RU2702594C1 - Способ плазменной активации воды или водных растворов и устройство для его осуществления - Google Patents

Способ плазменной активации воды или водных растворов и устройство для его осуществления Download PDF

Info

Publication number
RU2702594C1
RU2702594C1 RU2018141828A RU2018141828A RU2702594C1 RU 2702594 C1 RU2702594 C1 RU 2702594C1 RU 2018141828 A RU2018141828 A RU 2018141828A RU 2018141828 A RU2018141828 A RU 2018141828A RU 2702594 C1 RU2702594 C1 RU 2702594C1
Authority
RU
Russia
Prior art keywords
plasma
water
aqueous solutions
torch
microwave
Prior art date
Application number
RU2018141828A
Other languages
English (en)
Inventor
Константин Федорович Сергейчев
Наталья Александровна Лукина
Степан Николаевич Андреев
Людмила Магомедовна Апашева
Валерий Васильевич Савранский
Антон Валерьевич Лобанов
Original Assignee
Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН)
Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН), Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН)
Priority to RU2018141828A priority Critical patent/RU2702594C1/ru
Application granted granted Critical
Publication of RU2702594C1 publication Critical patent/RU2702594C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0062Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Группа изобретений может быть использована в сельском хозяйстве, в медицине и пищевой промышленности. Способ активации воды или водных растворов включает воздействие плазмы на объем обрабатываемой воды или водных растворов. Осуществляют бесконтактную активацию. На воду или водные растворы воздействуют непрерывным безэлектродным плазменным факелом 5, который создают факельным СВЧ-плазмотроном, генерирующим в парогазовой среде при атмосферном давлении направленную струю низкотемпературной плазмы. Устройство для осуществления бесконтактной плазменной активации воды или водных растворов содержит факельный СВЧ-плазмотрон с емкостной связью, включающий магнетрон 1, прямоугольный 2 и коаксиальный 3 волноводы. Коаксиальный волновод 3 герметично изолирован от прямоугольного волновода 2 радиопрозрачной кварцевой трубкой-изолятором 8. Центральный проводник коаксиального волновода 3 представляет собой медную трубку, выполненную с возможностью подачи плазмообразующего газа, и заканчивается соплом с отверстием 1,5 мм для формирования направленной струи плазмообразующего газа. Рабочая часть факельного СВЧ-плазмотрона помещена через уплотнение в герметичную камеру 9, содержащую сосуд 11 с обрабатываемой водой или водным раствором, закрепленный на штоке-лифте 12. Группа изобретений обеспечивает бесконтактность плазменной активации воды или водных растворов, позволяет исключить попадание в активируемую жидкость материала электродов, обеспечить высокую степень чистоты обработки и безопасность. 2 н. и 4 з.п. ф-лы, 3 табл., 1 ил.

