RU2702935C2 - Привязной аэростат - Google Patents

Привязной аэростат Download PDF

Info

Publication number
RU2702935C2
RU2702935C2 RU2018111116A RU2018111116A RU2702935C2 RU 2702935 C2 RU2702935 C2 RU 2702935C2 RU 2018111116 A RU2018111116 A RU 2018111116A RU 2018111116 A RU2018111116 A RU 2018111116A RU 2702935 C2 RU2702935 C2 RU 2702935C2
Authority
RU
Russia
Prior art keywords
balloon
container
shell
tethered
equipment
Prior art date
Application number
RU2018111116A
Other languages
English (en)
Other versions
RU2018111116A3 (ru
RU2018111116A (ru
Inventor
Федор Федорович Пащенко
Леонид Ефимович Круковский
Александр Федорович Пащенко
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2018111116A priority Critical patent/RU2702935C2/ru
Publication of RU2018111116A3 publication Critical patent/RU2018111116A3/ru
Publication of RU2018111116A publication Critical patent/RU2018111116A/ru
Application granted granted Critical
Publication of RU2702935C2 publication Critical patent/RU2702935C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • B64B1/50Captive balloons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Wind Motors (AREA)

Abstract

Изобретение относится к области радиосвязи с использованием летно-подъемных средств для расширения зоны приема радиотехнических средств связи, вещания, контроля и управления. Привязной аэростат содержит оболочку 1 в виде двояковыпуклой линзы, заполненной легким газом, контейнер 14 с аппаратурой, тросовую разводку 15, энергетические установки, имеющие ветропривод, и электрический генератор, питающий аппаратуру. Нижний конец тросовой развязки сочленен тросом 16 с лебедкой 17. В трос вставлена электропроводящая жила, связывающая контейнер 14 с источником питания. Изобретение направлено на повышение энергонасыщенности и обеспечение большей автономности. 4 з.п. ф-лы, 10 ил.

