RU2702998C1 - Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови - Google Patents

Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови Download PDF

Info

Publication number
RU2702998C1
RU2702998C1 RU2018129944A RU2018129944A RU2702998C1 RU 2702998 C1 RU2702998 C1 RU 2702998C1 RU 2018129944 A RU2018129944 A RU 2018129944A RU 2018129944 A RU2018129944 A RU 2018129944A RU 2702998 C1 RU2702998 C1 RU 2702998C1
Authority
RU
Russia
Prior art keywords
blood plasma
drugs
metabolites
rifampicin
content
Prior art date
Application number
RU2018129944A
Other languages
English (en)
Inventor
Людмила Алексеевна Карцова
Светлана Алексеевна Соловьёва
Елена Андреевна Бессонова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority to RU2018129944A priority Critical patent/RU2702998C1/ru
Application granted granted Critical
Publication of RU2702998C1 publication Critical patent/RU2702998C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Изобретение относится к области аналитической химии. Способ контроля содержания противотуберкулезных препаратов (ПТП) основного ряда и их токсичных метаболитов в плазме крови заключается в подготовке плазмы крови к хроматографическому анализу путем добавления антиоксиданта, в качестве которого берут аскорбиновую кислоту, осаждении белков органическим растворителем, разбавлении пробы деионизированной водой в соотношении 1:10, проведении анализа методом обращенно-фазовой жидкостной хроматографии в режиме градиентного элюирования, детектировании сигналов ПТП с использованием тройного квадрупольного тандемного масс-спектрометрометра с ионизацией электрораспылением, в качестве контролируемых ПТП определяют пиразинамид, изониазид, этамбутол и рифампицин, в качестве токсичных метаболитов - пиразиноевую кислоту, 25-О-деацетилрифампицин, ацетилизониазид и изоникотиновую кислоту, измерении аналитических параметров анализируемого образца и, сравнивая их с аналитическими параметрами хроматографического анализа раствора стандартов ПТП с известными концентрациями, осуществление качественного и количественного определения ПТП и их метаболитов в плазме крови для контроля их допустимых доз. 2 ил., 2 пр.