Description

Изобретение относится к способам активации воды или водных растворов электрохимическими методами, а именно к способам активации воздействием плазмы, и может быть использовано в различных отраслях народного хозяйства, где традиционно применяется активированная вода: в сельском хозяйстве для обработки семян и для полива растений, в качестве антибактериального средства в медицине; и пищевой промышленности и др.
Известны различные способы и устройства для получения активированной воды с помощью электрохимических методов. Обычно воду активируют в диафрагменных электролизерах с раздельным выводом кислой и щелочной воды (Рогов В.М., Филипчук В.Л. Электрохимическая технология изменения свойств воды. Львов: Изд-во ЛГУ, 1989, с. 82; Бахир В.М. Электрохимическая активация. - М.: ВНИИИМТ, 1992, ч. 1, 401 с.; RU 2113411, C02F 1/46, 20.06.1998; RU 2170499, А01С 1/00, 20.07.2001). Такие способы и устройства позволяют получать активированную воду с требуемым составом и свойствами, но в силу контактной активации (электроды погружены в воду) имеют недостатки: в процессе активации происходит заметное изменение химического состава воды, связанное, в том числе, с растворением в жидкости материала электродов. Кроме того, используемое высоковольтное питание (напряжение до 30 кВ) предъявляет повышенные требования к электробезопасности установок.
Известен способ плазменной активации воды или водных растворов, разработанный в Институте общей физики им. A.M. Прохорова РАН (Н.В. Бабурин, С.В. Белов и др. Гетерогенная рекомбинация в плазме водяных паров как механизм воздействия на биологические ткани. Доклады Академии наук. Физика. 2009, том 426, №4, с. 468-470; С.В. Белов, Ю.К. Данилейко и др. Особенности генерации низкотемпературной плазмы в высокочастотных плазменных электрохирургических аппаратах. Медицинская техника, №2, 2011, с. 26-32), который осуществляют следующим образом: в объеме водного раствора электролита (например, физиологический раствор) формируют электродами плазменный разряд с высокочастотной накачкой. Электродами плазменного разряда являются погруженный в жидкость "горячий" металлический электрод и жидкий квазиэлектрод на границе плазма-электролит. Формирование жидкого квазиэлектрода вокруг поверхности металлического электрода ведет к образованию однородного по толщине (~1.5⋅10-4 м) плазменного слоя из паров воды с постоянной плотностью тока. Возбуждение плазмы производят высокочастотным током с частотой следования импульсов 110 кГц при амплитудном значении напряжения на металлическом электроде до 300 В. Для замыкания электрической цепи используется второй металлический электрод большей площади, также погруженный в жидкость. Взаимодействие свободных горячих электронов (е) плазмы водяного пара с молекулами воды приводит к их диссоциации с образованием ионов и радикалов (Н- и Н) и гидроксильных радикалов ОН:
Н2О+е→ОН-
Дальнейшие плазмохимические реакции приводят к образованию в активируемой воде, в частности, водорода и пероксида водорода (ПВ):
Н-→Н2
ОН+ОН→Н2О2
Данный известный способ плазменной активации воды или водных растворов позволяет получать активированную воду, содержащую ПВ - эффективный регулятор роста растений, но так как активация является контактной - оба электрода погружены в активируемую жидкость, неизбежно растворение в воде материала электродов, что не мешает использовать получаемую воду, активированную плазмой, как и химически стабилизированные растворы ПВ, в сельском хозяйстве для обработки семян и для полива растений.
Задачей изобретения является разработка бесконтактного способа плазменной активации воды или водных растворов, который позволит исключить попадание в активируемую жидкость материала электродов, благодаря чему предлагаемый способ сможет использоваться не только для получения активированной воды, но главное - в научных исследованиях для изучения влияния чистых растворов ПВ, не содержащих стабилизирующих добавок, следов реагентов при получении ПВ химическими методами или примесей в виде материала электродов, на физиологию растений и других биологических видов.
Задачей изобретения является также создание устройства для осуществления предлагаемого способа бесконтактной активации воды или водных растворов воздействием плазмы безэлектродного факельного разряда, что обеспечит чистоту обрабатываемой жидкости и увеличение сроков сохранения активированной водой своих качеств.
Решение поставленной задачи достигается предлагаемым способом активации воды или водных растворов путем воздействия плазмы на объем обрабатываемых воды или водного раствора, в котором воздействие плазмы осуществляют в режиме бесконтактной активации, для чего на воду или водный раствор воздействуют непрерывным безэлектродным плазменным факелом, который создают факельным СВЧ плазмотроном, генерирующим в парогазовой среде при атмосферном давлении струю низкотемпературной плазмы.
Для создания струи низкотемпературной плазмы в факельном СВЧ плазмотроне используют химически инертный плазмообразующий газ, выбранный из группы: аргон, гелий.
В качестве химически инертного плазмообразующего газа предпочтительнее использовать аргон.
(Высокая концентрация аргона в земной атмосфере (~1%) облегчает его получение и удешевляет производство активированной воды по сравнению с использованием гелия).
Струя низкотемпературной плазмы факела может касаться поверхности обрабатываемых воды или водного раствора или частично в них погружаться.
Решение поставленной задачи достигается также предлагаемым устройством для бесконтактной плазменной активации воды или водных растворов, которое содержит факельный СВЧ плазмотрон с емкостной связью, включающий магнетрон, прямоугольный и коаксиальный волноводы, коаксиальный волновод герметично изолирован от прямоугольного волновода радиопрозрачной кварцевой трубкой-изолятором, при этом центральный проводник коаксиального волновода представляет собой медную трубку, служащую для подачи плазмообразующего газа, и заканчивается соплом с отверстием диаметром 1,5 мм для формирования направленной струи плазмообразующего газа, а рабочая часть факельного СВЧ плазмотрона помещена через уплотнение в герметичную камеру, содержащую сосуд с обрабатываемыми водой или водным раствором, закрепленный на штоке-лифте.
Мощность магнетрона факельного СВЧ плазмотрона может составлять 700-6000 Вт.