Description

Изобретение относится к области радиосвязи с использованием летно-подъемных средств для расширения зоны приема радиотехнических средств связи, вещания, контроля и управления.
Известно устройство для обеспечения навигации привязных аэростатов, описанное в патенте (RU 2182544 С2, 20.05.2002). Известное устройство содержит узел привязи троса, содержащий молниеотвод, заземленный в нижней части, электросистему, расположенную на контейнере, подвешенному к нижней части аэростата.
Недостаток известного аэростата заключается в том, что большая часть электроэнергии поступает к нему от наземного устройства, что лишает аэростат автономности.
Более близким к настоящему изобретению, и, принятым за прототип, является устройство привязного воздушного аэростата, описанное в патенте (RU 21159199 С2, 20.11.2000), содержащее оболочку, заполненную легким газом и выполненную в форме двояковыпуклой линзы, снабженное контейнером и аппаратурой, тросовой разводкой и ветроэнергетической установкой, имеющей ветропривод и электрический генератор, питающий аппаратуру.
Недостаток прототипа также как и аналога заключается в том, что большая часть электроэнергии поступает от наземного устройства, что лишает аэростат автономности. Кроме того, при наличии ветровой нагрузки на аэростат, последний, в известном устройстве, изменяет свою высоту, что сказывается на качестве получаемой от него информации.
Задачей данного изобретения является обеспечение большей продолжительности полета и повышение его энергонасыщенности. Авторы ставят задачу обеспечения продолжительности непрерывного полета существующих привязных аэростатов от 6 месяцев до 5 лет и более и увеличение рабочей высоты для вновь разрабатываемых привязных аэростатов до 20 км.
Технический результат, достигаемый при реализации изобретения, заключается в повышении энергонасыщенности аэростата и обеспечении большей его автономности.
Указанный технический результат достигается за счет того, что привязной аэростат содержит двояковыпуклую оболочку с легким газом, контейнер с аппаратурой, тросовой разводкой и преобразователь энергии ветра в электрическую энергию для питания аппаратуры в контейнере. Он снабжен гибкой солнечной панелью, которая покрывает верхнюю поверхность упомянутой оболочки, при этом упомянутая оболочка выполнена из твердой пластмассы с формпридающим каркасом из продольных и поперечных обручей, упомянутый преобразователь включает несколько электрических генераторов с колебательным движением якоря, при этом каждый упомянутый генератор имеет статор и якорь, выполненный с возможностью совершать возвратно-поступательные движения относительно обмоток статора так, чтобы вызвать появление электрического напряжения, и прикреплен снаружи с помощью шарнира к одному из продольных обручей каркаса.
Преобразователи энергии ветра в электрическую энергию имеют ветропривод и электрические генераторы, питающие аппаратуру.
Аэростат может быть снабжен баллоном с нагнетателем воздуха, с устройством стравливания воздуха и электроподогревателем воздуха, при этом упомянутый баллон примыкает снизу к упомянутой оболочке с возможностью поддерживать высоту аэростата.
Упомянутая оболочка может быть выполнена из полиамида.
Изобретение иллюстрируется 11-ю фигурами.
На фиг. 1 изображен привязной аэростат с оболочкой и формопридающим каркасом.
На фиг. 2 имеется вид баллон с компрессором.
На фиг. 3 представлена вторая проекция емкости с компрессором.
На фиг. 4 представлен привязной аэростат в сборе, с наземной лебедкой.
Фиг. 5 демонстрирует электрический генератор с колебательным движением якоря.
Фиг. 6 дает представление о вентиляторе.
На фиг. 7 нарисована принципиальная схема управления.
На фиг. 8 представлена схема включения катушек реверсивных контакоров.
На фиг. 9 и 10 даны микропроцессорные схемы управления аэростатом по углу поворота.
Устройства, управляющие аэростатом выполнены следующим образом. Привязной аэростат содержит оболочку 1 изготовленную из легкого морозостойкого материала, например, полиамида (фиг. 1) имеющую вид двояковыпуклой линзы, заполненную легким газом. Верхняя поверхность оболочки аэростата покрыта гибкой солнечной панелью (на фиг. не показана).
Внутренняя полость оболочки снабжена формообразующим каркасом, состоящим из гибких продольных 2 и поперечных обручей 3, связанных между собой. Меридиальный поперечный обруч 4 выполнен достаточно жестким, чтобы не допустить его изгиба.
