RU2702910C2 - Способ снижения количества стволовых клеток рака молочной железы - Google Patents

Способ снижения количества стволовых клеток рака молочной железы Download PDF

Info

Publication number
RU2702910C2
RU2702910C2 RU2018145444A RU2018145444A RU2702910C2 RU 2702910 C2 RU2702910 C2 RU 2702910C2 RU 2018145444 A RU2018145444 A RU 2018145444A RU 2018145444 A RU2018145444 A RU 2018145444A RU 2702910 C2 RU2702910 C2 RU 2702910C2
Authority
RU
Russia
Prior art keywords
cells
tumor
stem cells
water
breast cancer
Prior art date
Application number
RU2018145444A
Other languages
English (en)
Other versions
RU2018145444A3 (ru
RU2018145444A (ru
Inventor
Кристина Александровна Чурюкина
Ирина Александровна Замулаева
Ольга Николаевна Матчук
Алексей Львович Жузе
Александр Александрович Иванов
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России) filed Critical Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России)
Priority to RU2018145444A priority Critical patent/RU2702910C2/ru
Publication of RU2018145444A publication Critical patent/RU2018145444A/ru
Publication of RU2018145444A3 publication Critical patent/RU2018145444A3/ru
Application granted granted Critical
Publication of RU2702910C2 publication Critical patent/RU2702910C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретение относится к области медицины, в частности онкологии, и может быть использовано для снижения количества опухолевых стволовых клеток (ОСК). Способ снижения количества стволовых клеток рака молочной железы заключается в 72-часовом воздействии на опухолевые клетки in vitro ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов. Проводят инкубацию с водонерастворимым димерным бисбензимидазолом с 5 метиленовыми звеньями в составе линкера DB (5) или водонерастворимым димерным бисбензимидазолом с 7 метиленовыми звеньями DB (7) in vitro при температуре +37°С в течение 3-х суток, после чего оценивают количество CD44+CD24-/1ow опухолевых стволовых клеток. Использование данного способа снижает количество ОСК, которые являются более химио- и радиорезистентными, чем остальная масса опухолевых клеток, что позволяет повысить химио- и радиочувствительность опухоли в целом, что в свою очередь будет способствовать повышению эффективности лечения. 4 ил., 3 пр.