Description

Настоящее изобретение относится к аналитической химии и может быть использовано для контроля содержания основного ряда в плазме крови при лекарственной терапии туберкулеза легких и их токсичных метаболитов. К ним относятся соединения, имеющие различную химическую природу (или относящие к разным классам соединений): рифампицин и его метаболит 25-О-дезацетилрифампицин, изониазид и его метаболит ацетилизониазид, пиразинамид и его метаболит пиразиноевая кислота, этамбутол.
Туберкулез является одной из основных инфекционных причин смертности в мире. Созданные в 50-х годах прошлого века противотуберкулезные препараты (ПТП) (изониазид, рифампицин, пиразинамид, этамбутол) применяются и в настоящее время. Однако, специалисты обнаружили, что зарекомендовавшая себя стандартная схема из трех-четырех препаратов не дает эффекта. Ситуация осложняется развитием лекарственной устойчивости к используемым препаратам. Фактически началась новая эпоха - эпоха туберкулеза с множественной лекарственной устойчивостью (МЛУ-туберкулеза). Сегодня это одна из главных проблем фтизиатрии. Эффективность лекарственной терапии существенно зависит от концентрации ПТП в крови, т.к. это влияет на их распределение в органе-мишени, пораженном туберкулезом, и максимальный терапевтический результат. При этом важно проводить как фармакокинетические исследования, позволяющие устанавливать оптимальные дозировки лекарств для достижения лечебного эффекта у конкретного пациента, так и контролировать токсичные метаболиты (ацетилизониазид, 25-О-дезацетилрифампицин проявляют гепатотоксический и аллергический эффекты, пиразиноевая кислота - гиперурикемию), для понижения степени побочных эффектов.
Известен способ определения рифампицина и его метаболитов методами колориметрии и высокоэффективной жидкостной хроматографии (ВЭЖХ) в плазме крови [1]. Данный способ, включающий осаждение белков плазмы крови водным раствором сульфата цинка (II) и дальнейшее проведение анализа, позволяет определять содержание рифампицина на уровне 0,3 мкг/мл. Однако известный способ имеет недостаточную концентрационную чувствительность, а также позволяет
определять содержание только одного лекарственного препарата, что недостаточно информативно, т.к. химиотерапия туберкулеза всегда подразумевает комплексный прием ПТП.
Известен способ одновременно определения рифампицина, этамбутола, пиразинамида, изониазида методом капиллярного зонного электрофореза со спектрофотометрическим детектированием [2]. В известном способе добавляли в состав буферного электролита водный раствор сульфата меди (II) для определения не поглощающего в видимом диапазоне излучения этамбутола без предколоночной дериватизации. Однако известный способ не апробирован на биологических объектах, характеризуется недостаточными пределами количественного обнаружения (2-9 мкг/мл).
Известен способ одновременного определения рифампицина, этамбутола, пиразинамида, стрептомицина в плазме крови методом тандемной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией с времяпролетным масс-анализатором [3]. Известный способ, включающий осаждение белков плазмы крови метанолом, выпаривание надосадочной жидкости в токе азота и перерастворение, смешивание с 4-гидроксибензойной кислотой в качестве матрицы, позволяет определять содержание ПТП на уровне 0,08-0,15 пмоль/мкл. Недостатком известного способа является отсутствие определения содержания токсичных метаболитов ПТП, что не позволяет оптимизировать лекарственную терапию туберкулеза, учитывая индивидуальные особенности метаболизма.
Известен способ одновременного определения изониазида, рифампицина и их метаболитов (25-О-дезацетилрифампицина, ацетилизониазида, изоникотиновой кислоты) в плазме крови методом хромато-масс-спектрометрии с тройным квадрупольным масс-анализатором с электроспрей ионизацией [4]. Однако известный способ не позволяет подбирать оптимальные дозировки ПТП и контролировать степени побочных эффектов, поскольку не определяет содержание других противотуберкулезных препаратов, входящих в комплексную терапию, в плазме крови, а именно пиразинамида, этамбутола и токсичного метаболита пиразинамида - пиразиноевой кислоты. В известном способе не учитывается нестабильность рифампицина, что вносит ошибку при количественном определении рифампицина. Недостатком известного способа является длительность процедуры подготовки плазмы крови к хроматографическому анализу, которая включает две стадии: первая - осаждение белков плазмы крови метанолом с добавкой 0.1% муравьиной кислоты, вторая - твердофазная экстракция для удаления липидов, что удлиняет и усложняет процесс, т.к. требуется большее время для пробоподготовки, возможны дополнительные потери компонентов на этой стадии, нет оперативности. Кроме того, в прототипе в количественном анализе используют внутренние стандарты - вещества, имеющие такую же структуру, как и определяемые аналиты, но некоторые атомы водорода заменены на изотопы 2Н (D). Поскольку изотопно-меченые соединения дорого стоят и часто коммерчески недоступны, это накладывает ограничения на применения данного способа при потоковых анализах.
