RU2697473C1 - Способ измерения электропроводности тонких металлических пленок - Google Patents

Способ измерения электропроводности тонких металлических пленок Download PDF

Info

Publication number
RU2697473C1
RU2697473C1 RU2019100657A RU2019100657A RU2697473C1 RU 2697473 C1 RU2697473 C1 RU 2697473C1 RU 2019100657 A RU2019100657 A RU 2019100657A RU 2019100657 A RU2019100657 A RU 2019100657A RU 2697473 C1 RU2697473 C1 RU 2697473C1
Authority
RU
Russia
Prior art keywords
signal
measuring
software
eddy current
signals
Prior art date
Application number
RU2019100657A
Other languages
English (en)
Inventor
Алексей Владимирович Ишков
Сергей Федорович Дмитриев
Владимир Николаевич Маликов
Александр Олегович Катасонов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет"
Priority to RU2019100657A priority Critical patent/RU2697473C1/ru
Application granted granted Critical
Publication of RU2697473C1 publication Critical patent/RU2697473C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Изобретение относится к контрольно-измерительной технике и может применяться для бесконтактного измерения удельной электрической проводимости тонких металлических пленок толщиной от 0,05 до 5 мкм. Cпособ измерения электропроводности тонких пленок представляет собой оценку усредненной амплитуды сигнала вихретокового преобразователя с использованием измерительной системы, являющейся программно-аппаратным комплексом, включающей в себя персональный компьютер и программное обеспечение, а также блоки генерации, усиления и фильтрации. Согласно изобретению используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала, подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображаются на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, а электропроводность f(x) тонкой металлической пленки находят из уравнения f(x)=0,0809х-0,3696, где х - разность амплитуд двух сигналов С1 и С2. Изобретение обеспечивает снижение погрешности измерения электропроводности тонких пленок, имеющих малый коэффициент отражения, путем применения вихретокового метода с последующей аппаратной и программной обработкой, позволяющей проводить математическую обработку получаемого сигнала. 3 ил., 1 табл.

