RU2702325C1 - Устройство для поворота реактивного сопла турбореактивного двигателя - Google Patents

Устройство для поворота реактивного сопла турбореактивного двигателя Download PDF

Info

Publication number
RU2702325C1
RU2702325C1 RU2018131379A RU2018131379A RU2702325C1 RU 2702325 C1 RU2702325 C1 RU 2702325C1 RU 2018131379 A RU2018131379 A RU 2018131379A RU 2018131379 A RU2018131379 A RU 2018131379A RU 2702325 C1 RU2702325 C1 RU 2702325C1
Authority
RU
Russia
Prior art keywords
operating temperature
fixed
brackets
coefficient
shaped
Prior art date
Application number
RU2018131379A
Other languages
English (en)
Inventor
Владимир Васильевич Скиба
Original Assignee
Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" filed Critical Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение"
Priority to RU2018131379A priority Critical patent/RU2702325C1/ru
Application granted granted Critical
Publication of RU2702325C1 publication Critical patent/RU2702325C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/002Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector
    • F02K1/008Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector in any rearward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/80Couplings or connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к авиационному двигателестроению, а именно к устройствам поворота реактивных сопел турбореактивных двигателей. Устройство для поворота реактивного сопла турбореактивного двигателя содержит неподвижный корпус с двумя дополнительными опорами в виде кронштейнов Г-образной формы, закрепленных на нем со стороны его наружной поверхности. Подвижный корпус расположен между ними и шарнирно соединен с неподвижным корпусом в двух диаметрально противоположных местах шкворнями, установленными в радиальных отверстиях неподвижного корпуса и кронштейнов Г-образной формы дополнительной опоры. Каждый шкворень своей цилиндрической поверхностью контактирует с втулкой, установленной в соответствующее отверстие поворотного корпуса. Кронштейны Г-образной формы дополнительных опор выполнены из материала с коэффициентом линейного температурного расширения при рабочей температуре, выбранным из диапазона, рассчитанного по формуле αкрон=(0,9…1,0)×αкорп×tкорп/tкрон, где αкрон - коэффициент линейного температурного расширения материала кронштейна Г-образной формы дополнительной опоры при рабочей температуре; αкорп - коэффициент линейного температурного расширения материала неподвижного корпуса при рабочей температуре; tкорп - рабочая температура неподвижного корпуса; tкрон - рабочая температура кронштейна Г-образной формы дополнительной опоры. Изобретение позволяет повысить надежность устройства поворота реактивного сопла турбореактивного двигателя. 2 ил.