Известен способ одновременного определения четырех ПТП (пиразинамид, изониазид, этамбутол и рифампицин) в плазме крови человека методом ОФ ВЭЖХ с тандемным масс-спектрометрическим детектированием с электроспрей ионизацией наиболее близкий к заявляемому изобретению по достижению технического результата и выбранный в качестве прототипа [5]. В известном способе проводят предварительную подготовку пробы к анализу путем добавления к пробе в качестве антиоксиданта аскорбиновой кислоты, осаждения белков и разбавления надосадочной жидкости деионизированной водой в соотношении 1:10. Однако в известном способе определяют содержание токсичных метаболитов препаратов основного ряда, входящих в комплексную терапию, а именно токсичного метаболита пиразинамида - пиразиноевой кислоты, метаболита рифампицина - 25-О-деацетилрифампицина, метаболитов изониазида - ацетилизониазида и изоникотиновую кислоту, что, таким образом, не позволяет контролировать степень их побочных эффектов и подбирать оптимальные дозы ПТП для лечения туберкулеза.
Заявляемое изобретение свободно от указанных недостатков.
Техническим результатом предлагаемого способа является информативность, поскольку заявленный способ позволяет одновременно контролировать содержание четырех ПТП (изониазид, рифамипицин, пиразинамид, этамбутол) и их токсичных метаболитов (ацетилизониазид, пиразиноевая кислота, 25-О-дезацетилрифампицин) в плазме крови. Заявленный способ обеспечивает достоверность результатов определения ПТП и их метаболитов при достижении достаточной (высокой) чувствительности определения и селективности разделения ПТП и их метаболитов за счет использования режима мониторинга множественных реакций (MRM-режима) масс-спектрометрического детектирования, т.е. детектирование лекарственных препаратов и их метаболитов по их осколочным ионам.
Указанный технический результат достигается тем, что плазму крови подготавливают к анализу путем добавления в пробу в качестве антиоксиданта аскорбиновой кислоты, осаждения белков и разбавления надосадочной жидкости деионизированной водой в соотношении 1:10, получают хроматограмму противотуберкулезных препаратов и их метаболитов в плазме крови методом обращенно-фазовой высокоэффективной жидкостной хроматографии в градиентном режиме элюирования с масс-спектрометрическим детектированием (тройной квадрупольный масс-анализатор с электроспрей ионизацией). Детектирование проводят путем мониторинга множественных реакций (MRM-режим). Для идентификации аналитов используют 2 осколочных иона, тогда как для количественного определения - ион максимальной интенсивности. Количественное определение аналитов проводят по площадям пиков определяемых соединений согласно градуировочным зависимостям по каждому компоненту пробы. Определение метаболитов ПТП проводят в режиме сканирования экстракта плазмы крови. Подтверждением является анализ по осколочным ионам, их масс-спектр, а также химическая природа метаболита и исходного противотуберкулезного препарата.
Таким образом, технико-экономическая эффективность заявленного способа состоит в более достоверной и полной информации по сравнению с известными аналогами контроля содержания ПТП в плазме крови, что позволяет контролировать проводимую лекарственную терапию туберкулеза и уменьшить степень побочных эффектов.
Перечисленная совокупность существенных признаков обеспечивает достижение указанного технического результата.
Туберкулез легких в настоящее время остается одной из главных проблем здравоохранения во всем мире, от него ежегодно умирают около трех миллионов человек. Предложенный способ имеет высокую социальную значимость, поскольку позволит оптимизировать комплексную терапию туберкулеза легких по определяемым концентрациям четырех лекарственных препаратов и их токсичных метаболитов, что обеспечит возможность достигать максимальный терапевтический эффект и минимизировать сопутствующие побочные эффекты.
Заявленный способ апробирован в лабораторных условиях Санкт-Петербургского государственного университета и Научно-исследовательского института пульмонологии и результаты апробации приведены в виде конкретных примеров реализации.
Как видно из приведенного примера 1, предложенный способ обеспечивает достаточную селективность и чувствительность определения четырех ПТП (изониазид, рифамипицин, пиразинамид, этамбутол) в плазме крови с учетом заявленной процедуры пробоподготовки, описанной в нижеприведенных примерах.
ПРИМЕР 1