Description

Изобретение относится к области медицины, в частности онкологии и может быть использовано для снижения количества опухолевых стволовых клеток (далее - ОСК).
Известно, что опухолевые клетки гетерогенны по различным морфофункциональным показателям, включая чувствительность к радио - и химиотерапии. По современным представлениям среди всех опухолевых клеток существует небольшая фракция ОСК, которые в различных литературных источниках называют стволоподобными клетками (stem-like cells), опухоль-инициирующими клетками (tumor initiating cells), опухоль-распространяющими клетками (tumor propagating cells). Эти клетки характеризуются более высокой радио- и химиорезистентностью по сравнению с остальной массой опухолевых клеток. Полагают, что ОСК, сохранившие жизнеспособность в ходе лучевой и химиотерапии, могут являться причиной развития рецидивов и метастазов после окончания лечения (Marotta L., Polyak K. Cancer stem cells: a model in the making // Current Opinion in Genetics & Development. - 2009. - V. 19. - P. 44-50). Поэтому разработка средств и способов терапии, направленной на снижение количества ОСК или повышение их чувствительности к известным противоопухолевым воздействиям, является одной из наиболее важных проблем экспериментальной онкологии.
Существует несколько способов идентификации ОСК, одним из которых является иммунофенотипирование по поверхностным маркерам. В частности, ОСК молочной железы, в том числе в стабильной культуре линии MCF-7, могут быть выявлены по иммунофенотипу CD44+CD24-/low (Al-Hajj М., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells // Proceedings of the National Academy of Sciences of the United States of America. - 2003. - V. 100. - No 7. - P. 3983-3988; Fillmore С.М., Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy // Breast Cancer Res. - 2008. - V. 10. - No 2. - Article R25).
Известен способ, снижающий количество ОСК, на основе использования полиэфирного ионофорного антибиотика салиномицин, который значимо уменьшает количество CD44+CD24-/low клеток линии MCF-7 и ОСК многих других линий опухолевых клеток (Lu Y., Мао J., Yu X. Hou Z., Fan S., Wang Н., Li J., Kanq L., Liu P., Liu Q., Li L. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling // Chemico-Biological Interactions. - 2015. - V. 228. - P. 100-107). Возможные механизмы действия салиномицина на ОСК связаны с его способностью ингибировать сигнальные пути SOX2, Hedgehog, CXCR4.
Недостатком салиномицина является его токсичность в отношении клеток нервной системы и других нормальных клеток (Boehmerle W., Endres М. Salinomycin induces calpain and cytochromec-mediated neuronal cell death // Cell Death and Disease. - 2011. - V. 2. - P. 2-10; Jaganmohan R., Jain M.V., Hallbeck A.L., Roberq K., Lotfi K., Los M.J. Glucose starvation-mediated inhibition of salinomycin induced autophagy amplifies cancer cell specific cell death // Oncotarget. - V. 6. - No 12. - P. 10134-10145).
Известно вещество метформин (1,1 - диметилбигуанид гидрохлорид), которое широко используют в качестве гипогликемического препарата для лечения диабета 2-го типа (Wiernsperger N., Bailey C.J. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms // Drugs. - 1999. - V. 58. - No 1. - P. 31-39). Доказана его высокая противоопухолевая активность в отношении CD44+CD24-/low ОСК молочной железы. При этом на остальные (не стволовые) опухолевые клетки это вещество оказывало менее выраженное действие (Lee Н. Park H.J., Oh Е.Т., Choi В.Н., Williams В., Lee С.K., Somq C.W. Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined // PLOS ONE. - 2014. - V. 9. - No 2. - P. 1-11). Ключевым механизмом его действия является способность нарушать окислительное фосфорилирование в митохондриях опухолевых клеток, в том числе ОСК.
Недостатком метформина является то, что он наиболее эффективен в отношении ОСК только совместно с гипертермией или радиационным воздействием.
Известно вещество куркумин (дифферулоилметан), которое представляет собой полифенол, полученный из азиатской специи куркумы. В многочисленных исследованиях был показан высокий терапевтический потенциал куркумина в качестве средства снижения количества ОСК рака молочной железы (Mukherjee S., Mazumbar М., Manna А., Saha S., Khan P., Bhattacharjee O., Guha D., Adnikary A., Mukhjerjee S., Das T. Curcumin inhibits breast cancer stem cell migration by amplifying the E cadherin/β-cateninnegative feedback loop // Stem Cell Research & Therapy. - 2014. - No 5. - P. 116-134). Куркумин воздействует на ряд сигнальных путей, играющих важную роль в жизнедеятельности ОСК, например, таких как Wnt, Notch-1 и NFκ-B