Description

Изобретение относится к авиационному двигателестроению, а именно к устройствам поворота реактивных сопел турбореактивных двигателей.
Известно поворотное осесимметричное сопло, содержащее сферическую законцовку корпуса и кронштейн, на которых с помощью осей закреплен поворотный насадок. Кронштейн выполнен Г-образной формы и установлен своим фланцем крепления со стороны наружной поверхности сферической законцовки, при этом расстояние от фланца крепления кронштейна до оси вращения насадка L=0,08-0,12D, где D - диаметр сферы сферической законцовки по ее наружной поверхности (патент РФ №2162955, МПК F02K 1/56, опубл. 10.02.2001 г.).
При работе турбореактивного двигателя сферическая законцовка корпуса поворотного осесимметричного сопла находится под воздействием высокотемпературного газового потока в реактивном сопле и имеет высокую рабочую температуру. Кронштейны Г-образной формы, установленные своими фланцами крепления со стороны наружной поверхности сферической законцовки, обдуваются и охлаждаются воздушным потоком в мотогондоле летательного аппарата, и имеют существенно более низкую рабочую температуру по сравнению с рабочей температурой сферической законцовки корпуса поворотного осесимметричного сопла.
Недостаток известного устройства состоит в том, что оно не обладает достаточным уровнем надежности из-за высоких термических напряжений вследствие существенной разницы рабочих температур и соответствующих им линейных температурных расширений сферической законцовки корпуса и кронштейнов Г-образной формы.
Наиболее близким предлагаемому техническому решению является устройство для поворота реактивного сопла турбореактивного двигателя, содержащее неподвижный корпус с двумя дополнительными опорами Г-образной формы со стороны его наружной поверхности, подвижный корпус, расположенный между ними и шарнирно соединенный с неподвижным корпусом в двух диаметрально противоположных местах шкворнями, установленными в радиальных отверстиях неподвижного корпуса и дополнительной опоры, причем каждый шкворень своей цилиндрической поверхностью контактирует с цилиндрической втулкой, установленной в соответствующее отверстие поворотного корпуса, а между поворотным корпусом и внутренним корпусом с одной стороны, и дополнительной опорой с другой стороны установлены опорные шайбы (патент РФ №2310767, МПК F02K 1/80, опубл. 20.11.2007 г.).
Недостаток известного устройства состоит в том, что оно не обладает достаточным уровнем надежности вследствие ограниченной работоспособности шарнирных соединений шкворень-втулка в условиях неравномерного нагружения контактных цилиндрических поверхностей втулок поворотного корпуса вследствие перекоса их осей при работе турбореактивного двигателя из-за существенной разницы рабочих температур и соответствующих им линейных температурных расширений неподвижного корпуса и кронштейнов Г-образной формы дополнительной опоры.
Предлагаемое изобретение направлено на повышение надежности устройства поворота реактивного сопла турбореактивного двигателя путем минимизации перекоса осей цилиндрических поверхностей его шарнирных соединений шкворень-втулка.
При создании данного изобретения решается задача расширения арсенала технических средств - надежных устройств для поворота реактивного сопла турбореактивного двигателя.
Сущность технического решения заключается в том, что в устройстве для поворота реактивного сопла турбореактивного двигателя, содержащем неподвижный корпус с двумя дополнительными опорами в виде кронштейнов Г-образной формы, закрепленных на нем со стороны его наружной поверхности, подвижный корпус, расположенный между ними и шарнирно соединенный с неподвижным корпусом в двух диаметрально противоположных местах шкворнями, установленными в радиальных отверстиях неподвижного корпуса и кронштейнов Г-образной формы дополнительных опор, причем каждый шкворень своей цилиндрической поверхностью контактирует с втулкой, установленной в соответствующее отверстие поворотного корпуса, кронштейны Г-образной формы дополнительных опор выполнены из материала с коэффициентом линейного температурного расширения при рабочей температуре, выбранным из диапазона, рассчитанного по формуле:
αкрон=(0,9…1,0)×αкорп×tкорп/tкрон,
где αкрон - коэффициент линейного температурного расширения материала кронштейна Г-образной формы дополнительной опоры при рабочей температуре;
αкорп - коэффициент линейного температурного расширения материала неподвижного корпуса при рабочей температуре;
tкорп - рабочая температура неподвижного корпуса;
tкрон - рабочая температура кронштейна Г-образной формы дополнительной опоры.
Это позволяет, при наличии существенного различия уровня рабочих температур неподвижного корпуса и кронштейнов Г-образной формы дополнительных опор устройства для поворота реактивного сопла турбореактивного двигателя, минимизировать перекос осей цилиндрических поверхностей его шарнирных соединений шкворень-втулка путем уменьшения разницы линейных температурных расширений неподвижного корпуса и Г-образных кронштейнов дополнительных опор, закрепленных на опорных площадках неподвижного корпуса со стороны его наружной поверхности.
На чертежах показаны:
на фиг. 1 - общий вид устройства для поворота реактивного сопла турбореактивного двигателя;
на фиг. 2 - сечение устройства для поворота реактивного сопла турбореактивного двигателя по оси цилиндрических поверхностей его шарнирных соединений шкворень-втулка.