На Фиг. 1 представлена хроматограмма экстракта образца плазмы крови больного туберкулезом легких, принимающего 4 противотуберкулезных препарата. На хроматограмме регистрируется 5 пиков - 1-этамбутол, 2-изониазид, 3-пиразинамид, 4-хинон рифампицина, 5-рифампицин.
Пробоподготовку образца плазмы крови проводят следующим образом. Берут аликвоту 100 мкл плазмы крови и помещают в микропробирку Эппендорфа, Добавляют аскорбиновую кислоту в концентрации 1 мг/мл в качестве антиоксиданта для уменьшения окисления рифампицина в хинон рифампицина и добавляют 300 мкл ацетонитрила, перемешивают в течение 2 мин. Затем пробу центрифугируют 10 мин со скоростью 10000 об/мин при температуре 4°С для отделения образовавшегося осадка и отбирают надосадочную жидкость. Разбавляют образец в 10 раз для уменьшения матричного влияния пробы и проводят хроматографический анализ.
Анализ пробы после пробоподготовки проводят методом обращенно-фазовой высокоэффективной жидкостной хроматографии с тройным квадрупольным масс-анализатором с электроспрей ионизацией «Shumadzu» LC-MS 8030; колонка Luna С18 (2) (150×2 мм, 5 мкм), подвижная фаза: А - 0.1% водный р-р муравьиной кислоты (по объему), Б - ацетонитрил, градиентный режим, скорость подвижной фазы - 0,3 мл/мин, объем вводимой пробы - 20 мкл. Условия фрагментации в MRM-режиме масс-спектрометрического детектирования: этамбутол 205,0 → 116,2 m/z (15 eV), изониазид 138,1 → 121,1 m/z (20 eV), пиразинамид 124,1 → 81,1 m/z (20 eV), рифамицин 823,3 → 791,6 m/z (30 eV).
Для проведения количественного определения компонентов пробы строится градуировочная зависимость площади пика от концентрации аналита по каждому компоненту пробы. Калибровочные растворы готовили путем растворения навески лекарственного препарата в 1 мл пула образцов плазмы крови, полученных от 6 доноров. Линейный диапазон концентраций составил для этамбутола 0,002-10 мкг/мл, для рифампицина, пиразинамида, изониазида 0,01-10 мкг/мл. Пределы обнаружения оценивались как отношение сигнал/шум=3:1 и составили 10, 10, 15 и 2 нг/мл для пиразинамида, изониазида, рифампицина, этамбутола, соответственно.
ПРИМЕР 2
Как видно из приведенного примера 2 предложенный способ обеспечивает достаточную чувствительность и селективность определения токсичных метаболитов ПТП в плазме крови по осколочным ионам.
На Фиг. 2 представлена хроматограмма экстракта образца плазмы крови пациента, больного туберкулезом легких, при определении метаболитов ПТП.
Хроматографический анализ проводился методом обращено-фазовой ВЭЖХ с тройным квадрупольным масс-анализатором с электроспрей ионизацией «Shumadzu» LC-MS 8030; колонка Luna С18 (2) (150×2 мм, 5 мкм), подвижная фаза: А - 0.1% водный р-р муравьиной кислоты (по объему), Б - ацетонитрил, градиентный режим, скорость подвижной фазы - 0,3 мл/мин, объем вводимой пробы - 20 мкл. Подготовка плазмы крови к анализу проводилась по схеме, описанной в примере 1.
Наличие данных метаболитов определяется при хромато-масс-спектрометрическом анализе экстракта плазмы крови в режиме сканирования. Подтверждением наличия метаболитов является анализ по осколочным ионам (791,6 m/z - 25-О-дезацетилрифампицин, 121,1 m/z - ацетилизониазид, 81,1 m/z - пиразиноевая кислота), их масс-спектр, а также химическая природа метаболита и исходного противотуберкулезного препарата.
Как видно из приведенных примеров 1 и 2 лабораторных испытаний заявленный способ позволяет достигнуть указанный технический результат, как было указано выше - оптимизировать комплексную терапию туберкулеза легких по определяемым концентрациям четырех лекарственных препаратов и их токсичных метаболитов.
Используемая литература
[1] Патент US 6,790,668 B1. Ferreire M.F. et. al. Monitoring patient compliance and bioavailability of drugs by deproteinizing body fluids.
[2] A.F. Faria, M.V.N, de Souza, R.E. Bruns, M.A.L. de Oliveira. Simultaneous determination of first-line anti-tuberculosis drugs by capillary zone electrophoresis using direct UV detection // Talanta. 2010. V. 82. P. 333-339. Doi: 10.1016/j.talanta.2010.04.044
[3] S. Notari, C. Mancone, M. Sergi, F. Gullotta, N. Bevilacqua, M. Tempestilli, R. Urso, F.N. Lauria, L.P. Pucillo, M. Tripodi, P. Ascenzi. Determination of antituberculosis drug concentration in human plasma by MALDI-TOF/TOF // IUBMB Life. 2010. V. 62. P. 387-393. Doi: 10.1002/iub.321
[4] K.H. Нее, J.J. Seo, L.S. Lee. Development and validation of liquid chromatography tandem mass spectrometry method for simultaneous quantification of first line tuberculosis drugs and metabolites in human plasma and its application in clinical study // J. Pharm. Biomed. Anal. 2015. V. 102. P. 253-260. Doi: 10.1016/j.jpba.2014.09.019
[5] E.A. Бессонова, Л.А. Карцова, C.A. Соловьёва. Хроматографическое и хромато-масс-спектрометрическое определение противотуберкулезных препаратов основного ряда в плазме крови. // Аналитика и контроль. 2016. Т. 20. №2. С. 161-167. DOI: 10.15826/analitika.2016.20.2.007 (прототип).