Figure 00000001
Е., Thaqi М., Khaja F., Kuzmis A.,
Figure 00000002
H. Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells // Drug DelivTransl Res. - 2013. - No 3. - P. 1-25).
Недостатком этого соединения является его низкая биодоступность, плохая абсорбция и недостаточная стабильность in vivo (Bansal S., Goel M., Aqil F., Vadhanam M., Gupta R. Advanced drug-delivery systems of curcumin for cancer chemoprevention // Cancer Prev. Res. (Phila). - 2011. - №4. P. 1158-1171; Anand P., Kunnumakkara A., Newman R., Aggarwal B. Bioavailability of Curcumin: Problems and Promises // Molecular Pharmaceutics. - 2007. - V. 4. - No 6. P. 807-818).
Известны патенты на изобретения, направленные на лечение злокачественных новообразований и включающие способы снижения количества ОСК с помощью различных механизмов. В том числе изобретение WO/2016/010886 (Zhu D., Boylan J., Xu, S., Riggs J., Shi Т., Wurmser A., Mikolon D., Deyanat-Yazdi G. Methods of treating a cancer using substituted pyrrolopyrimidine compounds, compositions thereof) на основе использования замещенных пирролопиримидиновых соединений и композиций на их основе; изобретение WO/2012/112943 (Foord О., Dylla S., Stull R., Bankovich A., Lazetic A.L.L., Bernstein J. Novel modulators and methods of use) на основе использования антител к PTK7 и их конъюгатов с цитотоксическим агентом; изобретение WO 2011088123 (Satyal S.Н., Mitra S.S.K., Garni A.L. Wnt antagonists and methods of treating and testing) на основе использования Wnt-связывающего полипептида, ингибирующего Wnt- сигнальный путь, отдельно или в комбинации с другими противоопухолевыми препаратами; изобретение WO/2016/057980 (Roberts D.R.. Kaur S., Liu С. Methods to eliminate cancer stem cells by targeting CD47) на основе изменения CD47-сигналинга и индукции дифференцировки ОСК различными средствами.
Однако во всех известных способах не используются димерные бисбензимидазолы, получаемые методами химического синтеза.
Известен способ снижения количества ОСК с помощью препарата флубендазол. Это соединение является членом семейства бензимидазолов, имеет типичную бензимидазольную часть, но с добавлением атома фтора в основную структуру, чем и отличается от других бензимидазолов. Флубендазол широко используется как эффективное противогельминтное средство. Недавние исследования показали, что флубендазол подавляет пролиферацию опухолевых клеток, а также снижает количество CD44+CD24-/low клеток рака молочной железы линии MCF-7 на 25% (Hou Z.-J., Luo X., Zang W., Peng F., Cui В., Wu S.-J., Zheng F.-M., Xu J., Xu L.-Z., Long Z.-J., Wang X.-T., Li G.-H., Wan X.-Y., Yang Y.-L., Liu Q. Flubendazole, FDA-approved antihelmintic, targets breast cancer stem-like cells // Oncotarget. - 2015. - V. 6. - No. 8. - P. 6326-6340).
Недостатки способа снижения количества ОСК с помощью флубендазола - низкая биодоступность из-за высокой липофильности соединения.
Прототипом предлагаемого технического решения является способ снижения общего количества опухолевых клеток рака молочной железы человека in vitro, основанный на применении водонерастворимых димерных бисбензимидазолов (dimeric bisbenzimidazoles - DB). Водонерастворимые димерные бисбензимидазолы являются флуоресцентными химическими соединениями из группы бисбензимидазолов, в них два бисбензимидазольных блока соединены между собой метиленовым линкером - DB(n), где n - число метиленовых звеньев (Фиг. 1) (Иванов А.А., Салянов В.И., Стрельцов С.А., Черепанова Н.А., Громова Е.С., Жузе А.Л. Лиганды, специфичные к определенным последовательностям пар оснований ДНК. XIV. Синтез флуоресцентных биологически активных димерных бисбензимидазолов - DB (3, 4, 5, 7, 11) // Биоорганическая химия. - 2011. - Т. 37. - №4. - С. 530-541; Иванов А.А., Салянов В.И., Жузе А.Л. Лиганды, специфичные к определенным последовательностям пар оснований ДНК. XV. Синтез и спектральные характеристики новой серии димерных бисбензимидазолов - DB(1, 2, 6, 8, 9, 10, 12) // Биоорганическая химия. - 2016. - Т. 42. - №2. - С. 205-213). Доказана их способность снижать общее количество опухолевых клеток линии MCF-7, а также оказывать аддитивное цитотоксическое действие на общую популяцию опухолевых клеток в комбинации с облучением (Чурюкина К.А., Замулаева И.А., Иванов А.А., Коваль B.C., Жузе А.Л. Радиомодифицирующее и противоопухолевое действие синтетических димерных бисбензимидазолов на клетки рака молочной железы линии MCF-7 in vitro // Радиационная биология. Радиоэкология. - 2017. - Т. 57. - №2. - С. 136-144).
Однако, в известном способе отсутствуют данные о действии водонерастворимых димерных бисбензимидазолов на популяцию ОСК.
