RU2703937C1 - Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности - Google Patents
Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности Download PDFInfo
- Publication number
- RU2703937C1 RU2703937C1 RU2018143847A RU2018143847A RU2703937C1 RU 2703937 C1 RU2703937 C1 RU 2703937C1 RU 2018143847 A RU2018143847 A RU 2018143847A RU 2018143847 A RU2018143847 A RU 2018143847A RU 2703937 C1 RU2703937 C1 RU 2703937C1
- Authority
- RU
- Russia
- Prior art keywords
- sequence
- pulses
- laser
- optical
- pulse
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/3515—All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Изобретение относится к лазерной технике. Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности включает введение ограниченной первоначальной последовательности импульсов в оптический резонатор, время полного обхода которого отличается от временного интервала между импульсами первоначальной последовательности, одновременное накопление импульсов с большей частотой следования за счет изменения одного и того же параметра каждого входящего импульса первоначальной последовательности, формирование из них новой последовательности, и дальнейшее выведение из оптического резонатора полученной новой последовательности импульсов через оптический затвор. При этом в оптическом резонаторе размещают нелинейный оптический элемент, с помощью которого преобразуют длину волны лазерного излучения, используемую в качестве изменяемого параметра каждого входящего импульса первоначальной последовательности, а лазерное излучение с длиной волны первоначальной последовательности вводят в оптический резонатор и выводят из него, используя дихроичные зеркала. Технический результат заключается в обеспечении возможности формирования последовательностей коротких лазерных импульсов с высокой частотой следования и высокой мощностью, не зависящей от порога пробоя оптического элемента. 1 з.п. ф-лы, 1 ил.
Description
Изобретение относится к лазерной технике и может быть использовано для формирования последовательностей коротких высокомощных лазерных импульсов с очень высокой частотой следования (более 1 ТГц). Такие последовательности представляют большой интерес для многих приложений, включая лазерные источники вторичного излучения терагерцового и рентгеновского диапазонов, лазерные ускорители частиц, устройства лазерной микрообработки материалов и др.
Частота последовательности импульсов может совпадать с высокочастотными резонансами облучаемых сред (плазменная частота, частота терагерцового поля и т.д.), что приводит к эффективному взаимодействию. Для многих приложений режим резонансной последовательности импульсов не уступает одноимпульсному режиму по эффективности взаимодействия со средой. При этом максимальная энергия, которая может быть получена в последовательности импульсов, значительно превышает энергию одиночного лазерного импульса, которая, как правило, ограничивается нелинейными эффектами и эффектом оптического пробоя в элементах лазерной схемы. В твердотельных лазерах эффекту оптического пробоя наиболее подвержен активный элемент лазера. В наибольшей степени это проявляется в активных средах (таких как иттербиевые среды) с высокой плотностью энергии насыщения, которая может превышать порог пробоя, что не позволит эффективно извлекать энергию, запасенную в среде. Еще острее эта проблема проявляется в лазерах с тонкими активными элементами, например, с волокнами [М. Kienel, Optics Letters 41(14), pp. 3343-3346, 2016], с тонкими стержнями [X. et. al., Optics Letters 38 (2), pp. 109-111, 2013] или с тонкими слэбами [P. Russbueldt et. al., Optics Letters 35 (24), pp. 4169-4171, 2010]. Такие активные элементы часто используются в лазерах высокой средней мощности. Благодаря малой толщине элемент эффективно охлаждается, что важно при высокой средней мощности, однако это ограничивает апертуру активного элемента и энергию выходных импульсов.
Существуют способы формирования последовательностей коротких лазерных импульсов с очень высокой частотой следования. Последовательности можно получить на выходе лазерного генератора, работающего в режиме синхронизации мод. Частота следования таких последовательностей определяется длиной резонатора генератора. Максимальная частота, полученная таким образом, составляет чуть меньше 5 ГГц [S. Pekarek et. al., Optics Express 20(4), pp. 4248-4253, 2012]. Известны способы формирования последовательности импульсов из одиночного импульса. В одном способе для разделения импульса используется набор лазерных интерферометров Майкельсона [С.W. Siders et. al., Applied Optics 37 (22), pp. 5302-5305, 1998]. В другом способе применяется интерференция двух реплик чирпированного импульса, смещенных друг относительно друга [R.J. Shalloo et. al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 829, pp. 383-385, 2016]. В третьем способе одиночный импульс пропускается через последовательность ориентированных анизотропных кристаллов различных длин и расщепляется на несколько реплик за счет эффекта двулучепреломления [Т. Robinson et. al., Journal of the Optical Society of America В 27(4), pp. 763-772, 2010]. Частота следования импульсов в данных схемах ограничивается лишь их длительностью, однако недостатком является то, что энергия последовательности импульсов не может превышать энергию одиночного импульса, из которого эта последовательность получена.