Устройство для поворота реактивного сопла турбореактивного двигателя содержит неподвижный корпус 1 с двумя дополнительными опорами 2 в виде кронштейнов Г-образной формы длиной L, закрепленных на неподвижном корпусе 1 со стороны его наружной поверхности. Подвижный корпус 3 расположен между ними и шарнирно соединен с неподвижным корпусом 1 в двух диаметрально противоположных местах шкворнями 4, установленными в радиальных отверстиях неподвижного корпуса 1 и кронштейнов Г-образной формы дополнительной опоры 2. Каждый шкворень своей цилиндрической поверхностью контактирует с соответствующей цилиндрической поверхностью втулки 5 на длине В, установленной в соответствующее отверстие поворотного корпуса 3. Между поворотным корпусом 3 и неподвижным корпусом 1 с одной стороны, и кронштейнами Г-образной формы дополнительных опор 2 с другой стороны, установлены опорные шайбы 6. Кронштейны Г-образной формы дополнительных опор 2 закреплены на опорных площадках 7 неподвижного корпуса 1 со стороны его наружной поверхности. Управляющие цилиндры 8, которые обеспечивают поворот подвижного корпуса 3 на угол β относительно неподвижного корпуса 1, расположены между неподвижным корпусом 1 и подвижным корпусом 3.
Устройство для поворота реактивного сопла турбореактивного двигателя работает следующим образом.
При работе турбореактивного двигателя истекающие из его газогенератора газы нагревают неподвижный корпус 1 поворотного устройства до рабочей температуры tкорп≈500°С. Кронштейны Г-образной формы дополнительных опор 2 интенсивно обдуваются и охлаждаются воздушным потоком в мотогондоле летательного аппарата и уровень их рабочей температуры tкрон составляет ≈ 250°C.
При использовании для неподвижного корпуса 1 поворотного устройства и кронштейнов Г-образной формы дополнительных опор 2 в качестве материала титанового сплава ВТ20 при указанных выше рабочих температурах коэффициенты линейного температурного расширения (Авиационные материалы, Том 5, Магниевые и титановые сплавы, Москва, ВИАМ, ОНТИ-1973 г.) αкорп=9,3×10-6 °С-1 и αкрон=8,95×10-6 °С-1, а разница температурного линейного расширения Δ при длине кронштейна Г-образной формы L≈180 мм для пары "неподвижный корпус 1 - кронштейн Г-образной формы дополнительной опоры 2" составит:
Δ=L×[(αкорп×(tкорп-20)-αкрон×(tкрон-20)]=180×[9,3×10-6×(500-20)-8,95×10-6(250-20)]=0,433 (мм.),
что при длине цилиндрической поверхности втулки, равной В≈50 мм. приводит к значительному (~30') недопустимому угловому перекосу осей цилиндрических поверхностей шарнирных соединений шкворень-втулка.
Для выбора материала Г-образного кронштейна определим необходимый уровень значения его коэффициента линейного температурного расширения при рабочей температуре по заявляемой формуле:
αкрон=(0,9…1,0)×αкорп×tкорп/tкрон=(0,9…1,0)×9,3×10-6×500/250=16,74×10-6…18,6×10-6 (°C-1).
Анализ физических свойств выборки материалов (Авиационные материалы, Том 2, Коррозионные и жаростойкие стали и сплавы, Москва, ВИАМ, ОНТИ - 1975 г.) показывает, что значение коэффициента линейного температурного расширения α при рабочей температуре Г-образного кронштейна для сталей и сплавов может варьироваться в широком диапазоне значений:
Figure 00000001
и только для двух материалов (12Х18Н10Т и 2Х18Н2С4ТЮ), из перечисленных выше, находится в расчетном диапазоне.
Расчетная разница температурного линейного расширения для пары "неподвижный корпус 1 (ВТ20) - кронштейн Г-образной формы дополнительной опоры 2 (сталь 12Х18Н10Т)" составит:
Δ=L×[(αкорп×(tкорп-20)-αкрон×(tкрон-20)]=180×[9,3×10-6×(500-20)-17,2×10-6(250-20)]=0.086 (мм.),
что практически в 5 раз меньше по сравнению с парой "неподвижный корпус 1 - кронштейн Г-образной формы дополнительной опоры 2", выполненных из одинакового материала - титанового сплава ВТ20, и хорошо коррелируется с расчетно-экспериментальными допустимыми значениями для кронштейнов Г-образной формы дополнительной опоры.
Для поворота реактивного сопла управляющие цилиндры 8 поворачивают на угол β подвижный корпус 3, соединенный шарнирно с неподвижным корпусом 1 в двух диаметрально противоположных местах шкворнями 4, установленными в радиальных отверстиях неподвижного корпуса 1 и кронштейнов Г-образной формы дополнительной опоры 2, закрепленных на опорных площадках 7 наружного корпуса 1 со стороны его наружной поверхности. При этом каждый шкворень 4 своей цилиндрической поверхностью контактирует с втулкой 5 установленной в соответствующее отверстие поворотного корпуса 3. Между поворотным корпусом 3 и неподвижным корпусом 1 с одной стороны, и кронштейнами Г-образной формы дополнительных опор 2 с другой стороны, установлены опорные шайбы 6. Разница температурного линейного расширения для пары: неподвижный корпус 1 - кронштейн Г-образной формы дополнительной опоры 2 и соответствующий ей угловой перекос осей цилиндрических поверхностей шарнирных соединений шкворень-втулка устройства поворота реактивного сопла турбореактивного двигателя минимизированы, что способствует повышению его надежности.
Таким образом, выбор материала кронштейна Г-образной формы дополнительной опоры со значением его коэффициента температурного линейного расширения при рабочей температуре из расчетного диапазона по заявляемой формуле, позволяет значительно уменьшить перекос осей цилиндрических поверхностей его шарнирных соединений шкворень-втулка и тем самым повысить надежность устройства поворота реактивного сопла турбореактивного двигателя.