Технический результат заявляемого изобретения заключается в снижения количества ОСК.
Технический результат достигается тем, что также как и в известном способе в течение 72 часов воздействуют на опухолевые клетки in vitro с помощью ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов.
Особенность заявляемого способа заключается в том, что определяют снижение количества стволовых клеток: проводят инкубацию с водонерастворимым димерным бисбензимидазолом с 5 метиленовыми звеньями в составе линкера (DB (5) или водонерастворимым димерным бисбензимидазолом с 7 метиленовыми звеньями (DB (7) in vitro при температуре +37°С в течение 3-х суток, после чего оценивают количество СВ44+CD24-/1ow опухолевых стволовых клеток.
Изобретение иллюстрируется подробным описанием, примерами и иллюстрациями, на которых изображено:
Фиг. 1. - Химическая структура синтетических водонерастворимых димерных бисбензимидазолов DB(n): 1 - бисбензимидазольный блок, 2 - метиленовый линкер, в котором n может варьировать от 1 до 11.
Фиг. 2. - Пример выделения клеток линии MCF-7 на основе показателей прямого (FSC) и бокового (SSC) светорассеяния с помощью проточной цитометрии. 3 - регион клеток R1 для последующего анализа интенсивности флуоресценции с антителами к CD24 и CD44, меченными различными флуорохромами.
Фиг. 3. - Пример распределения клеток MCF-7 по интенсивности флуоресценции с антителами к CD24 и CD44, меченными фикоэритрином и флуоресцеинизотиоционатом, соответственно: 4 - регион R2, содержащий CD44+CD24-/low клетки.
Фиг. 4. - Средняя интенсивность флуоресценции опухолевых стволовых и не стволовых клеток линии MCF-7, инкубированных с DB(n), по данным проточной цитофлуориметрии.
Способ осуществляют следующим образом, включая последовательные этапы:
I. Пробоподготовка для выявления CD44+CD24-/low клеток:
Клетки рака молочной железы линии MCF-7 рассевают в культуральные флаконы (25 см2) с добавлением 6 мл полной питательной среды (культуральная среда DMEM, содержащая 10% сыворотки крови крупного рогатого скота, пенициллин (50000 ед/л), стрептомицин (50 мг/л) и глютамин (292 мг/л).
Через сутки во флакон с клетками добавляют АТ-специфичные ДНК-связывающие лиганды DB(n), в которых два бисбензимидазольных блока соединены между собой линкером с числом метиленовых групп (n) 5 или 7, растворенные в диметилсульфоксиде (ДМСО), до конечной концентрации 20 мкМ.
После добавления DB(n) клетки культивируют в стандартных условиях в СО2 инкубаторе в течение 3-х суток.
Затем клетки извлекают из флаконов с помощью смеси растворов версена и трипсина (1:1, «Панэко», Россия) в холодный (+4°С) раствор Хэнкса («Панэко», Россия).
Производят подсчет количества клеток, выросших во флаконе с помощью камеры Горяева.
Затем клетки разводят в соотношении 1 млн клеток на 100 мкл холодного раствора Хэнкса, в который добавляют антитела к CD44, меченные флуоресцеинизотиоцитатом (ФИТЦ) (Becton Dickinson, США), и антитела к CD24, меченные фикоэритрином (Becton Dickinson, США), из расчета по 20 мкл антител на 1 млн клеток.
Пробы инкубируют с антителами 30 минут на льду в темноте.
После окончания инкубации пробы центрифугируют в течение 5 минут при 200xg и к получившемуся осадку добавляют холодный раствор Хэнкса.
II. Получение данных с помощью проточной цитометрии:
Образец, подготовленный как описано на I этапе, анализируют на проточном цитофлуориметре, оснащенном лазерами с длинами волн 364 нм и 488 нм.
Для измерения флуоресценции ФИТЦа, используют узкополосные фильтры 530/30 нм, для фикоэритрина - 585/42, для DB(n) - 424/44 нм.
В каждом образце анализируют данные об интенсивности прямого и бокового светорассеяния, флуоресценции ФИТЦа, фикоэритрина и DB(n). Полученные результаты записывают в цифровом виде.
Сохраненные данные обрабатывают с помощью программы CellQuestPro (Becton Dickinson, США).
III. Обработка данных, собранных с помощью проточной цитометрии:
Строят график точечного распределения клеток по прямому (forward scatter - FSC) и боковому светорассеянию (side scatter - SSC). На графике выделяют регион R1 (3) живых клеток, формирующих группу по показателям светорассеяния (Фиг. 2).
Строят график распределения клеток из региона R1 по интенсивности флуоресценции антител к CD44 и CD24 (Фиг. 3). На графике выделяют регион клеток R2 с иммунофенотипом CD44+CD24-/low (4) и определяют в нем количество клеток.
Далее определяют среднюю интенсивность флуоресценции DB(n) отдельно в ОСК с иммунофенотипом CD44+CD24-/low, которые были выделены в регионе R2, и в остальных клетках.
