RU2699337C2 - Способ обработки пористых имплантатов на основе металлических материалов - Google Patents

Способ обработки пористых имплантатов на основе металлических материалов Download PDF

Info

Publication number
RU2699337C2
RU2699337C2 RU2018101750A RU2018101750A RU2699337C2 RU 2699337 C2 RU2699337 C2 RU 2699337C2 RU 2018101750 A RU2018101750 A RU 2018101750A RU 2018101750 A RU2018101750 A RU 2018101750A RU 2699337 C2 RU2699337 C2 RU 2699337C2
Authority
RU
Russia
Prior art keywords
medium
liquid
cellular structure
temperature
liquid medium
Prior art date
Application number
RU2018101750A
Other languages
English (en)
Other versions
RU2018101750A3 (ru
RU2018101750A (ru
Inventor
Юрий Николаевич Логинов
Сергей Владимирович Беликов
Степан Игоревич Степанов
Original Assignee
Акционерное Общество "Наука И Инновации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Наука И Инновации" filed Critical Акционерное Общество "Наука И Инновации"
Publication of RU2018101750A publication Critical patent/RU2018101750A/ru
Publication of RU2018101750A3 publication Critical patent/RU2018101750A3/ru
Application granted granted Critical
Publication of RU2699337C2 publication Critical patent/RU2699337C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)
  • Prostheses (AREA)

Abstract

Изобретение относится к изготовлению пористых материалов, в частности имплантатов, предпочтительно из титановых сплавов. Способ обработки пористых имплантатов на основе металлических материалов включает подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии. После изготовления ячеистой структуры ее поры заполняют жидкой средой, охлаждают до температуры ниже температуры фазового перехода среды из жидкого состояния в твердое и подвергают пластической деформации. Затем нагревают до температуры фазового перехода среды из твердого состояния в жидкое и удаляют жидкую среду из пор ячеистой структуры. Обеспечивается повышение прочностных свойств имплантата. 3 з.п. ф-лы, 4 ил., 4 пр.

