RU2703818C1 - Модульный космический аппарат - Google Patents

Модульный космический аппарат Download PDF

Info

Publication number
RU2703818C1
RU2703818C1 RU2018146135A RU2018146135A RU2703818C1 RU 2703818 C1 RU2703818 C1 RU 2703818C1 RU 2018146135 A RU2018146135 A RU 2018146135A RU 2018146135 A RU2018146135 A RU 2018146135A RU 2703818 C1 RU2703818 C1 RU 2703818C1
Authority
RU
Russia
Prior art keywords
spacecraft
container
modular
satellites
shell
Prior art date
Application number
RU2018146135A
Other languages
English (en)
Inventor
Александр Сергеевич Митькин
Иван Владимирович Москатиньев
Валентин Константинович Сысоев
Александр Евгеньевич Ширшаков
Андрей Дмитриевич Юдин
Original Assignee
Акционерное общество "Научно-производственное объединение им. С.А. Лавочкина" (АО "НПО Лавочкина")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение им. С.А. Лавочкина" (АО "НПО Лавочкина") filed Critical Акционерное общество "Научно-производственное объединение им. С.А. Лавочкина" (АО "НПО Лавочкина")
Priority to RU2018146135A priority Critical patent/RU2703818C1/ru
Application granted granted Critical
Publication of RU2703818C1 publication Critical patent/RU2703818C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices

Abstract

Изобретение относится к космической технике, а более конкретно к торможению спутников. Модульный космический аппарат (КА) выполнен в виде пакета последовательно установленных одноразмерных кубических модулей со служебной и целевой аппаратурой. КА снабжен модулем аэродинамического торможения, расположенным со стороны одного из торцов модульного пакета. Модуль включает силовой каркас с установленным в нем герметичным контейнером, содержащим размещенную в сложенном виде газонепроницаемую надувную оболочку, заполненную остаточным атмосферным газом, связанную с контейнером посредством гибкого фала. Расправление оболочки при ее выводе из контейнера в космическое пространство обеспечивается воздействием остаточного атмосферного газа. Достигается упрощение конструкции. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к космической технике и может быть использовано при создании искусственных спутников планет, имеющих атмосферу, преимущественно в конструкциях искусственных спутников Земли (ИСЗ).
В настоящее время существует проблема засорения околоземного космического пространства отработанными ИСЗ, прекратившими свое штатное функционирование в силу разных причин (выработки ресурса, ошибки при выведении, аварии и др.) (ГОСТ Р 52925-2008. Общие требования к космическим средствам по ограничению техногенного засорения околоземного космического пространства). При этом значительную часть указанных ИСЗ составляют малые спутники, в том числе, так называемые наноспутники (спутники массой 1-10 кг). Такие спутники благодаря развитию микроминиатюризации и нанотехнологий, позволяют обеспечить получение достаточно большого объема научной информации при минимальных затратах на их выведение. Причем малая масса и размеры наноспутников делает эффективным их выведение в качестве попутных нагрузок при запуске других космических аппаратов (КА). Вместе с тем, тенденция к миниатюризации спутников усугубляет проблему космического мусора, увеличивая число объектов в околоземном космическом пространстве, и увод исчерпавших ресурс КА с орбиты становится весьма актуальной проблемой. Указанная проблема решается различными путями, в зависимости от видов КА. Для ряда спутников, в том числе, для военных спутников с ядерными энергетическими установками и геостационарных спутников, как правило, используют так называемые «орбиты захоронения, на которые переводят отработанные аппараты (ГОСТ Р 52925-2008). На данных орбитах КА могут находиться многие годы, в том числе, до неограниченного периода времени. В других случаях снижают орбиту КА таким образом, что бы КА начал тормозиться в атмосфере Земли и был полностью разрушен в процессе торможения либо упал бы в безопасном районе поверхности Земли, например, в океане (Баранов В.Н. и др. Управление аэродинамическим торможением низкоорбитальных космических аппаратов. Известия РАН. Теория и системы управления. 2001. С. 152-159).
Наиболее простым образом проблема обеспечения увода ИСЗ с орбиты и погружения его в атмосферу Земли решается посредством наличия у КА реактивного тормозного двигателя, который в нужное время вырабатывает тормозной импульс, после чего КА направляется для спуска в заданный район поверхности Земли (Сборник РКК «Энергия» им. СП. Королева под редакцией Ю.П. Семенова, 1996, с. 342-345). Однако такое техническое решение увеличивает массу и стоимость КА, что особо критично для малых ИСЗ. Кроме того, снабжение ИСЗ реактивным тормозным двигателем не решает задачу обеспечения увода ИСЗ в требуемом направлении при его выходе из строя, поскольку для осуществления торможения необходимо предварительно сориентировать ИСЗ в соответствующее положение, что проблематично осуществить при неработающем спутнике.
Известны ИСЗ, снабженные устройством для спуска с орбиты, выполненным в виде свернутой в компактный объем сферы, развертываемой в космосе при подаче газа в ее герметичную полость (Gossamor Orbit Lowering Device (GOLD); a Lightweight, Low-cost, and Simple De-orbit Sistem. Global Aerospace Corporation. April 16, 2003, 25 с. ). Это техническое решение предлагалось для спуска с орбиты российской пилотируемой станции «Мир» массой 140 тонн с помощью присоединяемой к ней сферы диаметром 176 м, изготовленной из термостойкой пленки толщиной 9 микрон. Из-за торможения этой сферы в разреженных слоях атмосферы должно было бы произойти постепенное снижение станции, вход в плотные слои атмосферы в произвольном районе и полное или частичное ее сгорание.
Реализация данной конструкции предполагает наличие у ИСЗ специальной системы подачи газа в развертываемую сферическую оболочку, что усложняет конструкцию ИСЗ и решение задачи обеспечения увода ИСЗ при его выходе из строя.
Стремление к снижению затрат на разработку и запуск ИСЗ привело к широкому использовании при разработке КА, в частности ИСЗ, модульных конструкций, состоящих, как правило, из несущей конструкции и устанавливаемых на них различных приборов и агрегатов. При этом модульными могут быть как несущие конструкции (патент РФ 2092398, приоритет от 24.10.1995), так и приборные модули (патент РФ 2374148, приоритет от 01.03.2007). Указанное стремление наиболее полно воплотилось при разработке спутников типа CubeSat, которые проводились с 1999 года Политехническим университетом штата Калифорния и Стэнфордским университетом, разрабатывали спецификации CubeSat, чтобы помочь университетам всего мира «выйти в космос». Термин CubeSat был придуман для обозначения наноспутников, которые соответствуют стандартам, указанным в проектных спецификациях. Характерной особенностью ИСЗ типа CubeSat является их выполнение в виде пакета последовательно установленных одноразмерных кубических (прямоугольных) модулей со служебной и целевой аппаратурой, примером чего является выбранная в качестве прототипа конструкция КА SibCube (Зуев Д.М. и др. Проект КА СибГАУ класса CubeSat // Вестн. СибГАУ. 2014. №4(56). С. 160-166) являющимся наиболее близким аналогом к заявленному космическому аппарату. Указанная конструкция упрощает процесс проектирования, изготовления и сборки КА за счет унификации платформ и комплектующих изделий (по оценкам NASA возможно довести в ближайшие годы стоимость запуска CubeSat до 20 тыс. дл.), что позволяет разрабатывать и запускать «кубсаты» университетам, небольшим частным компаниям, любительским объединениям и даже школам. Таким образом, создание спутников типа CubeSat с одной стороны является положительным фактором, поскольку способствует интенсивному развитию космических исследований с увеличением количества участников и запускаемых КА, но с другой стороны облегчение доступности космических исследований для широкого круга участников будет способствовать дальнейшему засорению космического пространства отработанными КА, что в дальнейшем создаст еще большие проблемы при выборе рабочих орбит ИСЗ и обеспечению их безопасного функционирования. Отсюда возникает необходимость снабдить спутники типа CubeSat средствами для их ликвидации после прекращения штатного функционирования, при этом указанные средства не должны усложнять конструкцию ИСЗ, снижать надежность их работы, а также увеличивать стоимость запуска.