Рассчитывают относительное количество (долю) CD44+CD24-/low клеток путем деления количества клеток в R2 на число клеток в R1. Абсолютное количество CD44+CD24-/low клеток получают путем умножения доли этих клеток на общее количество клеток, выросших во флаконе.
Пример 1.
Изменение абсолютного количества CD44+CD24-/low клеток через 72 часа после добавления вещества DB (5) или DB (7).
Установлено, что при инкубации клеток MCF-7 с DB(n), где n=5 или 7, исследуемые соединения значимо снижают абсолютное количество CD44+CD24-/low ОСК по сравнению с контролем (p<0,05). Так, вещество DB(7) приводит к снижению абсолютного количества ОСК в 5,2 раза, a DB(5) - в 7,5 раз по сравнению с контролем. При этом количество остальных (не стволовых) клеток тоже уменьшается при действии данных веществ, но в меньшей степени - в 2,3 и 1,8 раз, соответственно. Абсолютное количество CD44+CD24-/low клеток в контроле составляло в среднем (±SE) 4975±680/флакон, в группе DB(5) - 665±65/флакон, в группе DB(7) - 948±99/флакон. Абсолютное количество не стволовых клеток составляло (17,1±0,9)×105 в контроле, в группе в группе DB(5) - (9,4±0,6)×105, в группе DB(7) - (7,3±0,9)×105.
Пример 2.
Изменение относительного количества CD44+CD24-/low клеток через 72 часа после добавления вещества DB (5) или DB (7).
Показано, что вещество DB(5) статистически значимо снижает относительное количество CD44+CD24-/low ОСК в 4,8 раз по сравнению с контролем: средняя доля ОСК в контроле составляет 0,29±0,04%, в то время как доля этих клеток в группе DB(5) - только 0,06±0,01%, p<0,05. Вещество DB(7) снижает долю ОСК в меньшей степени - до 0,08±0,02%, т.е. в 3,6 раз по сравнению с контролем (p<0,05).
Данный пример доказывает более высокую чувствительность ОСК, чем остальной массы опухолевых клеток, к DB (n), где n=5 или 7.
Вместе результаты из примеров №1 и №2 показывают эффективность действия DB(n) в отношении ОСК рака молочной железы человека линии MCF-7.
Пример 3.
Интенсивность накопления DB(5) и DB(7) в ОСК и остальных клетках.
Благодаря тому, что комплекс DB(n) - ДНК обладает достаточно высокой флуоресценцией в рабочем диапазоне современных проточных цитофлуориметров, оснащенных ультрафиолетовым лазером, существует возможность оценки внутриклеточного накопления этих соединений с помощью метода проточной цитометрии. Для оценки накопления DB(n) отдельно в ОСК и остальных (не стволовых) клетках выполняли идентификацию CD44+CD24-/low ОСК в образцах, после чего анализировали интенсивность флуоресценции DB(5) или DB(7) в указанных популяциях опухолевых клеток.
Витальное исследование накопления DB(n) в CD44+CD24low/- ОСК и остальной массе опухолевых клеток с помощью проточной цитофлуориметрии показало, что интенсивность флуоресценции как DB(5), так и DB(7) в обеих клеточных популяциях примерно одинакова. Так, средняя интенсивность флуоресценции DB(5) в ОСК составила 95,3±14,4 отн. ед., DB(5) в остальных клетках - 92,3±4,9 отн. ед.; DB (7) в ОСК - 92,8±10,8 отн. ед., DB(7) в остальных клетках - 109,2±10,5 отн. ед, что было значительно выше контрольной аутофлуоресценции соответствующих клеток (p<0,001 для обоих соединений по сравнению с контролем) (Фиг. 4).
Пример показывает, что DB(n) накапливаются примерно в равной степени в стволовых и не стволовых клетках, причем важно, что DB(n) не откачиваются из ОСК, как многие известные химиопрепараты и
Figure 00000003
Примеры №1 и 2 показывают, что новый способ, заключающийся в 72 часовом воздействии на клетки ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов in vitro, позволяет снижать количество ОСК. Установлено, что водонерастворимые димерные бисбензимидазолы с числом метиленовых звеньев 5 и 7 (DB (5) и DB (7)) многократно уменьшают относительное и абсолютное количество CD44+CD24-/low ОСК, при этом указанные соединения обладают направленным действием именно на ОСК, снижая их количество в большей степени по сравнению с остальными опухолевыми клетками. Пример №3 подтверждает эффективность действия DB(n) на ОСК благодаря тому, что данные соединения не откачиваются из ОСК, а накапливаются и задерживаются внутри этих клеток, тем самым оказывая элиминирующее действие не только на общую массу опухолевых клеток, но и, что важно на ОСК.
В соответствии с концепцией ОСК, все ключевые характеристики злокачественных новообразований, делающие их смертельно опасными заболеваниями, определяются именно ОСК. Снижение количества ОСК, которые являются более химио- и радиорезистентными, чем остальная масса опухолевых клеток, позволит повысить химио- и радиочувствительность опухоли в целом, что в свою очередь будет способствовать повышению эффективности лечения.
Данное исследование было выполнено за счет гранта Российского научного фонда №18-75-10025.