Description

Предлагаемое изобретение относится к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно, из титановых сплавов.
Имплантаты предпочтительно изготавливают из пористых материалов. Наличие пор в материале позволяет решить несколько задач:
1. обеспечить меньшую массу имплантата;
2. снизить модуль упругости, за счет чего повышается эластичность конструкции имплантата;
3. обеспечить возможность соединения с живыми тканями организма за счет прорастания их через поровое пространство.
В медицинской практике применения имплантатов чаще всего используют титановые сплавы, как коррозионностойкие материалы, не отторгаемые организмом человека. Так, патентом RU 2397735 [1] и аналогичным патентом WO 2006/089792 [2] предложен способ изготовления медицинского имплантата, включающий прецизионное литье бета-титанового сплава. Применение бета-титанового сплава мотивировано возможностью понижения модуля упругости материала по отношению к альфа+бета титановым сплавам. Недостатком способа является получение беспористого материала, поэтому понижение модуля упругости не является значительным.
Известен также способ изготовления металлического компонента по патенту RU 2574536 [3], включающий последовательное наращивание детали из металлического базового компонента с помощью метода аддитивного изготовления путем сканирования энергетического луча, при этом применяют или селективное лазерное плавление (SLM) или селективное лазерное спекание (SLS) или электронно-лучевое плавление (ЕВМ). Поскольку целью изобретения являлось достижение максимальной прочности, то детали этим методом получаются беспористыми, что является недостатком с позиции получения имплантатов.
В соответствии с патентом RU 2320741 [4] пористый материал на основе никелида титана получают методом самораспространяющегося высокотемпературного синтеза из шихты, формуемой в цилиндрическом контейнере. Недостатком способа является неравномерное распределение пористости по объему имплантата по причине того, что процесс самораспространяющегося высокотемпературного синтеза не является полностью управляемым, он не позволяет создать строгую архитектуру материала.
Прочностные свойства материалов часто оценивают условным пределом текучести σ0,2, как механическим напряжением, при котором остаточная пластическая деформация образца при линейном напряженном состоянии составляет 0,2%. Следует отметить, что условный предел текучести является функцией степени деформации, т.е. при нагартовке величина σ0,2 возрастает.
Если имплантат изготавливается из технически чистого титана, то уравнение, описывающее упрочнение металла, выглядит следующим образом:
Figure 00000001
где ε - относительная деформация, выраженная в процентах.
Из формулы (1) следует, что в состоянии после воздействия на плавкий материал(титан) источником энергии материал имплантата не нагартован (ε=0) и поэтому характеризуется условным пределом текучести 500 МПа. В соответствии с формулой (1) воздействуя на материал пластической деформацией можно добиться увеличения прочности материала.
Сам прием упрочнения материала пластической деформацией получил широкое распространение. Причем в последнее время создается все больше технических решений, направленных на создание способов интенсивной, т.е. очень большой пластической деформации [5-7], в том числе, например, на исследование и усовершенствование равноканального углового прессования [8, 9]. Однако большая часть этих технических решений не может быть применена к имплантатам, поскольку они обладают слишком ажурной архитектурой, которая под воздействием больших пластических деформаций разрушается. Кроме того, при наложении чрезмерно высоких сжимающих средних напряжений структура пористого тела деформируется с уплотнением, чего желательно не допускать, поскольку теряется одно из преимуществ материала: повышенная пористость. Интенсивность процесса закрытия пор зависит от схемы напряженно-деформированного состояния [10, 11].
В качестве прототипа выбран способ обработки пористых имплантатов на основе металлических материалов, описанный в патенте RU 2589510 [12] и аналогичном патенте [13]. Способ включает подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии. Ячеистая структура образована изогнутыми ветвями, образующими ячейки при размере их размере 0,01…2000 мкм. В том числе рассмотрен вариант источника энергии такой как лазерный луч, расплавляющий порошок с целью послойного построения структуры в соответствии моделью, выбранной в базе данных компьютера. Сам материал может представлять собой металл или сплав, в том числе титан или титановый сплав.
Недостатком способа по прототипу является низкий уровень прочностных свойств материала. Действительно, металл, полученный из расплава обладает свойствами отожженного материала, в случае применения титана предел текучести оказывается на уровне 500 МПа, что следует, в частности, из формулы (1).
Предлагаемое изобретение направлено на достижение технического результата, заключающегося повышении прочностных свойств имплантата.
Предлагаемый способ обработки пористых имплантатов на основе металлических материалов включает подготовку модели ячеистой структуры и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии, при этом после изготовления ячеистой структуры ее погружают в жидкую среду, охлаждают до температуры ниже температуры фазового перехода среды из жидкого состояния в твердое и осуществляют пластическую деформацию, после чего проводят нагрев до температуры фазового перехода среды из твердого состояния в жидкое и удаляют жидкую среду из пор ячеистой структуры.
При подстановке в формулу (1) значения деформации 50% получим условный предел текучести 774 МПа, что на 54% выше начального значения. Вместе с тем, при осуществлении пластической деформации возникает следующая проблема. При наличии внутри материала ячеистых структур передача давления от деформирующего инструмента может осуществляться неравномерно. В режим пластической деформации попадают элементы структуры, где механические напряжения оказываются высокими. Это области, где передача давления осуществляется через тонкие перегородки. Остальные элементы пластически не деформируются, а поэтому и не упрочняются. Предложенная прототипом ячеистая структура, в виде изогнутых ветвей, образующих ячейки для равномерной передачи давления не пригодна. Следовательно, необходима такая схема напряженного состояния для пористой среды, в которой передача давления осуществляется равномерно.
