ускоренно уходящих в пласт под давлением, создаваемым самой реакцией (экзотермическая реакция). Вследствие этого происходит разогрев пластового флюида в залежи высоковязкой нефти или битума, благодаря чему уменьшается вязкость нефти в области смешения 5 продуктивного пласта 1 и вокруг нее.
Давление закачки в нагнетательных вертикальных скважинах 3'-3n устанавливают следующим образом: рядом с каждой вертикальной нагнетательной скважиной 3''-3n с четным индексом находятся вертикальные нагнетательные скважины 3'-3n с нечетным индексом, давление в которых либо только меньше, либо только больше, чем в вышеуказанных соседних вертикальных нагнетательных скважинах 3''-3n с четным индексом.
Осуществляют контроль температуры, давления в горизонтальной добывающей скважине 2 и вертикальных нагнетательных скважинах 3'-3n и в пласте в режиме реального времени.
Отбор добываемой продукции осуществляют из горизонтальной добывающей скважины 2. В горизонтальной добывающей скважине 2 контролируют состав добываемой продукции. При отборе проводят мониторинг состава добываемой продукции. В случае обнаружения в составе добываемой продукции С 1 и/или С 2 снижают объемы закачиваемого С 1 и/или С 2. По полученным данным осуществляют математический расчет (моделирование) и корректируют объем, давление, время закачки водных растворов веществ С 1 и С 2.
Регулируют перемещение области смешения 5 от ствола одной вертикальной нагнетательной скважины 3'-3n к стволу другой изменением давления закачки. Осуществляют закачку С 1 и С 2 с давлением, обеспечивающим перемещение области смешения 5 от одной вертикальной нагнетательной скважины к другой, рядом расположенной, что позволяет равномерно прогреть продуктивный пласт. В каждой вертикальной нагнетательной скважине 3''-3n с четным индексом уменьшают давление закачки рабочего агента, если в соседних нагнетательных вертикальных скважинах 3'-3n с нечетным индексом давление изначально было меньше, либо в каждой вертикальной нагнетательной скважины 3''-3n с четным индексом увеличивают давление закачки, если в соседних нагнетательных вертикальных скважинах 3'-3n с нечетным индексом давление изначально было больше. Соответственно, при уменьшении давления закачки водных растворов веществ С 1 и С 2 в вертикальных нагнетательных скважинах 3''-3n с четным индексом в соседних с ними вертикальных нагнетательных скважинах 3'-3n-1 с нечетным индексом давление закачки увеличивают на то же самое значение, а в случае увеличения давления закачки в вертикальных нагнетательных скважинах 3''-3n с четным индексом в соседних с ними нагнетательных вертикальных скважинах 3'-3n-1 с нечетным индексом давление закачки уменьшают на то же самое значение.
Осуществляют контроль температуры, давления в горизонтальной добывающей скважине 2 и вертикальных нагнетательных скважинах 3'-3n и в пласте в режиме реального времени. По полученным данным осуществляют математический расчет (моделирование) и корректируют объем, давление, время закачки водных растворов веществ С 1 и С 2.
Разработку ведут до полной экономически рентабельной выработки залежи высоковязкой нефти или битума.
Подобная закачка позволяет избежать перегрева продуктивного пласта за счет регулирования объемов закачки рабочего агента, уточненных в результате моделирования, в единицу времени, а также постепенного перемещения области смешения 5 химической (экзотермической) реакции бинарной смеси в межскважинном пространстве от одной скважины к другой благодаря регулированию режима закачки С 1 и С 2. Перемещение области смешения 5 позволяет обеспечить равномерное тепловое воздействие на пласт и увеличить эффективность добычи нефти.
Пример конкретного выполнения способа разработки залежи высоковязкой нефти или битума на участке Больше-Каменского поднятия Ашальчинского месторождения. На фиг. 2 изображена схема реализации способа разработки залежи высоковязкой нефти или битума.
Провели комплекс геофизических и керна исследований. Определили следующие параметры: среднюю общую толщину пласта - 22,8 м; нефтенасыщенную толщину пласта - 19,9 м; глубину залегания пласта (до кровли) - 59 м; начальное пластовое давление - 0,9 МПа; начальную пластовую температуру - 8°С; плотность нефти в пластовых условиях - 0,973 т/м3; коэффициент средней динамической вязкости нефти в пластовых условиях - 11721 мПа⋅с; коэффициент динамической вязкости воды в пластовых условиях - 1,63 мПа⋅с; среднюю проницаемость по керну в пласте - 2,23 мкм2; среднюю пористость по керну в пласте - 0,29 доли ед.