Технической проблемой, решаемой предлагаемым изобретением, является обеспечение надежного увода модульных спутников типа CubeSat с рабочей орбиты после прекращения их штатного функционирования и их ликвидации за счет аэродинамического торможения в атмосфере Земли при упрощении конструкции КА, повышению их надежности и снижению стоимости запуска.
Указанная техническая проблема решается за счет того, что в отличие от известного модульного космического аппарата, выполненного в виде пакета последовательно установленных одноразмерных кубических модулей со служебной и целевой аппаратурой, новым является то, что аппарат снабжен модулем аэродинамического торможения, расположенным со стороны одного из торцов модульного пакета и включающим силовой каркас с установленным в нем герметичным контейнером, содержащим размещенную в сложенном виде газонепроницаемую надувную оболочку, заполненную остаточным атмосферным газом, связанную с контейнером посредством гибкого фала, при этом расправление оболочки при ее выводе из контейнера в космическое пространство обеспечивается воздействием остаточного атмосферного газа.
Кроме того, оболочка тормозного элемента выполнена из полимерной металлизированной пленки.
Снабжение КА модулем аэродинамического торможения, установленным со стороны одного из торцов модульного пакета позволяет обеспечить возможность увода КА с рабочей орбиты после прекращения их штатного функционирования и их ликвидацию в атмосфере Земли за счет аэродинамического торможения при сохранении общей компоновки модульных спутников типа CubeSat.
Выполнение модуля аэродинамического торможения в виде силового каркаса с установленным в нем герметичным контейнером, содержащим размещенную в сложенном виде газонепроницаемую надувную оболочку, заполненную остаточным атмосферным газом, связанную с контейнером посредством гибкого фала, обеспечивает возможность унификации модулей для ИСЗ типа CubeSat и позволяет отказаться от активной системы подачи газа, что упрощает конструкцию модуля, а также повышает его надежность.
Изготовление оболочки тормозного элемента из полимерной металлизированной пленки обеспечивает ее соответствие необходимым термопрочностным характеристикам, гарантирующим надежное раскрытие оболочки и ее функционирование в условиях аэродинамических торможения К А в атмосфере Земли.
Сущность изобретения поясняется чертежами, где:
Фиг. 1 - общий вид модульного КА с модулем аэродинамического торможения;
Фиг. 2 - составные части модуля аэродинамического торможения (до сборки);
Фиг. 3 - общий вид модульного КА с расправленной надувной оболочкой.
Космический аппарат 1 содержит пакет последовательно установленных одноразмерных кубических модулей 2 со служебной и целевой аппаратурой. Аппарат снабжен модулем аэродинамического торможения 3, установленным со стороны одного из торцов модульного пакета и включающим силовой каркас 4 с установленным в нем герметичным контейнером 5, содержащим размещенную в сложенном виде газонепроницаемую надувную оболочку 6, заполненную остаточным атмосферным газом, связанную с контейнером посредством гибкого фала 7. Силовой каркас 4 модуля аэродинамического торможения 3 может включать нижнюю плиту 8, являющуюся основной несущей частью модуля 3, боковые панели 9 и верхнюю плиту 10, которые соединяются между собой и присоединяются к модульному пакету 2 четырьмя штифтами 11. На нижней плите 5 может быть установлен аккумуляторная батарея 12 и блок управления модулем аэродинамического торможения 13, который может включать таймер и/или радиоприемник, подключенный к антенне 14, установленной на боковой панели 9. Во время работы КА аккумуляторная батарея 12 подзаряжается при помощи солнечных батарей 15, закрепленных на боковых панелях 9. Большую часть объема модуля 3 занимает герметичный контейнер 5, установленный сверху блока 13. Внутри контейнера 5 укладывается гибкая газонепроницаемая надувная термостойкая оболочка 6 из металлизированной полимерной пленки прикрепленная посредством фала 7 к контейнеру 5. Контейнер 5 герметично закрывается крышкой 16 без откачивания воздуха. Удерживает крышку 16 электромагнитный замок 17. Применение в конструкции счетчика обратного времени и/или радиоприемника для открытия крышки герметичной капсулы обеспечивает работу тормозного устройства автономно от космического средства, на котором оно установлено. Причем наличие таймера обеспечивает приведение в действие модуля аэродинамического торможения 3 без команды с Земли.
При завершении программы работы спутника или нештатной ситуации с блока управления модулем аэродинамического торможения 13 поступает сигнал выключения электромагнитного замка 17. Оболочка 6 из транспортного положения под воздействием остаточного газа начинает приобретать форму и выталкивает крышку 16 контейнера 5. После высвобождения из контейнера 5 надувная оболочкой 6 окончательно приобретает форму шара и готова для выполнения функции торможения спускаемого КА. Аппарат с расправленной оболочкой произвольно самоориентируется в атмосферном потоке, замедляясь под действием аэродинамических сил, и осуществляет спуск с орбиты ИСЗ в плотные слои атмосферы Земли, где происходит сгорание оболочки и полное или частичное сгорание КА.
Предлагаемый модульный КА, снабженный модулем аэродинамического торможения, позволяет при относительно небольшой дополнительной массы конструкции оперативно уводить космический объект с орбиты, обеспечить управляемый вход в атмосферу и аэродинамическое торможение на атмосферном участке траектории до сгорания оболочки в плотных слоях атмосферы при сохранении общей компоновки модульных спутников типа CubeSat.