Поэтому предлагается разместить в ячейках дополнительную среду с малым коэффициентом сжимаемости. В такой схеме нагружения передача давления происходит не только через перегородки между ячейками, но и через среду. Прием использования среды в жидком состоянии позволяет произвести заполнение ячеек пористой структуры. Прием перевода среды в твердое состояние позволяет создать условия для невытекания этой среды из порового пространства. Твердофазное состояние среды позволяет создать внутреннее давление в ячейках, за счет чего напряженное состояние приближается к всестороннему сжатию, что повышает пластичность металла. Дополнительный эффект возникает вследствие того, внутри ячейки оказывается не газовая среда, обладающая существенной сжимаемостью и из-за этого не передающая давления, а несжимаемая твердая среда, передающая это давление. В результате деформация распространяется по телу материала более равномерно.
В качестве жидкой среды можно использовать воду, как вещество, имеющее фазовый переход из жидкого состояния в твердое при умеренной температуре 0°С.
В качестве жидкой среды можно использовать расплав биосовместимых солей. При этом температура перехода этого расплава из твердого состояния в жидкое не должна быть выше температуры рекристаллизации металлического материала, чтобы не произошло разупрочнение этого материала при операции расплавления биосовместимых солей для их удаления из ячеистой структуры.
В качестве жидкой среды можно использовать расплав биосовместимых металлов или сплавов как веществ, обладающих достаточным уровнем пластических свойств.
При указанном воздействии пластические деформации оказываются постоянными по высоте деформируемого тела. Материал получает одинаковый уровень пластической деформации, следовательно, уровень механических свойств повышается, а сами свойства оказываются однородными. Возможность деформации осадкой без разрушения пористых структур из титана показана в источнике [14].
На фиг. 1 показана структура имплантата, имеющего в сечении ячейки круглой формы, заполненные веществом, имеющим фазовый переход из жидкого состояния в твердое при температуре ниже такого перехода. На фиг. 2 показана форма ячеек после пластической деформации осадкой. На фиг. 3 показана форма ячеек после проведения кантовки на 90° и повторной осадки. На фиг. 4 показана форма ячеек после проведения еще одной кантовки на 90° и осадки.
Пример 1. Осуществляют подготовку модели ячеистых структур и изготовляют ячеистую структуру при воздействии на плавкий материал, источником энергии. В качестве плавкого материала используют титан. Ячеистую структуру изготавливают с открытой пористостью, например, с формой пор в сечении в виде окружностей 1 (фиг. 1), разделенных перемычками 2. Ячеистую структуру погружают в жидкую среду, например, воду, охлаждают до температуры ниже температуры фазового перехода среды из жидкого состояния в твердое состояние, т.е. ниже 0°С. В результате вода застывает и не может покинуть поры при извлечении заготовки из жидкой среды. Ячеистую структуру подвергают пластической деформации осадкой, что показано на фиг. 2 воздействием силы P1 на торец структуры. В результате высота структуры уменьшается. Увеличение ширины структуры происходит за счет того, что в целом структура при наличии среды в порах представляет собой несжимаемый материал. Кроме того, наличие среды в порах позволяет создать противодавление со стороны пространства ячеек, что повышает пластичность металла. Если этот металл представляет собой титан, то в соответствии с формулой (1) при ε=20% получим условный предел текучести после операции σ0,2=500+67*200,36=697 МПа. Тем самым достигнуто упрочнение материала на 100*(697-500)/500=39%. После проведения операции упрочнения ячеистую структуру нагревают до температуры фазового перехода среды из твердого состояния в жидкое состояние, например, для воды выше 0°С и удаляют жидкую среду.
Пример 2. Достигнутое в условиях примера 1 упрочнение может быть увеличено за счет повторения операции осадки. Однако выполнять осадку в том же направлении нежелательно, поскольку форма заготовки будет существенно изменена, а профиль ячеек сильно вытянется в одном предпочтительном направлении и это приведет к повышенной анизотропии свойств. Поэтому заготовку при наличии в ячейках твердой среды кантуют на 90°С (фиг. 3) и осаживают в направлении действия силы Р2. В результате создается возможность вернуться к первоначальной форме пор (фиг. 4), которая обеспечивала макроизотропность материала в целом. Основываясь на расчете по формуле (1), можно показать дальнейшее увеличение прочностных свойств материала.
Пример 3. В качестве жидкой среды можно использовать расплав биосовместимых солей, имеющий температуру перехода из твердого состояния в жидкое не выше температуры рекристаллизации металлического материала. Желательно применять именно биосовместимые соли, не оказывающие вредного действия на организм человека, в случае, если их не удастся удалить из имплантата полностью. Одним из наиболее хорошо совместимым с организмом человека является хлорид натрия, с температурой фазового перехода из жидкого состояния в твердое: 801°С. При температуре выше обозначенной возможно насыщение ячеистой структуры расплавом. При пониженной температуре расплав в ячейках переходит в твердое состояние и способен передавать давление. При дальнейшем повышении температуры соль в виде жидкости можно удалить из ячеистой структуры. Для снижения температуры плавления солевого материала возможно смешивание хлорида натрия с другими хлоридами с созданием эвтектических соединений. Например, для соединения хлорида натрия и хлорида магния, также биосовместимой солью, удается снизить температуру фазового перехода до 420°С.
Пример 4. В качестве жидкой среды можно использовать расплав металлов или сплавов из числа биосовместимых материалов. В качестве такого биосовместимого металла может быть применен цинк, имеющий невысокую температуру плавления 420°С.
Таким образом здесь показано достижение технического результата, заключающегося повышении прочностных свойств материала имплантата при использовании приемов, указанных в формуле изобретения.