Claims (6)

  1. Устройство для поворота реактивного сопла турбореактивного двигателя, содержащее неподвижный корпус с двумя дополнительными опорами в виде кронштейнов Г-образной формы, закрепленных на нем со стороны его наружной поверхности, подвижный корпус, расположенный между ними и шарнирно соединенный с неподвижным корпусом в двух диаметрально противоположных местах шкворнями, установленными в радиальных отверстиях неподвижного корпуса и кронштейнов Г-образной формы дополнительных опор, причем каждый шкворень своей цилиндрической поверхностью контактирует с втулкой, установленной в соответствующее отверстие поворотного корпуса, отличающееся тем, что кронштейны Г-образной формы дополнительных опор выполнены из материала с коэффициентом линейного температурного расширения при рабочей температуре, выбранным из диапазона, рассчитанного по формуле
  2. αкрон=(0,9…1,0)×αкорп×tкорп/tкрон,
  3. где αкрон - коэффициент линейного температурного расширения материала кронштейна Г-образной формы дополнительной опоры при рабочей температуре;
  4. αкорп - коэффициент линейного температурного расширения материала неподвижного корпуса при рабочей температуре;
  5. tкорп - рабочая температура неподвижного корпуса;
  6. tкрон - рабочая температура кронштейна Г-образной формы дополнительной опоры.
RU2018131379A 2018-08-30 2018-08-30 Устройство для поворота реактивного сопла турбореактивного двигателя RU2702325C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018131379A RU2702325C1 (ru) 2018-08-30 2018-08-30 Устройство для поворота реактивного сопла турбореактивного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018131379A RU2702325C1 (ru) 2018-08-30 2018-08-30 Устройство для поворота реактивного сопла турбореактивного двигателя

Publications (1)