Следующим элементом системы является баллон с компрессором (фиг. 2), состоящим из электродвигателя 5 с лопатками 6, входного рукава 7, и выходного рукава 8. Входной рукав 7 имеет выход в наружную атмосферу, а входной рукав 8 подает сжатый воздух внутрь замкнутого баллона 9. Внутри баллона 9 располагается электрический подогреватель 10 и датчик температуры (на фиг. не показан). Подогреватель 10 фиксируется по центральной оси баллона 9 так, чтобы он не касался его стенок (фиг. 3). Для это подогреватель удерживается термостойкими креплениями 11, с другой стороны упирающимися в стенки баллона держателями 12 с ножками 13.
Замкнутый баллон 9 плотно примыкают снизу к оболочке 1 (фиг. 4). Ниже баллона 9 устанавливают контейнер 14 Контейнер в свою очередь снабжают тросовой развязкой 15. Нижний конец тросовой развязки сочленяют тросом 16 с лебедкой 17 (фиг. 4). В трос вставляют электропроводящую жилу, связывающую контейнер 13 с источником питания (на фиг. не показан), расположенным на земле и выполняющим функции громоотвода.
Корпус аэростата снабжен несколькими ветроэлектрогенераторами (фиг. 5).
Преобразователь энергии ветра в электрическую энергию содержит трубчатый корпус 18, выполненный из легкой пластмассы, крышка которого снаружи в верхней своей части крепиться шарнирно к меридиальному поперечному обручу 4 с помощью шарнира 19 с образованием непроницаемого для газа соединения. Внутренняя часть крышки имеет пружину 20, расположенную по оси трубчатого корпуса 18. Снизу к пружине присоединен якорь 21 электрического генератора с валами, которые проходят через подшипники скольжения 22 и 23. Подшипники сочленены с внутренней поверхностью трубчатого корпуса. Якорь 21 расположен внутри наружного статора 24, закрепленного в трубчатом корпусе 18. Нижний конец вала якоря 21 связан с помощью крепежного кольца 25 с емкостью 26. Емкость 26 выполнена несколько тяжелее воздуха и имеет аэродинамический профиль, состоящий из верхней сферической и плоской нижней поверхностей. Емкость 26 изнутри заполнена легкой пластмассой. Нижняя поверхность емкости 26 снабжена козырьком 27, выходящим за границы периметра верхней поверхности емкости 26, что придает емкости ассиметричную форму. Козырек 27 выполнен из легкого пластмассового материала и имеет небольшую толщину, причем его плоскость является продолжением нижней поверхности емкости 26. Кроме того, нижняя часть емкости имеет киль 28, стабилизирующий положение емкости по отношению к ветру. Киль выполнен из легкого материала, имеет небольшую толщину и проходит от центра нижней поверхности емкости 26 до ее периферии по оси симметрии. Общее число таких ветрогенераторов может достигать десяти - двенадцати и более штук.
Для компенсации вращательных движений, которые могут возникать при воздействии ветра на оболочку, использован вентилятор с электродвигателем 29 (фиг. 6), плоскости лопастей 30 которого параллельны центральной оси аэростата, и содержащего элементы крепления 31 к полу контейнера 14.
Принципиальная электрическая схема на фиг. 7 содержит силовые обмотки статоров 24а электрических генераторов, включенных в общую схему электропитания с помощью диодных двухполупериодных мостов (на схеме не обозначены).
На выходе схемы питания по параллельной схеме включены: якорь двигателя 29а вентилятора 29 и его обмотка возбуждения 32, нагреватель воздуха 10, солнечные батареи 33. В свою очередь, в цепи питания якоря 29а вентилятора имеется силовой контакт 34, в цепи нагреывателя воздуха имеется силовой контакт 35, а в цепи солнечных батарей имеется обратный диод 36. Последовательно с нагревателем 10 включено тепловое реле ТЗ. В то же время в цепи обмотки возбуждения 32 двигателя вентилятора 29а имеются силовые нормально разомкнутые реверсивные контакты 37 и 38. По параллельной схеме включен через силовой контакт 39 стравливающий клапан 39, а через контакт 40 включен двигатель 5 компрессора. Последовательно с нагревателем 10 установлен силовой контакт 41, а последовательно со стравливателем воздуха 39 установлен контакт 42
На схеме (фиг. 8) показано включение катушек управления одноименных контактов 37 и 38, в цепи которых включены блокконтакты 38' и 37', предупреждающие одновременное включение контакторов 37 и 38. Контакторы могут быть выполнены на основе транзисторов.
В системе управления предусмотрен микропроцессор 43 (фиг. 10), на вход которого поступают сигналы от датчика угла поворота 44 и опорный сигнал 45. Сигнал рассогласования поступает на микропроцессор, 43 который дает команду, в зависимости от результирующего знака сигнала, на включение соответствующей катушки контактора 37 или 38. Это приводит к включению якоря двигателя 29а вентилятора 29 и изменению направления тока в его обмотке возбуждения 32 и заставляет его вращаться в левую или в правую сторону до тех пор, пока сигнал рассогласования не станет равным нулю.