Claims (2)

1. Модульный космический аппарат, выполненный в виде пакета последовательно установленных одноразмерных кубических модулей со служебной и целевой аппаратурой, отличающийся тем, что аппарат снабжен модулем аэродинамического торможения, расположенным со стороны одного из торцов модульного пакета и включающим силовой каркас с установленным в нем герметичным контейнером, содержащим размещенную в сложенном виде газонепроницаемую надувную оболочку, заполненную остаточным атмосферным газом, связанную с контейнером посредством гибкого фала, при этом расправление оболочки при ее выводе из контейнера в космическое пространство обеспечивается воздействием остаточного атмосферного газа.
2. Модульный космический аппарат по п. 1, отличающийся тем, что оболочка тормозного элемента выполнена из полимерной металлизированной пленки.
RU2018146135A 2018-12-25 2018-12-25 Модульный космический аппарат RU2703818C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018146135A RU2703818C1 (ru) 2018-12-25 2018-12-25 Модульный космический аппарат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018146135A RU2703818C1 (ru) 2018-12-25 2018-12-25 Модульный космический аппарат

Publications (1)

Publication Number Publication Date
RU2703818C1 true RU2703818C1 (ru) 2019-10-22

Family

ID=68318376

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018146135A RU2703818C1 (ru) 2018-12-25 2018-12-25 Модульный космический аппарат

Country Status (1)

Country Link
RU (1) RU2703818C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU205843U1 (ru) * 2021-04-20 2021-08-11 Акционерное общество "Государственный ракетный центр имени академика В.П. Макеева" Защитная капсула для управляемого спуска
RU207383U1 (ru) * 2021-04-02 2021-10-26 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва" Универсальный приборный модуль космического аппарата
RU2762452C1 (ru) * 2021-06-03 2021-12-21 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Многоцелевая модульная платформа для создания космических аппаратов нанокласса
RU2801372C1 (ru) * 2023-03-31 2023-08-08 Акционерное общество "Научно-производственное объединение им. С.А. Лавочкина" (АО "НПО Лавочкина") Модульный космический аппарат

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242134A (en) * 1992-05-22 1993-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Space station trash removal system
US6830222B1 (en) * 2002-03-21 2004-12-14 Global Aerospace Corporation Balloon device for lowering space object orbits
RU2492125C1 (ru) * 2012-03-01 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Космический аппарат для очистки околоземного пространства от мусора
WO2017021191A1 (en) * 2015-07-31 2017-02-09 D-Orbit S.R.L. Propulsion system for small artificial satellites
RU2671067C2 (ru) * 2016-10-06 2018-10-29 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Устройство аэродинамического торможения космического аппарата