Наиболее близким к предлагаемому по технической сущности является взятый за прототип способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности [Т. et. al., Laser Congress 2017 (ASSL, LAC), OSA Technical Digest, paper JM5A.33, 2017], в котором конечную по времени последовательность импульсов вводят в оптический резонатор, время полного обхода которого немного отличается от временного интервала между входящими импульсами, а затем выводят из резонатора сформированную новую последовательность импульсов с большей частотой следования. Резонатор содержит лазерный усилитель и оптический затвор, состоящий из ячейки Поккельса, четвертьволновой пластинки и поляризатора.
В известном способе - прототипе используют оптический затвор, работающий в трех режимах: режиме частичного пропускания излучения, режиме нулевого пропускания излучения, режиме полного пропускания излучения. В режиме частичного пропускания излучения осуществляют ввод последовательности импульсов в резонатор и их накопление. При попадании в резонатор импульсам первоначальной последовательности меняют один и тот же параметр - поляризацию за счет ее поворота в оптическом затворе на 45 градусов на каждом обходе резонатора. При этом на каждом обходе происходит потеря половины энергии импульса. Для компенсации данных потерь энергии вводят усилитель, который усиливает импульсы в 2 раза на каждом обходе. Усиление импульсов в новой последовательности осуществляют в режиме нулевого пропускания оптического затвора, при этом импульсы многократно обходят резонатор и усиливаются. И, наконец, переключая оптический затвор в режим полного пропускания, выводят импульсы полученной новой последовательности из резонатора.
Недостаток способа-прототипа заключается в том, что при вводе и дальнейшем накоплении импульсов в оптическом резонаторе большая часть энергии импульсов теряется при прохождении через оптический затвор. Это приводит к необходимости постоянного усиления энергии импульсов накапливаемой новой последовательности в оптическом резонаторе, что требует обязательного наличия лазерного усилителя для реализации способа-прототипа. Энергия импульсов новой последовательности на выходе будет ограничена по величине, так как при достижении энергией импульсов определенного порогового значения в усилителе возникает нежелательный эффект оптического пробоя активного элемента. Таким образом, описанный в прототипе способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности не позволяет снять ограничение по величине мощности выходных импульсов, связанное с порогом пробоя активного элемента.
Задачей, на решение которой направлено настоящее изобретение, является разработка способа увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности, который позволяет получить конечную последовательность ультракоротких лазерных импульсов с требуемой высокой мощностью, не зависящей от порога пробоя активного элемента.
Технический результат достигается благодаря тому, что разработанный способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности так же, как и способ, который является ближайшим аналогом, включает введение ограниченной первоначальной последовательности импульсов в оптический резонатор, время полного обхода которого отличается от временного интервала между импульсами первоначальной последовательности, одновременное накопление импульсов с большей частотой следования за счет изменения одного и того же параметра каждого входящего импульса первоначальной последовательности и формирование из них новой последовательности, и дальнейшее выведение из оптического резонатора полученной новой последовательности импульсов через оптический затвор.
Новым в разработанном способе является то, что в оптическом резонаторе размещают нелинейный оптический элемент, с помощью которого преобразуют длину волны лазерного излучения, используемую в качестве изменяемого параметра каждого входящего импульса первоначальной последовательности, а лазерное излучение с длиной волны первоначальной последовательности вводят в оптический резонатор и выводят из него, используя дихроичные зеркала.
В частном случае реализации разработанного способа длину волны лазерного излучения, используемую в качестве изменяемого параметра каждого входящего импульса первоначальной последовательности, уменьшают в 2 раза.
На фиг. 1 представлена схема возможной технической реализации разработанного способа в соответствии с п. 1 или п. 2 формулы.
Первоначальная последовательность 1 импульсов подается в оптический резонатор, состоящий из двух дихроичных зеркал 2 и 3. Внутри резонатора размещают нелинейный оптический элемент 4 и оптический затвор 5, состоящий из ячейки Поккельса, четвертьволновой пластинки и поляризатора. С помощью оптического затвора 5 осуществляют вывод новой последовательности 6 импульсов из резонатора.
Способ осуществляют следующим образом.