В качестве источника плазмы в предлагаемом способе бесконтактной плазменной активации воды или водных растворов используется факельный СВЧ плазмотрон с емкостной связью, генерирующий в парогазовой среде при атмосферном давлении струю низкотемпературной плазмы, направленную сверху вниз. В качестве плазмообразующего газа используется химически инертный газ аргон. Плазменный столб образуется в струе вытекающего из сопла газа в результате его ионизации в самосогласованном СВЧ поле поверхностной электромагнитной волны, поддерживаемой границами плазменного столба. Поперечные размеры плазменного столба определяются газодинамическими характеристиками сопла. Длина проводящего столба плазмы определяется оптимальной длиной для несимметричной излучающей дипольной антенны, равной четверти длины СВЧ волны в пустоте. Высокая скорость истечения газа из узкого сопл не дает факельному разряду, фронт которого движется навстречу потоку, достигнуть сопла, при этом сопло не греется, что позволяет данный тип факельного разряда считать безэлектродным. При появлении границы жидкости на пути плазменного факела газоплазменная струя выдавливает на поверхности жидкости ямку в виде «мениска» и растекается в стороны и вверх симметрично от центра мениска по его поверхности в соответствии с законами газодинамики.
Для изоляции от воздуха рабочей части плазмотрона, которую в дальнейшем будем для краткости называть горелкой, она помещается через уплотнение в герметичную камеру из нержавеющей стали, в которой работа плазмотрона на истекающей струе аргона стабилизируется обычно молекулярными газами (кислород, азот, водород), которые дополнительно могут вводиться в камеру плазмотрона. В отсутствие таковых, как и в предлагаемом способе, стабилизация происходит благодаря присутствию насыщенного водяного пара, наполняющего камеру в результате испарения поверхностного слоя воды под воздействием газоплазменной струи.
СВЧ плазмотрон факельного типа при атмосферном давлении давно используется в оптической эмиссионной спектроскопии (ОЭС) как источник сжатой ярко светящейся чистой плазмы (Власов Д.В., Сергейчев К.Ф., Сычев И.А. Применение плазменной СВЧ-горелки в аналитической спектроскопии. Физика плазмы, 2002, т. 28, №5, с. 484-492), используемой для обработки, возбуждения и анализа газообразных сред (Лукина Н.А., Сергейчев К.Ф. Излучение инверсно-заселенных уровней атомарного кислорода в плазме аргонового СВЧ-факела, стимулируемое образованием озона. Физика плазмы, 2008, т. 34, №6. с. 567-572). Благодаря малому объему факел зажигается и устойчиво горит в окружении молекулярных паров и газов при атмосферном давлении даже при относительно низкой СВЧ мощности ≤700 Вт, которая может быть получена от доступных на рынке магнетронов бытовых СВЧ печей. Самосжатая форма плазменного факела имеет высокую удельную плотность поглощаемой СВЧ мощности ≤104 Вт/см3, сравнимую с удельной плотностью в дуге постоянного тока. При достаточно высокой скорости истечения струи аргона плазменный факел оторван от сопла, благодаря чему факельный СВЧ разряд относится к категории безэлектродных разрядов.
На фиг. представлена схема предлагаемого устройства для бесконтактной плазменной активации воды или водных растворов.
Устройство содержит магнетрон (1) - источник энергии факельного СВЧ плазмотрона (в данной работе использовался магнетрон от бытовой микроволновой печи типа ОМ 75 Р (31), частота 2,45 ГГц, длина волны 12,24 см, мощность 900 Вт), прямоугольный волновод (2) (сечением 45×90 мм2) и коаксиальный волновод (3). Коаксиальный волновод (3) имеет центральный проводник, представляющий собой медную трубку (4) с наружным диаметром 6 мм, служащую для подачи аргона, которая заканчивается узким соплом с отверстием диаметром 1,5 мм. Струя плазмообразующего газа (аргона), вытекающая из сопла, в результате ионизации под действием СВЧ поля превращается в плазменный факел (5). Для эффективной передачи СВЧ мощности от магнетрона (1) в плазменный факел (5) используется настройка согласования плазмотрона поршнем (6). Защита магнетрона (1) от отраженной назад волны при погасании плазменного факела (5) обеспечивается циркулятором с поглощающей нагрузкой (7). Коаксиальный волновод (3) герметично изолирован от прямоугольного волновода (2) радиопрозрачной кварцевой трубкой-изолятором (8). Для изоляции от окружающего воздуха и для защиты работающего персонала от фона СВЧ излучения плазменного факела (5) горелка плазмотрона помещается через уплотнение в герметичную камеру из нержавеющей стали (9). Давление в камере поддерживается выше атмосферного р≥1 атм, при этом отработавшие газы и часть водяного пара выходят в вытяжную вентиляцию через выпуск (10). Обрабатываемая жидкость помещается в сосуд (11) (из керамики, термоупорного стекла или кварца), закрепленный на подвижном штоке-лифте (12), который при перемещении вверх приводит свободную границу жидкости в соприкосновение с плазменным факелом (5). Для мониторинга характеристик плазменного факела (5) по оптическим эмиссионным спектрам с использованием спектрометра (13) в камере (9) имеется оптически прозрачное окно (14).
Предлагаемое устройство работает следующим образом. Магнетрон (1), служащий источником энергии факельного СВЧ плазмотрона, используется в режиме непрерывной генерации. Антенной магнетрона (1) в прямоугольном волноводе (2) возбуждается волна низшего типа ТЕ10, которая затем преобразуется в волну ТЕМ коаксиального волновода (3). В медную трубку (4), являющуюся центральным проводником коаксиального волновода (3) и заканчивающуюся узким соплом, подают плазмообразующий газ (аргон), струя которого вытекает из сопла с относительно высокой скоростью (расход аргона составляет 3-5 литров в минуту стандартной атмосферы) и в результате ионизации под действием СВЧ поля превращается в плазменный факел (5). СВЧ мощность магнетрона (1) транслируется в плазменный факел (5) через коаксиальный волновод (3) благодаря емкостной связи между соплом на конце внутреннего проводника (4) и плазмой факела. Плазма факела (5) оторвана от сопла потоком вытекающей струи аргона, направленная скорость истечения которой на выходе из сопла оказывается больше скорости распространения фронта ионизации, движущегося в факеле навстречу соплу, благодаря чему создаваемый факельный СВЧ разряд является безэлектродным разрядом. Для воздействия плазменного факела (5) на обрабатываемую жидкость сосуд (11) с ней поднимают на штоке (12) до соприкосновения границы жидкости с плазменным факелом, при этом плазменный факел (5) может частично погружаться в жидкость. Время воздействия плазмы на обрабатываемую жидкость варьируется в пределах 10-40 минут при заданной СВЧ мощности. Для мониторинга характеристик плазменного разряда по оптическим эмиссионным спектрам в диапазоне длин волн 300-1000 нм используется спектрометр AvaSpec-3648-USB2 (13) с разрешением 0,3 нм.