Claims (1)

  1. Способ снижения количества стволовых клеток рака молочной железы, заключающийся в 72-часовом воздействии на опухолевые клетки in vitro ДНК-связывающих лигандов - водонерастворимых димерных бисбензимидазолов, отличающийся тем, что проводят инкубацию с водонерастворимым димерным бисбензимидазолом с 5 метиленовыми звеньями в составе линкера DB (5) или водонерастворимым димерным бисбензимидазолом с 7 метиленовыми звеньями DB (7) in vitro при температуре +37°С в течение 3-х суток, после чего оценивают количество CD44+CD24-/1ow опухолевых стволовых клеток.
RU2018145444A 2018-12-20 2018-12-20 Способ снижения количества стволовых клеток рака молочной железы RU2702910C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145444A RU2702910C2 (ru) 2018-12-20 2018-12-20 Способ снижения количества стволовых клеток рака молочной железы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145444A RU2702910C2 (ru) 2018-12-20 2018-12-20 Способ снижения количества стволовых клеток рака молочной железы

Publications (3)

Publication Number Publication Date
RU2018145444A RU2018145444A (ru) 2019-01-28
RU2018145444A3 RU2018145444A3 (ru) 2019-07-17
RU2702910C2 true RU2702910C2 (ru) 2019-10-14

Family

ID=65270681

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145444A RU2702910C2 (ru) 2018-12-20 2018-12-20 Способ снижения количества стволовых клеток рака молочной железы

Country Status (1)

Country Link
RU (1) RU2702910C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774031C1 (ru) * 2021-12-02 2022-06-14 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России) Способ подавления индуцирующего действия высокомолекулярной гиалуроновой кислоты на стволовые клетки рака молочной железы

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178426A1 (ja) * 2014-05-21 2015-11-26 国立研究開発法人産業技術総合研究所 がん幹細胞の増殖抑制剤
US20160187320A1 (en) * 2011-03-24 2016-06-30 The Rogosin Institute Assay for screening compounds that selectively decrease the number of cancer stem cells
EA023466B1 (ru) * 2008-11-11 2016-06-30 Дзе Риджентс Оф Дзе Юниверсити Оф Мичиган Способ определения стволовых клеток рака молочной железы и применение антагонистов cxcr1 для лечения рака