В случае, если датчик угла 4 смещается вправо, то он сравнивается с опорным сигналом 4 и при рассогласовании микропроцессор 41 дает команду на включение соответствующей катушки контакторов 36 или 37, что приводит к изменению направления тока в обмотке возбуждения и изменению направления вращения двигателя вентилятора 30 в другую сторону.
В варианте технического решения на вход микропроцессора 43 (фиг. 10) поступают сигналы рассогласования между требуемой высотой аэростата, определяемой датчиком 44 и датчиком 45 его истинного положения. При этом в микропроцессоре 41 заложена программа иерархического включения элементов схемы, включающей сначала двигатель 29а компрессора, или клапан 38, стравливающего воздух, затем катушку контактора 34 нагревателя воздуха внутри аэростата. При превышении температуры воздуха внутри оболочки 8 выше 150° срабатывает датчик температуры и нагреватель 9 выключается.
Привязной аэростат действует следующим образом. Оболочка 1 в виде двояковыпуклой линзы (фиг. 1, 2, 3), заполненная легким газом и снабженная к баллоном 11 с компрессором 8, контейнером с аппаратурой, тросовой разводкой, солнечной батареей и энергетическими установками, имеющими ветропривод и электрический генератор (фиг. 6), питающий аппаратуру, поднимается вверх, тяня за собой трос 11. С помощью лебедки 12 летательный аппарат поднимают на определенную высоту и стопорят лебедку. Предположительная высота подъема может достигать 20 км. На такой высоте солнце не закрывается облаками и гибкие солнечные батареи в дневное время с избытком обеспечивают энергией все потребности аэростатного оборудования. Помимо солнечных батарей свой вклад в энергоснабжение вносят и преобразователи энергии ветра (фиг. 6) в электрическую энергию, которые действует следующим образом. Ветер, как правило, постоянно дующий на высоте, воздействует на емкость 25. Последняя за счет аэродинамического эффекта, определяемого разностью скоростей ветровых потоков, обтекающих ее с верхней и нижней поверхности, будет стремиться двигаться вверх, уменьшая растягивающую силу, действующую на пружину 17. Таким образом, на якорь 20 генератора действуют две силы, одна из которых стремится поднять его вверх, а вторая опустить вниз. Емкость 25 будет совершать колебательные движения вверх - вниз. Эти движения передаются на пружину 19 и приводят к ее попеременному сжатию и растяжению. Колебательные движения пружины заставляют якорь 20 также совершать возвратно-поступательные движения, которые вызывают появление электрического напряжения на обмотках статора 23 а, которое и используется для получения электрической энергии. При наличии козырька 26 (фиг. 6) во время движения под влиянием ветра корпуса вверх, на козырек будет действовать односторонняя сила воздушного сопротивления, направленная вертикально. Емкость 25 будет разворачиваться боком по отношению к ветру, и действие аэродинамического эффекта ослабевает. Тогда емкость начнет снова подниматься вверх, стремясь занять первоначальное положение. Далее процесс повторяется. Благодаря этому будет происходить дополнительное изменение баланса сил, действующих на пружину 19, даже при постоянном воздушном потоке. Применении киля 27 способствует стабилизации корпуса ветрогенератора относительно ветра.
Под влиянием различных факторов (воздействие ветра, изменения температуры окружающей среды, влажности, атмосферных осадков и т.д. аэростат может изменять свою высоту. Для компенсации этих изменений в системе управления предусмотрен ряд мер, к которым относятся повышение плотности воздуха в корпусе 8 (фиг. 2, 3) за счет работы компрессора 7. При его включении вес корпуса 8 повышается. В то же время при стравливании воздуха его вес снижается. При включении электроподогревателя, расположенного внутри корпуса 8 вес корпуса снижается. Поскольку корпус 8 плотно примыкает к оболочке аэростата, то частично нагревается и внутренность оболочки. Воздействуя, таким образом на корпус 8 можно компенсировать воздействие внешних факторов на аэростат, компенсируя изменения высоты, т.е. поддерживать ее на одном уровне.
Воздействие перечисленных внешних факторов может вызвать вращательное движение аэростата. Этот поворот компенсируют с помощью двигателя вентилятора 14. Если вентилятор вращается в одну сторону, то за счет реакции его опоры на аэростат будет действовать сила, стремящаяся повернуть его в противоположную сторону. В системе управления предусмотрен датчик 44 угла отклонения положения аэростата от заданного значения, определяемого опорным сигналом 45. Вентилятор будет вращаться до тех пор, пока сигналь рассогласования на станет равным 0.
Таким образом, за счет используемых мер удается повысить продолжительность полета аэростата и обеспечить его энергонасыщенность. При этом предполагаемая продолжительность непрерывного полета может доходить до 5 лет при высоте полета до 20 км.