По полученным данным построили геологическую и гидродинамическую модели, при определенном значении длины горизонтального участка добывающей скважины и значениях проницаемости пласта определили количество вертикальных нагнетательных скважин, оптимальное расстояние между горизонтальной добывающей и вертикальными нагнетательными скважинами, и между вертикальными нагнетательными скважинами. С учетом размещения скважин определили давление и объем закачки двух водных растворов, обеспечивающих в залежи зону прогрева в области смешения водных растворов веществ, образованную вблизи одной из нагнетательных скважин по всему интервалу продуктивного пласта. Моделировали в программном комплексе CMG модуля STARS.
В подошвенной части продуктивного пласта 1 построили одноустьевую горизонтальную добывающую скважину 2 с длиной горизонтального ствола 330 м и пять вертикальных нагнетательных скважин 3'-3''''', обеспечивающих гидродинамическую связь между ними. Условно приняли нумерацию вертикальных нагнетательных скважин последовательно от устья до забоя горизонтальной добывающей скважины 2.
Вертикальные нагнетательные скважины 3'-3''''' разместили над горизонтальной добывающей скважиной 2 в одной плоскости выше горизонтального ствола добывающей скважины на 6 м по сетке с расстоянием 70 м друг от друга.
Заизолировали забой вертикальных нагнетательных скважин 4 с помощью установки цементного стакана.
Произвели перфорацию вертикальных нагнетательных скважин 3'-3''''' по всему интервалу продуктивного пласта. Перфорацию вертикальных нагнетательных скважин 3' и 3''''' осуществляли по образующим ствола скважины, обеспечивающим закачку рабочего агента в направлении навстречу друг другу. Для вертикальных нагнетательных скважин 3''-3'''' перфорацию осуществляли по образующим ствола скважины в диаметрально противоположном направлении, обеспечивающем закачку рабочего агента навстречу соседним нагнетательным скважинам.
Оснастили горизонтальную добывающую скважину 2 и вертикальные нагнетательные скважины 3'-3''''' устройствами для контроля температуры, давления в скважине и пласте в режиме реального времени. В качестве устройства контроля температуры и давления применили оптико-волоконный кабель с датчиками (на фиг. 2 не показан).
Закачивали в пласт рабочий агент - два водных раствора веществ С 1 и С 2 в разные, рядом расположенные вертикальные нагнетательные скважины 3'-3'''''. В качестве С 1 использовали 20%-ный водный раствор нитрата аммония С 2-25%-ный водный раствор нитрита натрия.
Водные растворы С 1 и С 2 закачивали одновременно раздельно в чередующиеся вертикальные нагнетательные скважины в течение 5 ч равномерными потоками, т.е. произвели одновременную закачку С 1 в вертикальные нагнетательные скважины 3', 3''', 3''''' с нечетным индексом с давлением закачки равным 15 атм и С 2 в вертикальные нагнетательные скважины 3'', 3'''' с четным индексом с давлением закачки - 25 атм. При этом в вертикальные нагнетательные скважины 3' и 3''''' закачивали С 1 объемом 3 м3/сут, в вертикальную нагнетательную скважину 3''' закачивали С 1 объемом 6 м3/сут, в вертикальные нагнетательные скважины 3'', 3'''' закачивали С 2 объемом 6 м3/сут. Все выше перечисленное обеспечило формирование областей смешения 5 в межскважинном пространстве у вертикальных нагнетательных скважин 3'-3'''''.
Осуществляли контроль температуры, давления в горизонтальной добывающей скважине 2 и вертикальных нагнетательных скважинах 3'-3''''' и в пласте в режиме реального времени.
Отбор добываемой продукции осуществляли из горизонтальной добывающей скважины 2. В горизонтальной добывающей скважине 2 контролировали состав добываемой продукции. При отборе проводили мониторинг состава добываемой продукции. По полученным данным осуществляли математический расчет (моделирование) и корректировали объем, давление, время закачки водных растворов веществ С 1 и С 2.
Регулировали перемещение области смешения 5 от ствола одной вертикальной нагнетательной скважины 3'-3''''' к стволу другой изменением давления закачки. Общий объем закачанных водных растворов С 1 составил 5163,4 м3, С 2 - 4751,8 м3. Область смешения 5 перемещалась от одной вертикальной нагнетательной скважины к другой, как показано на фиг. 2.
Разработку вели до полной экономически рентабельной выработки залежи высоковязкой нефти или битума.