Description

Изобретение относится к контрольно-измерительной технике и может применяться для бесконтактного измерения удельной электрической проводимости тонких металлических пленок толщиной от 0,05 до 5 мкм.
Актуальность данного изобретения обусловлена необходимостью оперативного и точного контроля электромагнитных параметров материалов в процессе их производства и эксплуатации.
Известно устройство, предназначенное для измерения электропроводности диэлектрического материала (в том числе тонких пленок), включающее в себя генератор, приемник и излучатель электромагнитного сигнала, волновые тройники, фазовращатель, аттенюатор, детектор и блок обработки информации (Пат.RU 2528130 С1 МПК G01N 22/04, G01R 27/26 опубл. 10.09.2014). Недостатком устройства является влияние подложки пленки на результаты измерений. Это снижает точность измерений и требует дополнительной программной обработки для устранения помех, вносимых подложкой.
Прототипом заявляемого изобретения является устройство измерения электрической проводимости материалов с кюветой для контролируемой пленки, помещаемой в датчики, входы которых соединены с питающим генератором, а выходы - с блоком обработки (Пат.RU 156519 МПК G01R 27/00, В82В 1/00 опубл. 10.11.15). Устройство бесконтактного контроля электромагнитных параметров тонких пленок и наноматериалов содержит генератор, сигнал с выхода которого приходит на излучатель электромагнитного сигнала, и блок обработки. На пути следования сигнала к объекту контроля расположен разветвитель сигнала, один из выходов которого индуктивно соединен с приемником первоначального сигнала, выход которого подключен к одному из входов измерителя амплитуды и фазы, второй вход которого подключен к выходу приемника отраженного от объекта контроля сигнала, а выход измерителя амплитуды и фазы подключен к входу блока обработки и входу блока управления, выход которого подключен к генератору. Очевидна недостаточная точность измерений при контроле пленок, имеющих малый коэффициент отражения для выбранной длины волны излучения. Это связано с тем, что отраженный сигнал несет в себе информацию не только о контролируемом материале, но и о подложке, так как прошедший через пленку зондирующий сигнал отражается также и от подложки, накладывается на сигнал, отраженный от поверхности пленки, и искажает тем самым информационную картину процедуры измерения.
Технической задачей изобретения является снижение погрешности измерения электропроводности тонких пленок, имеющих малый коэффициент отражения, путем применения вихретокового метода с последующей аппаратной и программной обработкой, позволяющей проводить математическую обработку получаемого сигнала.
Заявляемый способ измерения электропроводности тонких пленок представляет собой оценку усредненной амплитуды двух сигналов вихретокового преобразователя (первый сигнал - от исследуемого образца тонкой металлической пленки, второй сигнал - от подложки), полученных с использованием измерительной системы, являющейся программно-аппаратным комплексом, включающим персональный компьютер и программное обеспечение, а также блоки генерации, усиления и фильтрации.
Способ осуществляется следующим образом: в работе используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки: задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображается на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, в качестве параметра, несущего информацию об электропроводности пленки (σ, МСм/м), используют разность усредненных амплитуд (<ΔU>, мВ) двух сигналов С1 и С2, а электропроводность тонкой металлической пленки находят из экспериментально полученного уравнения вида f(x)=0,0809x-0,3696, где х - разность амплитуд Δ<U>двух сигналов С1 и С2.
Блок генерации 1 (фиг. 1) осуществляет управление генератором 2, производящим формирование сигнала и, предварительно усилив с использованием усилителя 3, передающего его на возбуждающие катушки вихретоковых преобразователей 4, 5. Первый вихретоковый преобразователь размещают над электропроводящей металлической тонкой пленкой, размещенной на подложке, второй вихретоковый преобразователь размещают над подложкой (без металлической тонкой пленки). Возбуждающие катушки вихретоковых преобразователей при прохождении сигнала формируют электромагнитное поле, возбуждающее вихревые токи в тонкой металлической пленке, размещенной на подложке и в подложке. Электромагнитное поле вихревых токов воздействует на измерительные катушки 6, 7 вихретоковых преобразователей, наводя в них электродвижущие силы (ЭДС), несущие информацию об электропроводности подложки и тонкой металлической пленки в виде сигналов С1 и С2 соответственно. Сигналы усиливаются в усилителе 8 и проходят через блоки фильтрации 9, управляемые программным блоком фильтрации 10, связанным с программным блоком генерации 1. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Сигналы передаются на амплитудный детектор 11, через аналого-цифровой преобразователь 12, в программный блок обработки сигнала 13, где происходит вычисление усредненной амплитуды сигнала С1 и С2, затем происходит вычисление разности усредненной амплитуды сигнала С1 и амплитуды сигнала С2, после чего результаты измерений выводятся на экран персонального компьютера в виде графика и значения разности усредненных амплитуд сигналов. Полученное значение разности усредненных амплитуд сигналов сравнивается с эталонными значениями, заложенными в программное обеспечение, после чего производится определение электропроводности исследуемой пленки и вывод значения электропроводности на экран. Заявляемый способ отличается от прототипа:
• Измерением исключительно амплитуды сигнала, производимым детектором с линейной характеристикой преобразования.
• Наличием автоматического синхронного изменения рабочих частот сигнала с генератора и частот фильтрации принимаемого сигнала.
В качестве параметра, несущего информацию об электропроводности пленки, используется значение разности усредненных амплитуд сигналов от преобразователя, расположенного над тонкой металлической пленкой и преобразователем, расположенным над подложкой.
За счет использования сигналов от двух вихретоковых преобразователей, с возможностью быстрого и одновременного изменения рабочей частоты приборы и частоты фильтрации, удается избавиться от влияния зазора между вихретоковым преобразователем и контролируемым изделием при проведении измерений. Использование в качестве информативного параметра разности усредненных амплитуд сигналов позволяет реализовать измерительную систему без внесения погрешностей от подложки тонкой пленки с использованием исключительно амплитудного метода контроля. За счет вычитания амплитуд сигналов, несущих информацию о подложке и пленке, становится возможным повысить помехозащищенность сигнала, несущего информацию об объекте контроля.
Пример осуществления способа. В приспособлении для напыления первым закрепляется нагреватель, на поверхность которого наносится 0,005-0,01 г напыляемого сплава, затем над ним закрепляется Pt-Pd-подложка, которая помещается в стандартный держатель вакуумной камеры. Для улучшения электрического контакта и устранения прогибов нагревателя и подложки перед пропусканием тока через образец кратковременно (200-250 мс) включается система нагружения установки, после этого закрывается крышка вакуумной камеры, производится откачка системы до остаточного давления 10-3-10-4 Па. После откачки камеры осуществляется нагрев испарителя и подложки до температуры белого каления платины 3200°С путем пропускания постоянного тока 100 А напряжением 4 В в течение 200-250 мс; затем система охлаждается в течение 2-5 мин, производится напуск воздуха в камеру, открывается крышка и извлекается образец. После этого образец исследовался с использованием разработанного способа.
Блок генерации 1 управляет генератором 2, который передает сигнал частотой fl на возбуждающие катушки 4, 5 вихретоковых преобразователей, которые создают электромагнитное поле, индуцирующее вихревые токи в электропроводящем объекте контроля. Сигналы проходят усилитель мощности 3, где их напряжение возрастает до 3 В, необходимых для проведения измерений и попадают на возбуждающие катушку 4, 5 вихретоковых преобразователей. В результате возбуждающие катушки создают магнитное поле, проникающее в исследуемую тонкую пленку и подложку. Магнитное поле наводит вихревые токи в исследуемом образце, которые, в свою очередь, наводят напряжение в измерительных катушках 6, 7. Напряжение в виде сигналов С1 и С2 несет информацию о подложке и тонкой пленке соответственно. Сигналы проходит через блок усиления 8 и переходит на блок фильтрации сигнала 9, управляемый программным блоком фильтрации 10, связанным с программным блоком генерации 1. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Два сигнала передаются на амплитудный детектор 11, через аналого-цифровой преобразователь 12, в программный блок обработки сигнала 13 и результаты измерений выводятся на экран персонального компьютера в виде графика и значения разности усредненных амплитуд двух сигналов С1 и С2. Электропроводность (σ, МСм/м) определяется согласно экспериментально полученному уравнению f(x)=0,0809х-0,3696, по графику (фиг. 2.), построенному по образцам пленок с известной электропроводностью, где точка 1 соответствует образцу алюминия с электропроводностью 1 МСм/м и значения разности амплитуд сигнала 16,8 мВ, точка 2 соответствует образцу алюминия с электропроводностью 1,23 МСм/м и значения разности амплитуд сигнала 19,6 мВ. Пример распределения сигнала, полученного на образце тонкой пленки из алюминия с неизвестной электропроводностью, представлен на фиг. 3. В области А1 усредненная амплитуда сигнала составила 29 мВ, в области А2 - 10,8 мВ. Разница между амплитудой в области А1 и амплитудой в области А2 (Δ<U>) составляет 18,2 мВ. В соответствии с фиг. 2 подставляя полученную разницу в уравнение f(x)=0,0809х-0,3696, вычисляют значение электропроводности тонкой пленки из алюминия - 1,10278 МСм/м. Представленный способ применялся для измерения электропроводности тонких пленок, изготовленных из других проводящих материалов. Данные измерений представлены в табл. 1. При этом, разность амплитуд<AU>соответствовала переменной х, а электропроводность σ соответствовала f(x) в уравнении f(x)=0,0809х-0,3696.
Figure 00000001