Publication Number Publication Date
RU2702325C1 true RU2702325C1 (ru) 2019-10-07

Family

ID=68170999

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018131379A RU2702325C1 (ru) 2018-08-30 2018-08-30 Устройство для поворота реактивного сопла турбореактивного двигателя

Country Status (1)

Country Link
RU (1) RU2702325C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281264B1 (en) * 1987-02-26 1990-10-24 ROLLS-ROYCE plc Vectorable variable flow area propulsion nozzle
US5370312A (en) * 1993-07-13 1994-12-06 United Technologies Corporation Gas turbine engine exhaust nozzle
RU2162955C2 (ru) * 1999-04-06 2001-02-10 Открытое акционерное общество "Авиадвигатель" Поворотное осесимметричное сопло
RU33175U1 (ru) * 2003-05-07 2003-10-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Поворотное осесимметричное сопло турбореактивного двигателя
RU2310767C1 (ru) * 2006-04-28 2007-11-20 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Устройство для поворота реактивного сопла турбореактивного двигателя
RU2529283C1 (ru) * 2013-04-18 2014-09-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Осесимметричное сопло турбореактивного двигателя

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281264B1 (en) * 1987-02-26 1990-10-24 ROLLS-ROYCE plc Vectorable variable flow area propulsion nozzle
US5370312A (en) * 1993-07-13 1994-12-06 United Technologies Corporation Gas turbine engine exhaust nozzle
RU2162955C2 (ru) * 1999-04-06 2001-02-10 Открытое акционерное общество "Авиадвигатель" Поворотное осесимметричное сопло
RU33175U1 (ru) * 2003-05-07 2003-10-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Поворотное осесимметричное сопло турбореактивного двигателя
RU2310767C1 (ru) * 2006-04-28 2007-11-20 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Устройство для поворота реактивного сопла турбореактивного двигателя
RU2529283C1 (ru) * 2013-04-18 2014-09-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Осесимметричное сопло турбореактивного двигателя

Similar Documents

Publication Publication Date Title
US5672047A (en) Adjustable stator vanes for turbomachinery
JPH0236782B2 (ru)
US8932009B2 (en) Device for supporting a turbine ring, turbine having such a device, and turbine engine having such a turbine
US7024863B2 (en) Combustor attachment with rotational joint
JP2008002469A (ja) 可変ピッチステータ翼用の軸受
US4332523A (en) Turbine shroud assembly
US6887035B2 (en) Tribologically improved design for variable stator vanes
US11002284B2 (en) Impeller shroud with thermal actuator for clearance control in a centrifugal compressor
CN109307599B (zh) 试验用高温环境模拟系统、可磨耗试验机及温度控制方法
US20060216140A1 (en) Link device between an enclosure for passing cooling air and a stator nozzle in a turbomachine
EP1428986B1 (en) Torque tube bearing assembly
US11377221B2 (en) Inlet cowl deflection limiting strut
EP3106624B1 (en) Turbine engine tip clearance control system with rocker arms
US8925332B2 (en) Anti-fire seal assembly and nacelle comprising such a seal
RU2702325C1 (ru) Устройство для поворота реактивного сопла турбореактивного двигателя
US10415417B2 (en) Gas turbine engine active clearance control system
CN112431694A (zh) 一种使用柔性材料和外置桁架结构的可展开喷管
US9790794B2 (en) Propeller comprising a moveable dynamic scoop
US9988942B2 (en) Air exhaust tube holder in a turbomachine
Verma et al. Relation between shock unsteadiness and the origin of side-loads inside a thrust optimized parabolic rocket nozzle
US20050031238A1 (en) Inlet guide vane bushing having extended life expectancy
US11630031B2 (en) Engine-mounted instrumentation assembly
US20160356168A1 (en) Turbine engine tip clearance control system with later translatable slide block
US4466573A (en) Wet pipe device for turbojet engines
US3284048A (en) Variable area turbine nozzle