Представленный способ разработки залежи высоковязкой нефти или битума, а также способ по наиболее близкому аналогу были смоделированы в программном комплексе CMG модуля STARS на объекте с теми же геолого-физическими характеристиками для различных условий эксплуатации. Из полученных расчетов также выявлены преимущества предлагаемого способа перед способом по наиболее близкому аналогу: снижение затрат за счет отсутствия необходимости подготовки пара, исключение остывания продуктивного пласта, увеличение равномерного охвата пласта тепловым воздействием, снижение процента обводненности добываемой продукции из пласта, повышение накопленной добычи нефти на 5-6% по сравнению со способом по наиболее близкому аналогу.
Способ разработки залежи высоковязкой нефти или битума решает поставленную техническую задачу - повышение эффективности добычи высоковязкой нефти или битума (увеличение коэффициента извлечения нефти) как на ранней стадии разработки, так и на выработанных месторождениях за счет повышения эффективности теплового воздействия на пласт высоковязкой нефти или битума, снижения материальных затрат и экономии энергоресурсов. Также способ позволяет расширить технологические методы теплового воздействия на продуктивный пласт.
Claims (1)
- Способ разработки залежи высоковязкой нефти или битума, включающий строительство горизонтальной добывающей и как минимум двух вертикальных нагнетательных скважин, размещенных над горизонтальной добывающей скважиной на одной плоскости выше ствола горизонтальной добывающей скважины на 5-10 м по сетке с расстоянием от 50 до 200 м друг от друга, перфорацию вертикальных нагнетательных скважин по всему интервалу продуктивного пласта, оснащение горизонтальной добывающей скважины датчиками температуры, закачку рабочего агента в вертикальные нагнетательные скважины, контроль температуры в горизонтальной добывающей скважине, регулирование равномерного прогрева пласта и отбор продукции из горизонтальной добывающей скважины, изоляцию забоя вертикальных нагнетательных скважин, отличающийся тем, что перед строительством скважин определяют нефтенасыщенную толщину пласта, проницаемость пласта, начальные пластовые давление и температуру, до перфорации осуществляют изоляцию забоя вертикальных нагнетательных скважин, затем производят перфорацию вертикальных нагнетательных скважин, обеспечивающую закачку рабочего агента в направлении навстречу друг другу, дополнительно оснащают горизонтальную добывающую скважину устройствами для контроля давления в скважине и пласте, а вертикальные нагнетательные скважины - устройствами для контроля температуры и давления в скважине и пласте, в качестве рабочего агента используют два водных раствора веществ, образующих при смешивании друг с другом в области смешения бинарную смесь с выделением энергии, при этом водные растворы закачивают одновременно раздельно в чередующиеся вертикальные нагнетательные скважины в течение 2-12 ч равномерными потоками, контролируют температуру и давление в горизонтальной добывающей и вертикальных нагнетательных скважинах, регулируют перемещение области смешения от ствола одной вертикальной нагнетательной скважины к стволу другой изменением давления закачки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019100643A RU2706154C1 (ru) | 2019-01-10 | 2019-01-10 | Способ разработки залежи высоковязкой нефти или битума |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019100643A RU2706154C1 (ru) | 2019-01-10 | 2019-01-10 | Способ разработки залежи высоковязкой нефти или битума |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2706154C1 true RU2706154C1 (ru) | 2019-11-14 |
Family
ID=68579557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019100643A RU2706154C1 (ru) | 2019-01-10 | 2019-01-10 | Способ разработки залежи высоковязкой нефти или битума |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2706154C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2728002C1 (ru) * | 2019-11-29 | 2020-07-28 | федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) | Способ разработки залежи высоковязкой нефти и природного битума |
RU2742090C1 (ru) * | 2020-08-20 | 2021-02-02 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ закачки бинарных смесей в пласт |
RU2784138C1 (ru) * | 2021-12-27 | 2022-11-23 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ закачки бинарных смесей в пласт |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626191A (en) * | 1995-06-23 | 1997-05-06 | Petroleum Recovery Institute | Oilfield in-situ combustion process |
RU2399755C1 (ru) * | 2009-07-20 | 2010-09-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки нефтяной залежи с использованием термического воздействия на пласт |