Через первое дихроичное зеркало 2 первоначальную последовательность 1 коротких лазерных импульсов с равными интервалами между импульсами ΔT1 вводят в оптический резонатор, время полного обхода которого составляет ΔT2 и отличается от временного интервала ΔT1 между импульсами первоначальной последовательности 1.
При прохождении первоначальной последовательности 1 через нелинейный оптический элемент 4 изменяют параметр каждого входящего импульса этой последовательности 1. В качестве изменяемого параметра каждого входящего импульса первоначальной последовательности 1 выбирают длину волны лазерного излучения. Таким образом, длину волны λ1 лазерного излучения первоначальной последовательности 1 изменяют на λ2 - длину волны лазерного излучения получаемой новой последовательности 6. Дихроичные зеркала 2 и 3 выбирают таким образом, чтобы на длине волны λ1 они обладали большим коэффициентом пропускания, а на длине волны λ2 - большим коэффициентом отражения. Тогда излучение с длиной волны λ1 проходит через второе дихроичное зеркало 3 и выводится из резонатора, а излучение с длиной волны λ2 отражается как от второго дихроичного зеркала 3, так и от первого дихроичного зеркала 2 и остается внутри оптического резонатора.
Так как время полного обхода резонатора ΔT2 выбирают отличающимся от временного интервала ΔT1 между импульсами первоначальной последовательности 1, то на каждом обходе резонатора между соседними импульсами новой последовательности 6 возникает временной интервал, равный , который определяет частоту следования импульсов полученной новой последовательности 6.
Когда все импульсы первоначальной последовательности 1 преобразуют в импульсы новой последовательности 6 с длиной волны λ2, переключают оптический затвор 5 и выводят импульсы новой последовательности 6 из резонатора.
В конкретной реализации заявленного способа первоначальная последовательность состояла из 8 импульсов с временными интервалами между импульсами ΔT1=5 нс, что соответствует частоте следования 0,2 ГГц, длина волны первоначальной последовательности λ1=1030 нм. Полученная новая последовательность имела длину волны λ2=515 нм, а временной интервал между импульсами составлял 5 пс, что соответствует частоте следования импульсов 0,2 ТГц. В качестве нелинейного оптического элемента использовался кристалл бета-бората бария (ВВО).
Выходные параметры новой последовательности импульсов, которые могут быть достигнуты с применением заявленного способа, ограничиваются только световой апертурой и тепловыми эффектами в ячейке Поккельса. Современные ячейки Поккельса способны выдерживать среднюю мощность более 1 кВт и пиковую мощность более 100 ГВт. В способе - прототипе более строгие ограничения, по сравнению с ячейкой Поккельса, на выходные параметры новой последовательности импульсов накладывают световая апертура и тепловые эффекты в лазерном усилителе. В зависимости от геометрии активного элемента усилителя его предельные средняя и пиковая мощности в 2-10 раз ниже, чем в ячейке Поккельса. Следовательно, средняя и пиковая мощности новой последовательности импульсов в способе - прототипе в 2-10 раз ниже, чем в разработанном способе увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности.
Таким образом, разработанный способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности позволяет получить конечную последовательность ультракоротких лазерных импульсов с требуемой высокой мощностью, не зависящей от порога пробоя активного элемента.
Claims (2)
1. Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности, включающий введение ограниченной первоначальной последовательности импульсов в оптический резонатор, время полного обхода которого отличается от временного интервала между импульсами первоначальной последовательности, одновременное накопление импульсов с большей частотой следования за счет изменения одного и того же параметра каждого входящего импульса первоначальной последовательности и формирование из них новой последовательности, и дальнейшее выведение из оптического резонатора полученной новой последовательности импульсов через оптический затвор, отличающийся тем, что в оптическом резонаторе размещают нелинейный оптический элемент, с помощью которого преобразуют длину волны лазерного излучения, используемую в качестве изменяемого параметра каждого входящего импульса первоначальной последовательности, а лазерное излучение с длиной волны первоначальной последовательности вводят в оптический резонатор и выводят из него, используя дихроичные зеркала.
2. Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности по п. 1, отличающийся тем, что длину волны лазерного излучения, используемую в качестве изменяемого параметра каждого входящего импульса первоначальной последовательности, уменьшают в 2 раза.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018143847A RU2703937C1 (ru) | 2018-12-11 | 2018-12-11 | Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018143847A RU2703937C1 (ru) | 2018-12-11 | 2018-12-11 | Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2703937C1 true RU2703937C1 (ru) | 2019-10-22 |
Family
ID=68318473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018143847A RU2703937C1 (ru) | 2018-12-11 | 2018-12-11 | Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2703937C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2206162C2 (ru) * | 2001-09-05 | 2003-06-10 | ООО "Лагран" им. Е.М.Швома" | Импульсный твердотельный лазер с каскадным преобразованием частоты излучения в высшие гармоники |
US7463658B2 (en) * | 2006-02-13 | 2008-12-09 | Jenoptik Laser, Optik, Systeme Gmbh | Laser and method for generating pulsed laser radiation |
RU2589274C2 (ru) * | 2010-03-26 | 2016-07-10 | ЛОРЕНС ЛИВЕРМОР НЭШНЛ СЕКЬЮРИТИ, ЭлЭлСи | Архитектура многопроходного усилителя для лазерных систем большой мощности |
RU2589270C2 (ru) * | 2010-02-24 | 2016-07-10 | Алькон Ленскс, Инк. | Фемтосекундный лазер высокой мощности с регулируемой частотой повторения |
-
2018
- 2018-12-11 RU RU2018143847A patent/RU2703937C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2206162C2 (ru) * | 2001-09-05 | 2003-06-10 | ООО "Лагран" им. Е.М.Швома" | Импульсный твердотельный лазер с каскадным преобразованием частоты излучения в высшие гармоники |
US7463658B2 (en) * | 2006-02-13 | 2008-12-09 | Jenoptik Laser, Optik, Systeme Gmbh | Laser and method for generating pulsed laser radiation |
RU2589270C2 (ru) * | 2010-02-24 | 2016-07-10 | Алькон Ленскс, Инк. | Фемтосекундный лазер высокой мощности с регулируемой частотой повторения |
RU2589274C2 (ru) * | 2010-03-26 | 2016-07-10 | ЛОРЕНС ЛИВЕРМОР НЭШНЛ СЕКЬЮРИТИ, ЭлЭлСи | Архитектура многопроходного усилителя для лазерных систем большой мощности |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113366713B (zh) | 具有啁啾脉冲放大和修整脉冲序列的超短脉冲激光源 | |
Gilbertson et al. | Isolated attosecond pulse generation using multicycle pulses directly from a laser amplifier | |
KR101875992B1 (ko) | 100 테라와트 초과의 피크 전력 및 고 콘트라스트를 갖는 레이저원 | |
KR102176363B1 (ko) | 다결정질 tm:ii-vi 재료로 이루어진 수직 입사 장착형 중간 적외선 케르 렌즈 모드 잠금형 레이저 및 다결정질 tm:ii-vi 케르 렌즈 모드 잠금형 레이저의 매개변수를 제어하기 위한 방법 | |
US20020001321A1 (en) | Ultrashort-pulse laser machining system employing a parametric amplifier | |
KR102674871B1 (ko) | 매우 높은 반복 레이트의 레이저 펄스를 발생시키기 위한 레이저 시스템 및 방법 | |
WO2013040041A2 (en) | Directly driven source of multi-gigahertz, sub-picosecond optical pulses | |
JPH10333194A (ja) | チャープパルス圧縮装置およびチャープパルス増幅装置 | |
Chu et al. | A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality | |
Li et al. | Low noise, tunable Ho: fiber soliton oscillator for Ho: YLF amplifier seeding | |
JP2018530002A (ja) | パルスポンピングを有するシングルパスレーザー増幅器 | |
EP2827461B1 (en) | Method and laser source for generation of optically synchronized dual-wavelength ultrashort light pulses | |
JPS63502314A (ja) | 放射発生器 | |
João et al. | A 10-mJ-level compact CPA system based on Yb: KGW for ultrafast optical parametric amplifier pumping | |
RU2703937C1 (ru) | Способ увеличения частоты следования ультракоротких высокомощных лазерных импульсов в ограниченной последовательности | |
Nickel et al. | 200 kHz electro-optic switch for ultrafast laser systems | |
Konoplev et al. | Cancellation of B-integral accumulation for CPA lasers | |
Khare et al. | Temporal stretching of laser pulses | |
Kroetz et al. | High energetic and highly stable pulses from a Ho: YLF regenerative amplifier | |
Buzyalis et al. | Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG: Nd laser | |
Thorin | Towards the carrier-envelope phase stabilization of a16 TW 4.5 fs laser system | |
Kafka et al. | A synchronously pumped dye laser using ultrashort pump pulses | |
Rudenkov et al. | A route to high peak power and energy scaling in the mid-IR chirped-pulse oscillator-amplifier laser systems | |
Khazanov et al. | Nonlinear compression of ultra-high-power laser pulses | |
Eckardt et al. | A single mode Nd: YAG Q-switched oscillator with short buildup time |