Claims (1)

  1. Способ измерения электропроводности тонких металлических пленок, представляющий собой оценку значения разности усредненных амплитуд двух сигналов вихретоковых преобразователей с использованием измерительной системы, включающей вихретоковый преобразователь, блоки генерации, персональный компьютер и программное обеспечение, отличающийся тем, что в работе используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала, подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображаются на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, а электропроводность f(x) тонкой металлической пленки находят из уравнения f(x)=0,0809х-0,3696, где x - разность амплитуд двух сигналов С1 и С2.
RU2019100657A 2019-01-10 2019-01-10 Способ измерения электропроводности тонких металлических пленок RU2697473C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019100657A RU2697473C1 (ru) 2019-01-10 2019-01-10 Способ измерения электропроводности тонких металлических пленок

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019100657A RU2697473C1 (ru) 2019-01-10 2019-01-10 Способ измерения электропроводности тонких металлических пленок

Publications (1)

Publication Number Publication Date
RU2697473C1 true RU2697473C1 (ru) 2019-08-14

Family

ID=67640429

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019100657A RU2697473C1 (ru) 2019-01-10 2019-01-10 Способ измерения электропроводности тонких металлических пленок

Country Status (1)

Country Link
RU (1) RU2697473C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740052A (zh) * 2022-03-30 2022-07-12 上海交通大学 金属箔电导率测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1626191A1 (ru) * 1988-07-20 1991-02-07 Физико-Энергетический Институт Ан Латвсср Способ определени поверхностного сопротивлени провод щей пленки
CN101324644A (zh) * 2008-07-03 2008-12-17 南京大学 金属薄膜在微波段频率下电导率的测量方法
RU2528130C1 (ru) * 2013-03-29 2014-09-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения свойства диэлектрического материала
RU156519U1 (ru) * 2015-07-08 2015-11-10 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Устройство бесконтактного контроля электромагнитных параметров тонких плёнок и наноматериалов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1626191A1 (ru) * 1988-07-20 1991-02-07 Физико-Энергетический Институт Ан Латвсср Способ определени поверхностного сопротивлени провод щей пленки
CN101324644A (zh) * 2008-07-03 2008-12-17 南京大学 金属薄膜在微波段频率下电导率的测量方法
RU2528130C1 (ru) * 2013-03-29 2014-09-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения свойства диэлектрического материала
RU156519U1 (ru) * 2015-07-08 2015-11-10 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Устройство бесконтактного контроля электромагнитных параметров тонких плёнок и наноматериалов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740052A (zh) * 2022-03-30 2022-07-12 上海交通大学 金属箔电导率测试方法

Similar Documents

Publication Publication Date Title
Thiele et al. Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity
Bernieri et al. Multifrequency excitation and support vector machine regressor for ECT defect characterization
RU2507506C2 (ru) Свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле
Huang et al. Measuring coaxial hole size of finite-size metallic disk based on a dual-constraint integration feature using multifrequency eddy current testing
Janousek et al. Novel insight into swept frequency eddy-current non-destructive evaluation of material defects
RU2697473C1 (ru) Способ измерения электропроводности тонких металлических пленок
CN107991536B (zh) 一种频域介电响应测试的温度校正方法及设备
Huang et al. An eddy current testing method for thickness and conductivity measurement of non-magnetic material
US5847562A (en) Thickness gauging of single-layer conductive materials with two-point non linear calibration algorithm
CN109540053B (zh) 一种基于单线圈的金属母材及表面非金属涂层快速测厚方法
Pavlyuchenko et al. Imaging electric signals of a magnetic field transducer with hysteretic interference for testing metals in pulsed magnetic fields
Betta et al. Thickness measurements with eddy current and ultrasonic techniques
JPH05256824A (ja) レーザで誘導される渦電流の像形成による改善された材料の特性表示方法及びその装置
Cerro et al. Probe localization by magnetic measurements in eddy-current nondestructive testing environment
CN113092420B (zh) 一种基于里德堡原子的工件缺陷测量装置及方法
Sardellitti et al. Metrological characterization of an ECT method for thickness estimation based on dimensional analysis
US4803428A (en) Method and apparatus for non-destructive material testing, particularly for determination of thickness of coating layers on a base material by measuring electrical conductivity or magnetic permeability at the finished specimen
CN112557515B (zh) 声发射传感器试验系统
Dmitriev et al. Subminiature eddy current transducers for thickness measurement problems
JP2010197316A (ja) 高周波材料定数測定システム
RU2677081C1 (ru) Вихретоковая измерительная система для контроля качества и толщины упрочняющих покрытий на металлической основе
Auld et al. Eddy-current reflection probes: Theory and experiment
Wolframm et al. PCB Coil Enables In Situ Calibration of Magnetoelectric Sensor Systems
KR20150143200A (ko) 금속 전기 전도도 측정기의 위상각 측정 장치 및 측정 방법
Binns et al. Detection of Phase Transformation in Hot Strip Steel Samples Using A Multi-Frequency Electromagnetic Impedance Measuring Node