RU2694135C1 - Arc-фильтр верхних частот с независимой подстройкой основных параметров - Google Patents

Arc-фильтр верхних частот с независимой подстройкой основных параметров Download PDF

Info

Publication number
RU2694135C1
RU2694135C1 RU2018132374A RU2018132374A RU2694135C1 RU 2694135 C1 RU2694135 C1 RU 2694135C1 RU 2018132374 A RU2018132374 A RU 2018132374A RU 2018132374 A RU2018132374 A RU 2018132374A RU 2694135 C1 RU2694135 C1 RU 2694135C1
Authority
RU
Russia
Prior art keywords
operational amplifier
inverting
input
output
resistor
Prior art date
Application number
RU2018132374A
Other languages
English (en)
Inventor
Дарья Юрьевна Денисенко
Николай Владимирович Бутырлагин
Николай Николаевич Прокопенко
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Priority to RU2018132374A priority Critical patent/RU2694135C1/ru
Application granted granted Critical
Publication of RU2694135C1 publication Critical patent/RU2694135C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/12Bandpass or bandstop filters with adjustable bandwidth and fixed centre frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1291Current or voltage controlled filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в обеспечении независимой подстройки таких параметров амплитудно-частотной характеристики, как частоты полюса, затухания полюса, а также коэффициента передачи в полосе пропускания, а также расширении динамического диапазона путем увеличения амплитуды неискаженного выходного синусоидального сигнала фильтра. Фильтр содержит первый и второй операционные усилители, настройка параметров которых определяется возможностью изменения сопротивлений резисторов, включенных в заявленную схему фильтра. 2 з.п. ф-лы, 7 ил.