Claims (1)

  1. Способ контроля содержания противотуберкулезных препаратов основного ряда и их токсичных метаболитов в плазме крови, заключающийся в подготовке плазмы крови к хроматографическому анализу путем добавления антиоксиданта, в качестве которого берут аскорбиновую кислоту, осаждении белков органическим растворителем, разбавлении пробы деионизированной водой в соотношении 1:10, проведении анализа методом обращенно-фазовой жидкостной хроматографии в режиме градиентного элюирования, детектировании сигналов противотуберкулезных препаратов с использованием тройного квадрупольного тандемного масс-спектрометрометра с ионизацией электрораспылением, в качестве контролируемых противотуберкулезных препаратов определяют пиразинамид, изониазид, этамбутол и рифампицин, измерении аналитических параметров анализируемого образца и, сравнивая их с аналитическими параметрами хроматографического анализа раствора стандартов противотуберкулезных препаратов с известными концентрациями, осуществлении качественного и количественного определения противотуберкулезных препаратов в плазме крови для контроля их допустимых доз, отличающийся тем, что проводят хроматографический анализ подготовленной к анализу пробы плазмы крови и одновременно определяют и контролируют содержание в плазме крови противотуберкулезных препаратов основного ряда пиразинамида, изониазида, этамбутола и рифампицина и их токсичных метаболитов, а именно пиразиноевой кислоты (метаболит пиразинамида), 25-О-деацетилрифампицина (метаболит рифампицина), ацетилизониазида и изоникотиновой кислоты (метаболиты изониазида).
RU2018129944A 2018-08-16 2018-08-16 Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови RU2702998C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018129944A RU2702998C1 (ru) 2018-08-16 2018-08-16 Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018129944A RU2702998C1 (ru) 2018-08-16 2018-08-16 Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови

Publications (1)

Publication Number Publication Date
RU2702998C1 true RU2702998C1 (ru) 2019-10-15

Family

ID=68280171

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018129944A RU2702998C1 (ru) 2018-08-16 2018-08-16 Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови

Country Status (1)

Country Link
RU (1) RU2702998C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326824A (zh) * 2020-10-29 2021-02-05 中国人民解放军总医院第八医学中心 一种同时测定血浆中6种一线抗结核药物及抗真菌药物伏立康唑血药浓度的方法
CN113109468A (zh) * 2021-03-29 2021-07-13 广州广电计量检测股份有限公司 一种测定动物饲料中利福平含量的方法
CN113933399A (zh) * 2020-06-29 2022-01-14 重庆华邦制药有限公司 分离检测注射用利福平中利福平及其相关杂质的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Е.А. Бессонова и др. Хроматографическое и хромато-масс-спектрометрическое определение противотуберкулезных препаратов основного ряда в плазме крови / Аналитика и контроль, 2016, т. 20, N 2, стр. 161-167. *
Е.А. Бессонова и др. Хроматографическое и хромато-масс-спектрометрическое определение противотуберкулезных препаратов основного ряда в плазме крови / Аналитика и контроль, 2016, т. 20, N 2, стр. 161-167. K.H.Hee et al. Development and validation of liquid chromatography tandem mass spectrometry method for simultaneous quantification of first line tuberculosis drugs and metabolites in human plasma and its application in clinical study / J Pharm Biomed Anal, 2015 (реферат) [Найдено онлайн в Интернете 20.05.2019 https://www.ncbi.nlm.nih.gov/pubmed/25459921]. A.Mehmedagic et al. Determination of pyrazinamide and its main metabolites in rat urine by high-performance liquid chromatography / J Chromatogr B Biomed Sci Appl., 1997, pages 365-372 (реферат) [Найдено онлайн в Интернете 20.05.2019 https://www.ncbi.nlm.nih.gov/pubmed/9300873]. Л.А.Карцова и др. ПРИМЕНЕНИЕ ИОННЫХ ЖИДКОСТЕЙ НА ОСНОВЕ ИМИДАЗОЛА В УСЛОВИЯХ ОБРАЩЕННО-ФАЗОВОЙ И ГИДРОФИЛЬНОЙ ХРОМАТОГРАФИИ ПРИ РАЗДЕЛЕНИИ ПОЛЯРНЫХ ЛЕКАРСТВЕН *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933399A (zh) * 2020-06-29 2022-01-14 重庆华邦制药有限公司 分离检测注射用利福平中利福平及其相关杂质的方法
CN113933399B (zh) * 2020-06-29 2023-08-15 重庆华邦制药有限公司 分离检测注射用利福平中利福平及其相关杂质的方法
CN112326824A (zh) * 2020-10-29 2021-02-05 中国人民解放军总医院第八医学中心 一种同时测定血浆中6种一线抗结核药物及抗真菌药物伏立康唑血药浓度的方法
CN113109468A (zh) * 2021-03-29 2021-07-13 广州广电计量检测股份有限公司 一种测定动物饲料中利福平含量的方法