Взаимодействие с водой низкотемпературной плазмы аргона с температурой, достигающей 4000 K, и содержащей высокую концентрацию метастабильно возбужденных атомов Ar* с энергией 11,5-11,7 эВ и временем жизни >1,3 секунды, способно активировать химические реакции в двойном поверхностном слое «вода-пар» с образованием смеси ионов и радикалов: Н-, Н, ОН с последующим их преобразованием в ПВ (Н2О2), как и в известном способе контактной плазменной активации воды или водных растворов, описанном выше.
Анализ воды, полученной предлагаемым бесконтактным способом плазменной активации, на содержание ПВ (для анализа использовали количественный йодометрический метод, как наиболее чувствительный: А.В. Лобанов, Н.А. Рубцова, Г.Г. Комиссаров. Доклады Академии наук. Химия. 2008, том 421, №6, с. 773-776; RU 2477470, G01N 33/02, 10.03.2013) показал, что концентрация ПВ составляет 1⋅10-3-3⋅10-3 М (3,4⋅10-2-1,0⋅10-1 г/л). При хранении полученной активированной воды в течение 10 суток в темном сосуде при температуре +20°С изменения концентрации ПВ не наблюдалось.
Известно, что ПВ является нетоксичным, экологически безопасным и уникальным по многим свойствам регулятором роста растений (Корзинников Ю.С. Экологически безопасные средства защиты растений. Вестник РАСХН. 1997, №2, с. 44-47; Апашева Л.М., Комиссаров Г.Г. Влияние пероксида водорода на развитее растений. Изв. РАН, сер. биол. 1996, №5, с. 621-623; RU 2142707, 20.12.1999; RU 2172099, 20.08.2001). Обработка растворами ПВ растений в период вегетации является наиболее щадящим методом стимулирования роста, сохраняющим жизнеспособность почвенной микрофлоры.
Активированная вода, полученная предлагаемым бесконтактным способом плазменной активации, в качестве стимулятора роста растений до настоящего времени не исследовалась.
Проведенные при создании заявляемого изобретения испытания показали, что активированная вода, полученная предлагаемым способом бесконтактной плазменной активации, значительно превосходит по эффективности воздействия водные растворы ПВ соответствующей концентрации (см. примеры 1-3), что предположительно можно объяснить тем, что применяемые в медицине и сельском хозяйстве растворы ПВ, как и в приведенных нами контрольных опытах, обязательно содержат стабилизаторы, снижающие активность ПВ.
Приводим примеры испытаний ростстимулирующих свойств воды, полученной предлагаемым способом бесконтактной плазменной активации. Тест-объектами были выбраны представители разных видов с/х растений: пшеница сорт Альбиум, огурец сорт Вязниковский, редис сорт Жара. Семена замачивали в чашках Петри: и опыте - в растворах получаемой активированной воды с разной концентрацией ПВ, в контроле - в растворах стабилизированного ПВ разной концентраций и в дистиллированной воде. Чашки Петри помещали в термостат с температурой +22°С. Анализ степени воздействия на растения вели на ранних стадиях их развития с помощью следующих морфологических тестов: количество живых наклюнувшихся семян, количество растений с определенной длиной корня, количество растений с образовавшимся первым листом.
Пример 1.
Семена пшеницы сорт Альбиум с пониженной всхожестью после длительного хранения замачивали в чашках Петри в тестируемых растворах: опыты - в активированной предлагаемым бесконтактным способом воде с разной концентрацией ПВ, в контроле - в растворах стабилизированного ПВ разной концентрации и в дистиллированной воде. На 3-и сутки эксперимента оценивали количество проросших живых семян. Результаты тестирования приведены в таблице 1 - активированная вода, полученная предлагаемым способом, значительно превосходит по эффективности воздействия водные растворы стабилизированного ПВ соответствующей концентрации.
Пример 2.
Семена огурца сорт «Вязниковский» замачивали в чашках Петри в тестируемых растворах: в активированной предлагаемым бесконтактным способом воде с разной концентрацией ПВ, в контроле - в растворах стабилизированного ПВ разной концентрации и в дистиллированной воде. На 2-е сутки эксперимента оценивали количество проросших (наклюнувшихся) семян; на 4-е сутки - количество семян с длиной корня, равной или более 5 мм; на 5-е сутки - количество растений огурца с первым семядольным листом. Результаты тестирования приведены в таблице 2 - активированная вода, полученная предлагаемым способом, значительно превосходит по эффективности воздействия водные растворы стабилизированного ПВ соответствующей концентрации.
Пример 3.
Семена редиса сорт Жара замачивали в чашках Петри в тестируемых растворах: опыты - в активированной предлагаемым бесконтактным способом воде с разной концентрацией ПВ, в контроле - в растворах стабилизированного ПВ разной концентрации и в дистиллированной воде. На 4-е сутки эксперимента оценивали количество растений с раскрытым семядольным листом. Результаты тестирования приведены в таблице 3 - активированная вода, полученная предлагаемым способом, значительно превосходит по эффективности воздействия водные растворы стабилизированного ПВ соответствующей концентрации.
Figure 00000001
Figure 00000002
Figure 00000003
Таким образом, предлагаемый способ плазменной активации воды или водных растворов является бесконтактным, что позволяет исключить попадание в активируемую жидкость материала электродов и обеспечивает высокую степень чистоты обработки, благодаря чему способ можно использовать не только для получения активированной воды, но главное - в научных исследованиях для изучения влияния чистых растворов ПВ, не содержащих стабилизирующих добавок, следов реагентов при получении ПВ химическими методами или примесей в виде материала электродов, на физиологию растений и других биологических видов. Предлагаемое устройство обеспечивает бесконтактность активации воды или водных растворов путем воздействия непрерывным безэлектродным плазменным факелом и отличается высокой безопасностью.