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242134A (en) * 1992-05-22 1993-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Space station trash removal system
US6830222B1 (en) * 2002-03-21 2004-12-14 Global Aerospace Corporation Balloon device for lowering space object orbits
RU2492125C1 (ru) * 2012-03-01 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Космический аппарат для очистки околоземного пространства от мусора
WO2017021191A1 (en) * 2015-07-31 2017-02-09 D-Orbit S.R.L. Propulsion system for small artificial satellites
RU2671067C2 (ru) * 2016-10-06 2018-10-29 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Устройство аэродинамического торможения космического аппарата

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU207383U1 (ru) * 2021-04-02 2021-10-26 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва" Универсальный приборный модуль космического аппарата
RU205843U1 (ru) * 2021-04-20 2021-08-11 Акционерное общество "Государственный ракетный центр имени академика В.П. Макеева" Защитная капсула для управляемого спуска
RU2762452C1 (ru) * 2021-06-03 2021-12-21 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Многоцелевая модульная платформа для создания космических аппаратов нанокласса
RU2801372C1 (ru) * 2023-03-31 2023-08-08 Акционерное общество "Научно-производственное объединение им. С.А. Лавочкина" (АО "НПО Лавочкина") Модульный космический аппарат

Similar Documents

Publication Publication Date Title
RU2703818C1 (ru) Модульный космический аппарат
Freeland et al. Large inflatable deployable antenna flight experiment results
US3144219A (en) Manned space station
Anselmi et al. BepiColombo, ESA's Mercury cornerstone mission
Ragab et al. Launch vehicle recovery and reuse
Komar Hercules single-stage reusable vehicle supporting a safe, affordable, and sustainable human lunar & mars campaign
Underwood et al. The inflatesail cubesat mission–the first european demonstration of drag-sail de-orbiting
Grundmann et al. From Sail to Soil-Getting Sailcraft out of the Harbour on a Visit to One of Earth's Nearest Neighbours
Novara The BepiColombo ESA cornerstone mission to Mercury
Carandente et al. A study on Earth re-entry capsules with deployable aerobrakes for recoverable microgravity experiments
US6491256B1 (en) Transportation of unqualified spacecraft or component to space
Taylor et al. Removedebris preliminary mission results
Taylor et al. Flight results of the InflateSail spacecraft and future applications of dragsails
RU2801372C1 (ru) Модульный космический аппарат
Cobb et al. Design and flight qualification of the rigidizable inflatable get-away-special experiment
Aglietti et al. RemoveDebris Mission, In Orbit Operations
Bui et al. Design and Development of AOBA VELOX-IV nanosatellite for future Lunar Horizon Glow mission
Sinn et al. Results of REXUS12's Suaineadh Experiment: Deployment of a spinning space web in micro gravity conditions
Bernal et al. Releasing the cloud: A deployment system design for the qb50 cubesat mission
RU2634608C2 (ru) Возвращаемый с околоземной орбиты научно-исследовательский космический аппарат
Thangavelu et al. An international small cargo recovery system for the International Space Station
Scoon et al. MARSNET: A precursor to the surface exploration of Mars
Alarcon et al. Tran Duy Vu Bui, Quang Vinh Tran, Jia Min Lew, Shanmugansundaram Selvadurai Benjamin Tan, Amy Wong Ai Ling, Lim Sir Yang, Lim Wee Seng, Cheng Tee Hiang Nanyang Technological University 50 Nanyang Avenue, Singapore 639798+ 65 6790 6522, tdvbui@ ntu. edu. sg, www. sarc. eee. ntu. edu. sg
Goldberg et al. Micro-Inspector Spacecraft An Overview
Fortezza et al. Mistral (air-launcheable micro-satellite with reentry capability) a small spacecraft to carry out several missions in leo