Similar Documents

Publication Publication Date Title
RU2702998C1 (ru) Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови
CA2856835C (en) Methods for detecting reverse triiodothyronine by mass spectrometry
CN106770819B (zh) 一种液质联用定量检测大鼠血浆中叶酸浓度的方法
Wang et al. Simultaneous determination of creatine phosphate, creatine and 12 nucleotides in rat heart by LC–MS/MS
Chen et al. Simultaneous determination of three isomeric metabolites of tacrolimus (FK506) in human whole blood and plasma using high performance liquid chromatography–tandem mass spectrometry
CN110031568B (zh) 一种测定人血浆中沙库巴曲、去乙基沙库巴曲和缬沙坦浓度的方法
CN112782322A (zh) 基于lc-ms同时测定人血浆中8种抗结核药物的方法
Cai et al. Determination of Mildronate in human plasma and urine by UPLC–positive ion electrospray tandem mass spectrometry
Xue et al. Gas chromatography/mass spectrometry screening of serum metabolomic biomarkers in hepatitis B virus infected cirrhosis patients
Yang et al. High-performance liquid chromatography–electrospray ionization mass spectrometry determination of sodium ferulate in human plasma
Van Eijk et al. Measurement of amino acid isotope enrichment by liquid chromatography mass spectroscopy after derivatization with 9-fluorenylmethylchloroformate
Yang et al. Determination of palonosetron in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and its application to a pharmacokinetic study
Sun et al. Simultaneous determination of ivabradine, metoprolol and their metabolites in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry and its application in a pharmacokinetic study
Wu et al. Simultaneous analysis of codeine and its active metabolites in human plasma using liquid chromatography–tandem mass spectrometry: Application to a pharmacokinetic study after oral administration of codeine
Saini et al. Simultaneous determination of bendamustine and γ-hydroxybendamustine in mice dried blood spots and its application in a mice pharmacokinetic study
Xu et al. High-performance liquid chromatography electrospray ionization mass spectrometry determination of tulobuterol in rabbit's plasma
Du et al. Development and validation of a robust and sensitive HPLC-MS/MS method for the quantitation of MRTX849 in plasma and its application in pharmacokinetics
JP2023547378A (ja) ヒト血漿中のリゼルギン酸ジエチルアミド(lsd)及び2,3-ジヒドロ-3-ヒドロキシ-2-オキソリセルギド(o-h-lsd)を定量化するための方法
He et al. A simple and sensitive LC-MS/MS method for the simultaneous determination of cyclophosphamide and doxorubicin concentrations in human plasma
Wang et al. Determination of pethidine in human plasma by LC–MS/MS
CN111413439A (zh) 一种快速亲水相互作用色谱-串联质谱法测定血浆中二甲双胍的方法
Wang et al. Rapid determination of gemcitabine and its metabolite in human plasma by LC-MSMS through micro protein precipitation with minimum matrix effect
Huang et al. Development and validation of a method for the determination of nicotinic acid in human plasma using liquid chromatography-negative electrospray ionization tandem mass spectrometry and its application to a bioequivalence study
Vlase et al. Determination of methyldopa in human plasma by LC/MS-MS for therapeutic drug monitoring
Sun et al. Development and validation of a highly sensitive LC-MS/MS method for determination of brain active agent dianhydrogalactitol in mouse plasma and tissues: Application to a pharmacokinetic study