Claims (5)

1. Привязной аэростат, содержащий оболочку в виде двояковыпуклой линзы, заполненной легким газом, контейнер с аппаратурой, тросовую разводку и энергетическими установками, имеющими ветропривод и электрический генератор, питающий аппаратуру, отличающийся тем, что корпус аэростата выполнен из твердой пластмассы, например полиамида с формопридающим каркасом, причем верхняя поверхность оболочки аэростата содержит гибкую солнечную панель, причем снаружи корпус аэростата содержит несколько электрических генераторов с колебательным движением якоря.
2. Привязной аэростат по п. 1, отличающийся тем, что для компенсации вращательного движения аэростата аппаратура контейнера содержит вентилятор, плоскости лопастей которого параллельны центральной оси аэростата.
3. Привязной аэростат по п. 1, отличающийся тем, что для поддержания постоянства высоты аэростата он содержит особую емкость с нагнетателем, примыкающую снизу к оболочке аэростата, при этом особая емкость содержит устройство для стравливания воздуха и электроподогреватель.
4. Привязной аэростат по п. 1, отличающийся тем, что система управления содержит микропроцессор, на вход которого поступают сигналы от датчика угла поворота и опорный сигнал.
5. Привязной аэростат по п. 4, отличающийся тем, что на микропроцессор поступают сигналы рассогласования между требуемой высотой аэростата и его истинным положением, причем в микропроцессоре заложена программа иерархического включения катушек контакторов, двигателя, компрессора, клапана стравливающего воздух и катушки контактора нагревателя воздуха внутри аэростата.
RU2018111116A 2018-03-28 2018-03-28 Привязной аэростат RU2702935C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018111116A RU2702935C2 (ru) 2018-03-28 2018-03-28 Привязной аэростат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018111116A RU2702935C2 (ru) 2018-03-28 2018-03-28 Привязной аэростат

Publications (3)

Publication Number Publication Date
RU2018111116A3 RU2018111116A3 (ru) 2019-10-01
RU2018111116A RU2018111116A (ru) 2019-10-01
RU2702935C2 true RU2702935C2 (ru) 2019-10-14

Family

ID=68205948

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018111116A RU2702935C2 (ru) 2018-03-28 2018-03-28 Привязной аэростат

Country Status (1)

Country Link
RU (1) RU2702935C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321592A (ja) * 1989-06-19 1991-01-30 Hitomi Shimada 高空係留浮上装置と浮上方法
RU2159199C2 (ru) * 1998-11-02 2000-11-20 Общество с ограниченной ответственностью "ТЕХКОМТЕХ" Автономный привязной летательный аппарат для дистанционного наблюдения за местностью
US20120235410A1 (en) * 2011-03-15 2012-09-20 Serrano Richard J Lighter than air wind and solar energy conversion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321592A (ja) * 1989-06-19 1991-01-30 Hitomi Shimada 高空係留浮上装置と浮上方法
RU2159199C2 (ru) * 1998-11-02 2000-11-20 Общество с ограниченной ответственностью "ТЕХКОМТЕХ" Автономный привязной летательный аппарат для дистанционного наблюдения за местностью
US20120235410A1 (en) * 2011-03-15 2012-09-20 Serrano Richard J Lighter than air wind and solar energy conversion system

Also Published As

Publication number Publication date
RU2018111116A3 (ru) 2019-10-01
RU2018111116A (ru) 2019-10-01

Similar Documents

Publication Publication Date Title
US11548650B2 (en) Hybrid airship
US20200283141A1 (en) In-flight battery recharging system for an unmanned aerial vehicle
US9246433B2 (en) Airborne photovoltaic solar device and method
US4285481A (en) Multiple wind turbine tethered airfoil wind energy conversion system
US20120181381A1 (en) Self-righting aerostat and relative takeoff and recovery system
EP2660151B1 (en) Autonomous solar aircraft
KR100807036B1 (ko) 액체 수소 성층권 항공기
US8857758B2 (en) Lighter-than-air vehicle for shading
KR101531640B1 (ko) 제어 가능 부력 시스템 및 방법
US10850842B2 (en) Unmanned aerial vehicle and method using the same
US20060261213A1 (en) Inflatable endurance unmanned aerial vehicle
US20070120005A1 (en) Aerial wind power generation system
CN105836097B (zh) 一种高度与轨迹可控的高空气球
US20080048453A1 (en) Tethered Wind Turbine
GB2346601A (en) Solar cell array orientation by airship roll
US20120069464A1 (en) Light shielding device and light shielding method
CN205087138U (zh) 多旋翼飞行器
US20140374537A1 (en) Portable Airborne Multi-Mission Platform
WO2018198593A1 (ja) ソーラープレーン・エナジーハーベスト・マネジメント
CN205667717U (zh) 一种气球飞行器
CN110901938A (zh) 一种无人机充电基站
RU2702935C2 (ru) Привязной аэростат
KR102250356B1 (ko) 개량형 무인 비행체
CN107200120A (zh) 燃料电池无人机
RU2688115C1 (ru) Привязной аэростат