Claims (6)

1. Способ активации воды или водных растворов путем воздействия плазмы на объем обрабатываемых воды или водного раствора, отличающийся тем, что воздействие плазмы осуществляют в режиме бесконтактной активации, для чего на воду или водный раствор воздействуют непрерывным безэлектродным плазменным факелом, который создают факельным СВЧ плазмотроном, генерирующим в парогазовой среде при атмосферном давлении направленную струю низкотемпературной плазмы.
2. Способ по п. 1, отличающийся тем, что для создания направленной струи низкотемпературной плазмы в факельном СВЧ плазмотроне используют химически инертный плазмообразующий газ, выбранный из группы: аргон, гелий.
3. Способ по п. 2, отличающийся тем, что в качестве химически инертного плазмообразующего газа используют аргон.
4. Способ по п. 1, отличающийся тем, что направленная струя низкотемпературной плазмы касается поверхности обрабатываемых воды или водного раствора или частично погружена в нее.
5. Устройство для осуществления бесконтактной плазменной активации воды или водных растворов содержит факельный СВЧ плазмотрон с емкостной связью, включающий магнетрон, прямоугольный и коаксиальный волноводы, коаксиальный волновод герметично изолирован от прямоугольного волновода радиопрозрачной кварцевой трубкой-изолятором, при этом центральный проводник коаксиального волновода представляет собой медную трубку, служащую для подачи плазмообразующего газа, и заканчивается соплом с отверстием диаметром 1,5 мм для формирования направленной струи плазмообразующего газа, а рабочая часть факельного СВЧ плазмотрона помещена через уплотнение в герметичную камеру, содержащую сосуд с обрабатываемой жидкостью, закрепленный на штоке-лифте.
6. Устройство по п. 5, отличающееся тем, что мощность магнетрона факельного СВЧ плазмотрона составляет 700-6000 Вт.
RU2018141828A 2018-11-28 2018-11-28 Способ плазменной активации воды или водных растворов и устройство для его осуществления RU2702594C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018141828A RU2702594C1 (ru) 2018-11-28 2018-11-28 Способ плазменной активации воды или водных растворов и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141828A RU2702594C1 (ru) 2018-11-28 2018-11-28 Способ плазменной активации воды или водных растворов и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2702594C1 true RU2702594C1 (ru) 2019-10-08