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA023466B1 (ru) * 2008-11-11 2016-06-30 Дзе Риджентс Оф Дзе Юниверсити Оф Мичиган Способ определения стволовых клеток рака молочной железы и применение антагонистов cxcr1 для лечения рака
US20160187320A1 (en) * 2011-03-24 2016-06-30 The Rogosin Institute Assay for screening compounds that selectively decrease the number of cancer stem cells
WO2015178426A1 (ja) * 2014-05-21 2015-11-26 国立研究開発法人産業技術総合研究所 がん幹細胞の増殖抑制剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Дарий М.В. и др. Димерные бисбензимидазолы: цитотоксичность и влияние на метилирование ДНК в нормальных и раковых клетках человека // Молекулярная биология, 2013, N2, т. 47, стр. 259-266. *
Чурюкина К.А. и др. Радиомодифицирующее и противоопухолевое действие синтетических димерных бисбензимидазолов на клетки рака молочной железы линии MCF-7 in vitro // Радиационная биология. Радиоэкология, 2017, т. 57, N2, стр. 136-144. *
Чурюкина К.А. и др. Радиомодифицирующее и противоопухолевое действие синтетических димерных бисбензимидазолов на клетки рака молочной железы линии MCF-7 in vitro // Радиационная биология. Радиоэкология, 2017, т. 57, N2, стр. 136-144. Дарий М.В. и др. Димерные бисбензимидазолы: цитотоксичность и влияние на метилирование ДНК в нормальных и раковых клетках человека // Молекулярная биология, 2013, N2, т. 47, стр. 259-266. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774031C1 (ru) * 2021-12-02 2022-06-14 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России) Способ подавления индуцирующего действия высокомолекулярной гиалуроновой кислоты на стволовые клетки рака молочной железы
RU2798550C2 (ru) * 2022-11-18 2023-06-23 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России) Способ снижения количества стволовых клеток аденокарциномы молочной железы человека

Also Published As

Publication number Publication date
RU2018145444A3 (ru) 2019-07-17
RU2018145444A (ru) 2019-01-28

Similar Documents

Publication Publication Date Title
JP2022524885A (ja) ナルトレキソン及びカンナビノイドを含む癌の治療
Ertekin et al. May argyrophilic nucleolar organizing region-associated protein synthesis be used for selecting the most reliable dose of drugs such as rhamnetin in cancer treatments?
Chipoline et al. Molecular mechanism of action of new 1, 4-naphthoquinones tethered to 1, 2, 3-1H-triazoles with cytotoxic and selective effect against oral squamous cell carcinoma
Lin et al. Discovery and validation of nitroxoline as a novel STAT3 inhibitor in drug-resistant urothelial bladder cancer
Zecchini et al. Dysfunctional autophagy induced by the pro-apoptotic natural compound climacostol in tumour cells
EP3303286B1 (en) Compounds that bind to rela of nf-kb for use in treating cancer
FR2973703A1 (fr) Derives de 4-arylcoumarine et de 4-arylquinoleine, leurs utilisations therapeutiques et leur procede de synthese
Zhou et al. Honokiol induces proteasomal degradation of AML1-ETO oncoprotein via increasing ubiquitin conjugase UbcH8 expression in leukemia
Finiuk et al. 4-Thiazolidinone derivative Les-3833 effectively inhibits viability of human melanoma cells through activating apoptotic mechanisms
EP2890374B1 (en) Compositions and methods for drug-sensitization or inhibition of a cancer cell
RU2702910C2 (ru) Способ снижения количества стволовых клеток рака молочной железы
US11918553B2 (en) Anti-oncogenic phytochemicals comprising substituted henicosanoic acid and henicosenoic acid
CN101605763A (zh) 防辐射化合物及相关方法
KR102206745B1 (ko) 안토시아닌 및 gabab 수용체 작용제를 유효성분으로 포함하는 신경질환 치료제
CN114805117B (zh) 抗肿瘤干细胞的紫草素及阿卡宁肟衍生物
JP2021505690A (ja) Cyp26酵素を阻害するための化合物および方法
RU2774031C1 (ru) Способ подавления индуцирующего действия высокомолекулярной гиалуроновой кислоты на стволовые клетки рака молочной железы
US10550130B2 (en) Benzo-thiazolo-imidazole compounds and uses thereof
RU2798550C2 (ru) Способ снижения количества стволовых клеток аденокарциномы молочной железы человека
RU2700695C2 (ru) Способ снижения клоногенной активности стволовых клеток рака молочной железы
CN102731456B (zh) 一种抗肿瘤化合物及其制备方法和应用
RU2789099C2 (ru) Способ определения снижения радиационно-индуцированной миграции клеток рака молочной железы человека линии MCF-7
US11083739B2 (en) Mito-magnolol compounds and methods of synthesis and use thereof
US9119874B2 (en) Cell-penetrating markers of apoptosis
Feng et al. Natural alkaloid N-hydroxyapiosporamide suppresses colorectal cancer progression as a novel NF-κB pathway inhibitor by targeting TAK1-TRAF6 complex