Claims (4)

1. Способ обработки пористых имплантатов на основе металлических материалов, включающий подготовку модели ячеистой структуры и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии, отличающийся тем, что после изготовления ячеистой структуры ее поры заполняют жидкой средой, охлаждают до температуры ниже температуры фазового перехода среды из жидкого состояния в твердое и осуществляют пластическую деформацию, после чего проводят нагрев до температуры фазового перехода среды из твердого состояния в жидкое и удаляют жидкую среду из пор ячеистой структуры.
2. Способ по п. 1, отличающийся тем, что в качестве жидкой среды используют воду.
3. Способ по п. 1, отличающийся тем, что в качестве жидкой среды используют расплав биосовместимых солей, имеющий температуру перехода из твердого состояния в жидкое не выше температуры рекристаллизации металлического материала.
4. Способ по п. 1, отличающийся тем, что в качестве жидкой среды используют расплав биосовместимых металлов или сплавов.
RU2018101750A 2017-11-24 2017-11-24 Способ обработки пористых имплантатов на основе металлических материалов RU2699337C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2017/000878 WO2019103641A1 (ru) 2017-11-24 2017-11-24 Способ обработки пористых имплантатов на основе металлических материалов

Publications (3)

Publication Number Publication Date
RU2018101750A RU2018101750A (ru) 2019-07-18
RU2018101750A3 RU2018101750A3 (ru) 2019-07-24
RU2699337C2 true RU2699337C2 (ru) 2019-09-04

Family

ID=66632085

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018101750A RU2699337C2 (ru) 2017-11-24 2017-11-24 Способ обработки пористых имплантатов на основе металлических материалов

Country Status (3)

Country Link
EA (1) EA037685B1 (ru)
RU (1) RU2699337C2 (ru)
WO (1) WO2019103641A1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2012309A (en) * 1978-01-09 1979-07-25 Carborundum Co Boric oxide or boric acid sintering aid for sintering ceramics
CA2438801A1 (en) * 2001-02-19 2002-08-29 Isotis N.V. Porous metals and metal coatings for implants
RU2353474C2 (ru) * 2007-04-23 2009-04-27 Российский химико-технологический университет им. Д.И. Менделеева Способ получения высокопористого материала
US20130011691A1 (en) * 2010-03-31 2013-01-10 Jianming Ruan Porous tantalum used for medical implantation and method for preparing the same
RU2589510C2 (ru) * 2009-08-19 2016-07-10 Смит Энд Нефью, Инк. Пористые структуры имплантатов
RU2623566C1 (ru) * 2016-09-15 2017-06-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления спеченных пористых изделий из псевдосплава на основе вольфрама