Family

ID=68170802

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141828A RU2702594C1 (ru) 2018-11-28 2018-11-28 Способ плазменной активации воды или водных растворов и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2702594C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740502C1 (ru) * 2020-06-19 2021-01-14 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" Способ получения плазменно-активированных стерильных жидкостей
RU2761437C1 (ru) * 2020-12-30 2021-12-08 Общество С Ограниченной Ответственностью «Вандер Технолоджис» Способ свч-плазменной активации воды для синтеза пероксида водорода и устройство для его осуществления
RU2780453C1 (ru) * 2021-11-26 2022-09-23 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Красноярский Государственный Медицинский Университет Имени Профессора В.Ф. Войно-Ясенецкого" Министерства Здравоохранения Российской Федерации Раствор для аспирационно-пункционного лечения эндометриомы яичника и способ его получения

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533506C1 (ru) * 2013-09-02 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный строительный университет" (ФГБОУ ВПО "МГСУ") Способ активации воды затворения композитов на основе цемента
WO2016061051A1 (en) * 2014-10-13 2016-04-21 Advanced Plasma Solutions Inc. Apparatus for the production of plasma-catalytic enhanced water and method of using the same
RU2016109772A (ru) * 2016-03-18 2017-09-21 Игорь Михайлович Пискарев Способ получения оксигенированной (кислородной) воды

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533506C1 (ru) * 2013-09-02 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный строительный университет" (ФГБОУ ВПО "МГСУ") Способ активации воды затворения композитов на основе цемента
WO2016061051A1 (en) * 2014-10-13 2016-04-21 Advanced Plasma Solutions Inc. Apparatus for the production of plasma-catalytic enhanced water and method of using the same
RU2016109772A (ru) * 2016-03-18 2017-09-21 Игорь Михайлович Пискарев Способ получения оксигенированной (кислородной) воды