RU2425969C1 (ru) * | 2010-08-18 | 2011-08-10 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки залежи высоковязкой нефти |
RU2429346C1 (ru) * | 2010-03-02 | 2011-09-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки месторождения высоковязкой нефти с использованием внутрипластового горения |
RU2435950C1 (ru) * | 2010-05-21 | 2011-12-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежей высоковязких нефтей и битумов |
RU2582251C1 (ru) * | 2015-03-23 | 2016-04-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки послойно-зонально-неоднородной залежи сверхвязкой нефти или битума |
-
2019
- 2019-01-10 RU RU2019100643A patent/RU2706154C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626191A (en) * | 1995-06-23 | 1997-05-06 | Petroleum Recovery Institute | Oilfield in-situ combustion process |
RU2399755C1 (ru) * | 2009-07-20 | 2010-09-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки нефтяной залежи с использованием термического воздействия на пласт |
RU2429346C1 (ru) * | 2010-03-02 | 2011-09-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки месторождения высоковязкой нефти с использованием внутрипластового горения |
RU2435950C1 (ru) * | 2010-05-21 | 2011-12-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежей высоковязких нефтей и битумов |
RU2425969C1 (ru) * | 2010-08-18 | 2011-08-10 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки залежи высоковязкой нефти |
RU2582251C1 (ru) * | 2015-03-23 | 2016-04-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки послойно-зонально-неоднородной залежи сверхвязкой нефти или битума |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2728002C1 (ru) * | 2019-11-29 | 2020-07-28 | федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) | Способ разработки залежи высоковязкой нефти и природного битума |
RU2742090C1 (ru) * | 2020-08-20 | 2021-02-02 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ закачки бинарных смесей в пласт |
RU2784138C1 (ru) * | 2021-12-27 | 2022-11-23 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ закачки бинарных смесей в пласт |
RU2800705C1 (ru) * | 2022-10-21 | 2023-07-26 | Публичное акционерное общество "Газпром нефть" (ПАО "Газпром нефть") | Способ разработки месторождений нефти (варианты), компьютерная система для использования в способе (варианты), машиночитаемый носитель для использования в способе (варианты) |
RU2817489C1 (ru) * | 2024-02-16 | 2024-04-16 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ повышения интенсификации добычи высоковязкой нефти |
RU2826711C1 (ru) * | 2024-04-08 | 2024-09-16 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки заглинизированного карбонатного коллектора |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2675160C (en) | Method of heavy oil production | |
RU2305762C1 (ru) | Способ разработки залежи вязкой нефти или битума | |
RU2663526C1 (ru) | Способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин | |
RU2350747C1 (ru) | Способ разработки нефтяного месторождения | |
CN110608024A (zh) | 一种深层页岩气大幅度提高微支撑系统充填效率的体积压裂方法 | |
CN101089362B (zh) | 一种改进的蒸汽吞吐采油方法 | |
CN112324409B (zh) | 一种在油层中原位产生溶剂开采稠油的方法 | |
CA2867873C (en) | Methods and systems for downhole thermal energy for vertical wellbores | |
RU2706154C1 (ru) | Способ разработки залежи высоковязкой нефти или битума | |
US3707189A (en) | Flood-aided hot fluid soak method for producing hydrocarbons | |
RU2494240C1 (ru) | Способ разработки залежей высоковязкой нефти или битумов | |
CA2898065C (en) | Pressure cycling with mobilizing fluid circulation for heavy hydrocarbon recovery | |
RU2433256C1 (ru) | Способ разработки залежи высоковязкой нефти или битумов | |
RU2597040C1 (ru) | Способ разработки залежи углеводородных флюидов | |
RU2496000C1 (ru) | Способ разработки залежей высоковязкой нефти или битумов | |
RU2603795C1 (ru) | Способ разработки залежи углеводородных флюидов (12) | |
RU2550632C1 (ru) | Способ разработки нефтяной залежи системой горизонтальной и вертикальной скважин с использованием термического воздействия | |
RU2741644C1 (ru) | Способ разработки месторождений трудноизвлекаемых углеводородов | |
RU2581071C1 (ru) | Способ разработки залежи углеводородных флюидов | |
US3384172A (en) | Producing petroleum by forward combustion and cyclic steam injection | |
RU2563892C1 (ru) | Способ разработки залежи углеводородных флюидов | |
RU2199004C2 (ru) | Способ разработки нефтяного пласта | |
RU2615554C1 (ru) | Способ разработки залежи углеводородных флюидов при тепловом воздействии | |
RU2690588C2 (ru) | Способ разработки залежи сверхвязкой нефти | |
RU2684627C1 (ru) | Способ разработки залежи высоковязкой и тяжелой нефти с термическим воздействием |