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100564316C (zh) * 2004-04-21 2009-12-02 陶氏环球技术公司 增强多孔陶瓷体的强度的方法和由其形成的陶瓷体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2012309A (en) * 1978-01-09 1979-07-25 Carborundum Co Boric oxide or boric acid sintering aid for sintering ceramics
CA2438801A1 (en) * 2001-02-19 2002-08-29 Isotis N.V. Porous metals and metal coatings for implants
RU2353474C2 (ru) * 2007-04-23 2009-04-27 Российский химико-технологический университет им. Д.И. Менделеева Способ получения высокопористого материала
RU2589510C2 (ru) * 2009-08-19 2016-07-10 Смит Энд Нефью, Инк. Пористые структуры имплантатов
US20130011691A1 (en) * 2010-03-31 2013-01-10 Jianming Ruan Porous tantalum used for medical implantation and method for preparing the same
RU2623566C1 (ru) * 2016-09-15 2017-06-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления спеченных пористых изделий из псевдосплава на основе вольфрама

Also Published As

Publication number Publication date
RU2018101750A3 (ru) 2019-07-24
WO2019103641A1 (ru) 2019-05-31
RU2018101750A (ru) 2019-07-18
EA037685B1 (ru) 2021-05-04
EA201800025A1 (ru) 2019-05-31

Similar Documents

Publication Publication Date Title
Wauthle et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures
Jin et al. Effects of heat treatment on microstructure and mechanical properties of selective laser melted Ti-6Al-4V lattice materials
Chen et al. Controlling the microstructure and mechanical properties of a metastable β titanium alloy by selective laser melting
Safaei et al. Additive manufacturing of NiTi shape memory alloy for biomedical applications: review of the LPBF process ecosystem
Bormann et al. Tailoring selective laser melting process parameters for NiTi implants
Kajima et al. Fatigue strength of Co–Cr–Mo alloy clasps prepared by selective laser melting
Andani et al. Mechanical and shape memory properties of porous Ni50. 1Ti49. 9 alloys manufactured by selective laser melting
Zhao et al. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting
Zhao et al. Superelastic behaviors of additively manufactured porous NiTi shape memory alloys designed with Menger sponge-like fractal structures
CN105143483B (zh) 具有可调节降解率的镁合金
JP4802277B2 (ja) 衝撃吸収構造体及びその製造方法
Jahangir et al. A review of additive manufacturing of magnesium alloys
Sergey et al. Fabrication and study of double sintered TiNi-based porous alloys
Mohamed et al. Nickel-titanium shape memory alloys made by selective laser melting: a review on process optimisation
Silva et al. Microstructure and hardness evolution in magnesium processed by HPT
Dobrzański et al. Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders
Luqman et al. Grain refinement mechanism and its effect on mechanical properties and biodegradation behaviors of Zn alloys–a review
RU2699337C2 (ru) Способ обработки пористых имплантатов на основе металлических материалов
Saedi Shape memory behavior of dense and porous NiTi alloys fabricated by selective laser melting
RU2673795C2 (ru) Способ производства пористых имплантатов на основе металлических материалов
Huang et al. Metallic meta-biomaterials: A critical review of fatigue behaviors
Butt et al. Revealing the effects of microarc oxidation on the mechanical and degradation properties of Mg-based biodegradable composites
Andani Modeling, simulation, additive manufacturing, and experimental evaluation of solid and porous NiTi
Khanlari et al. Synthesis of As-sintered 60NiTi parts with a high open porosity level
Mager et al. Research on producing complex metal parts with lattice structure by selective laser melting