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
БАХАР В.П. и др. Технология плазменной очистки загрязненных вод и активации водных растворов, Экология промышленного производства, 2008, с. 69-73. *
ЖЕРЛИЦИН А.Г. Деструкция органических соединений в газовой и жидкой средах в плазме СВЧ-разряда, Известия Томского политехнического университета, Инжиниринг георесурсов, 2015, т. 326, N10, с. 65-66. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2832940C2 (ru) * 2020-04-16 2025-01-10 Эрбе Электромедицин Гмбх Установка и способ для плазменной активации жидкости
RU2740502C1 (ru) * 2020-06-19 2021-01-14 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" Способ получения плазменно-активированных стерильных жидкостей
RU2761437C1 (ru) * 2020-12-30 2021-12-08 Общество С Ограниченной Ответственностью «Вандер Технолоджис» Способ свч-плазменной активации воды для синтеза пероксида водорода и устройство для его осуществления
WO2022146186A1 (ru) * 2020-12-30 2022-07-07 Общество С Ограниченной Ответственностью "Вандер Технолоджис" Способ и устройство свч-плазменной активации воды для синтеза пероксида водорода
RU2780453C1 (ru) * 2021-11-26 2022-09-23 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Красноярский Государственный Медицинский Университет Имени Профессора В.Ф. Войно-Ясенецкого" Министерства Здравоохранения Российской Федерации Раствор для аспирационно-пункционного лечения эндометриомы яичника и способ его получения
RU2804982C1 (ru) * 2023-04-13 2023-10-09 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Устройство для обеззараживания сточных вод холодной атмосферной воздушной плазмой и способ его использования
RU2832617C1 (ru) * 2023-08-25 2024-12-26 Анна Владимировна Камлер Устройство активации воды плазменным разрядом и способ получения воды, активированной плазменным разрядом

Similar Documents

Publication Publication Date Title
Sarinont et al. Effects of plasma irradiation using various feeding gases on growth of Raphanus sativus L.
Stoffels et al. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio) materials
Subedi et al. Dielectric barrier discharge (DBD) plasmas and their applications
Sato et al. Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid
WO2011093497A1 (ja) プラズマ酸化還元方法及びそれを用いた動植物成長促進方法、並びに動植物成長促進方法に用いるプラズマ生成装置
Andreev et al. Production of Pure Hydrogen Peroxide Solutions in Water Activated by the Plasma of Electrodeless Microwave Discharge and Their Application to Control Plant Growth
RU2702594C1 (ru) Способ плазменной активации воды или водных растворов и устройство для его осуществления
Sun et al. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli
BRPI0706289A2 (pt) métodos e aparelhos para tornar lìquidos mais reativos
Kenari et al. Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells)
Chiang et al. Inactivation of E. coli and B. subtilis by a parallel-plate dielectric barrier discharge jet
Zhu et al. The research on the pulsed arc electrohydraulic discharge and its application in treatment of the ballast water
Javanmard et al. Comparison of characteristics of atmospheric pressure plasma jets using argon and helium working gases
Pollak et al. Low-temperature low-damage sterilization based on UV radiation through plasma immersion
Tonmitr et al. Time-modulated LF-microwave hybrid plasma for surface sterilization
Ni et al. Plasma inactivation of Escherichia coli cells by atmospheric pressure air brush-shape plasma
Kang et al. Atmospheric-pressure cold plasma jet for medical applications
Al Qaseer et al. Optimal power of atmospheric pressure plasma jet with a simple DBD configuration for biological application
Choi Cold Atmospheric Plasma Sources for Cancer Applications and Their Diagnostics
Abood et al. Measurement of Electron temperature (Te) and Electron density (ne) Cold Plasma Jets Optical Emission Spectroscopy (OES) Method
Gerber et al. Evolution of electrical and optical parameters of a helium plasma jet in interaction with liquids
RU2761437C1 (ru) Способ свч-плазменной активации воды для синтеза пероксида водорода и устройство для его осуществления
Wang et al. Optical and application study of gas–liquid discharge excited by bipolar nanosecond pulse in atmospheric air
Shuaibov et al. Plasma reactor generating synchronous flows of bactericidal UV radiation and nanostructures of zinc, copper, iron oxides and chalcopyrite
Georgescu et al. Chemical activation of the high voltage pulsed, cold atmospheric plasma jets