Description

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.
Активные RC-фильтры верхних частот (ФВЧ) относятся к числу распространенных аналоговых устройств, определяющих качественные показатели многих радиотехнических устройств, в том числе цифровой обработки сигналов [1-21].
Ближайшим прототипом заявляемого устройства является АRC-фильтр по патенту RU 2149500 («Активный RC-фильтр верхних частот», опубл.: 20.05.2000). Он содержит (фиг. 1) вход 1 и выход 2 устройства, первый 3 операционный усилитель, выход которого подключен к выходу 2 устройства, первый 4 и второй 5 последовательно соединенные резисторы, включённые между выходом первого 3 операционного усилителя и общей шиной источников питания 6, причем общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 операционного усилителя, последовательно соединенные третий 7 резистор и первый 8 конденсатор, включенные между выходом первого 3 операционного усилителя и его неинвертирующим входом, причем к общему узлу третьего резистора 7 и первого 8 конденсатора подключен первый вывод второго 9 конденсатора, четвертый 10, пятый 11 и шестой 12 резисторы.
Существенный недостаток АRC-фильтра-прототипа фиг. 1, а также других известных фильтров рассматриваемого класса [1-21], состоит в том, что в процессе подстройки его одного параметра, например, затухания или частоты полюса, изменяется третий важный параметр амплитудно-частотной характеристики (АЧХ) – коэффициент передачи в полосе пропускания. Это значительно усложняет производство ARC-фильтров данного класса.
Основная задача предполагаемого изобретения состоит в создании схемы АRC-фильтра верхних частот, которая обеспечивает независимую подстройку всех трех основных параметров АЧХ – частоты полюса (ωs), затухания полюса (ds), а также коэффициента передачи в полосе пропускания (М).
Дополнительная задача - расширение динамического диапазона по выходу устройства (при заданном напряжении питания) – увеличение амплитуды неискаженного выходного синусоидального сигнала ФВЧ для положительных и отрицательных полуволн до уровня, при котором отсутствуют заметные нелинейные искажения.
Поставленные задачи достигаются тем, что в ARC-фильтре верхних частот фиг. 2, содержащем вход 1 и выход 2 устройства, первый 3 операционный усилитель, выход которого подключен к выходу 2 устройства, первый 4 и второй 5 последовательно соединенные резисторы, включённые между выходом первого 3 операционного усилителя и общей шиной источников питания 6, причем общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 операционного усилителя, последовательно соединенные третий 7 резистор и первый 8 конденсатор, включенные между выходом первого 3 операционного усилителя и его неинвертирующим входом, причем к общему узлу третьего резистора 7 и первого 8 конденсатора подключен первый вывод второго 9 конденсатора, четвертый 10, пятый 11 и шестой 12 резисторы, предусмотрены новые элементы и связи – четвертый 10 резистор включён между инвертирующим входом первого 3 операционного усилителя и инвертирующим входом дополнительного операционного усилителя 13, пятый 11 резистор включен между выходом и инвертирующим входом второго 13 дополнительного операционного усилителя, шестой 12 резистор включен между входом 1 устройства и инвертирующим входом дополнительного операционного усилителя 13, выход которого соединен со вторым выводом второго 9 конденсатора, причем неинвертирующий вход первого 3 операционного усилителя связан с общей шиной источников питания 6 через дополнительный резистор 14, а неинвертирующий вход дополнительного операционного усилителя 13 соединен с общей шиной источника питания 6.
На чертеже фиг. 1 показана схема фильтра-прототипа, а на чертеже фиг. 2 – схема заявляемого АRC-фильтра верхних частот в соответствии с п. 1 формулы изобретения.
На чертеже фиг. 3 представлена схема заявляемого устройства в соответствии с п. 2 формулы изобретения.
На чертеже фиг. 4 показан частный вариант построения цепи симметрирования статического режима мультидифференциальных операционных усилителей в соответствии с п. 3 формулы изобретения.
На чертеже фиг. 5 приведены графики изменения АЧХ и фазо-частотной (ФЧХ) характеристик предлагаемого ФВЧ фиг. 2 при настройке частоты полюса (ωs) четвертым 10 и пятым 11 резисторами (здесь и далее графики ФЧХ будут приводиться без учета дополнительного фазового сдвига -1800, вносимого первым 3 и вторым 13 дополнительным операционными усилителями).
На чертеже фиг. 6 представлены АЧХ и ФЧХ схемы фиг. 2 при настройке затухания полюса (ds) с помощью первого 4 и второго 5 последовательно соединенных резисторов.
На чертеже фиг. 7 показаны графики изменения АЧХ схемы фиг. 2 при настройке коэффициента передачи М с помощью шестого 12 резистора.
АRC-фильтр верхних частот с независимой подстройкой основных параметров фиг. 2 содержит вход 1 и выход 2 устройства, первый 3 операционный усилитель, выход которого подключен к выходу 2 устройства, первый 4 и второй 5 последовательно соединенные резисторы, включённые между выходом первого 3 операционного усилителя и общей шиной источников питания 6, причем общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 операционного усилителя, последовательно соединенные третий 7 резистор и первый 8 конденсатор, включенные между выходом первого 3 операционного усилителя и его неинвертирующим входом, причем к общему узлу третьего резистора 7 и первого 8 конденсатора подключен первый вывод второго 9 конденсатора, четвертый 10, пятый 11 и шестой 12 резисторы. Четвертый 10 резистор включён между инвертирующим входом первого 3 операционного усилителя и инвертирующим входом дополнительного операционного усилителя 13, пятый 11 резистор включен между выходом и инвертирующим входом второго 13 дополнительного операционного усилителя, шестой 12 резистор включен между входом 1 устройства и инвертирующим входом дополнительного операционного усилителя 13, выход которого соединен со вторым выводом второго 9 конденсатора, причем неинвертирующий вход первого 3 операционного усилителя связан с общей шиной источников питания 6 через дополнительный резистор 14, а неинвертирующий вход дополнительного операционного усилителя 13 соединен с общей шиной источника питания 6.
На чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, в качестве первого 3 и дополнительного 13 операционных усилителей используются соответствующие первый 15 и второй 16 мультидифференциальные операционные усилители с двумя входными портами, причем схема включения инвертирующего и неинвертирующего входов первого входного порта первого 15 мультидифференциального операционного усилителя соответствует схеме включения инвертирующего и неинвертирующего входов первого 3 операционного усилителя по п.1 формулы изобретения, схема включения инвертирующего и неинвертирующего входов первого порта второго 16 мультидифференциального операционного усилителя соответствует схеме включения инвертирующего и неинвертирующего входов дополнительного операционного усилителя 13 по п.1 формулы изобретения, инвертирующий и неинвертирующие входы второго порта первого 15 мультидифференциального операционного усилителя связаны со первым 17 и вторым 18 входами первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя, инвертирующий и неинвертирующие входы второго порта второго 16 мультидифференциального операционного усилителя связаны со первым 20 и вторым 21 входами второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя. В частном случае первая 19 цепь симметрирования статического режима первого 15 мультидифференциального операционного усилителя и вторая 22 цепь симметрирования статического режима второго 16 мультидифференциального операционного усилителя реализуются на основе первого 23 и второго 24 вспомогательных резисторов (фиг. 3).
На чертеже фиг. 4, в соответствии с п. 3 формулы изобретения, первая 19 цепь симметрирования статического режима первого 15 мультидифференциального операционного усилителя и вторая 22 цепь симметрирования статического режима второго 16 мультидифференциального операционного усилителя включают первый 23 и второй 24 вспомогательные резисторы, причем первый 23 вспомогательный резистор первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя включен между её первым 17 входом и общей шиной источников питания 6, второй 24 вспомогательный резистор первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя включен между её вторым 18 входом и общей шиной источников питания 6, первый 23 вспомогательный резистор второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя включен между её первым 20 входом и общей шиной источников питания 6, а второй 24 вспомогательный резистор второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя включен между её вторым 21 входом и общей шиной источников питания 6. В ряде случаев, для регулировки уровня постоянной составляющей напряжения на выходах первого 15 и второго 16 мультидифференциальных операционных усилителях перспективно применение микросхемы цифрового потенциометра в качестве элемента 25 и вспомогательного источника напряжения 26 (фиг. 4). При таком построении ФВЧ обеспечивается регулировка динамического диапазона изменения выходных напряжений первого 15 и второго 16 мультидифференциальных операционных усилителей, в пределах которого выходной синусоидальный сигнала имеет одинаковые амплитуды неискаженного выходного напряжения для положительной и отрицательной полярности. В схеме ФВЧ-прототипа фиг. 1 на выходах первого 3 и дополнительного 13 операционных усилителей всегда присутствует постоянная составляющая выходного напряжения, обусловленная «неидеальностью» операционных усилителей (входные токи, напряжение смещение нуля). Как следствие, динамический диапазон известного устройства по выходу, особенно при больших сопротивлениях применяемых резисторов, оказывается небольшим.
Рассмотрим работу АRC-фильтра верхних частот, представленного на чертеже фиг. 2.
Одной из проблем проектирования прецизионных ФВЧ является обеспечение их основных заданных параметров в условиях разброса и нестабильности частотозадающих резисторов и конденсаторов [17,18]. Реализовать активный RC-фильтр с прецизионными характеристиками возможно только с применением пассивных элементов, имеющих допуски на отклонения их номинальных значений не более 0,1%. Если производители электронных компонентов выпускают резисторы с такими допусками и менее, то конденсаторы с допусками менее 1% не найти [18].
На практике прецизионность ФВЧ обеспечивается подстройкой пассивных элементов с помощью цифровой коммутации пассивных элементов, цифровых потенциометров или специальных технологических процессов подгонки резисторов [17,18], например, лазерной подгонкой резисторов в процессе работы фильтра. Однако в известных схемах ФВЧ второго порядка [17,18] при настройке одного параметра, например, частоты полюса (ωs), изменяется другой параметр – затухание полюса (ds) или коэффициент передачи (М) в полосе пропускания. Это существенно усложняет производство ФВЧ как микросхемы, так как приводит к итерационному процессу подстройки параметров [17,18].
Для обеспечения независимой подстройки основных параметров ФВЧ предлагается схема фиг. 2. В этой схеме ФВЧ за счет введения новых обратных связей, а также при больших коэффициентах усиления операционных усилителей, возможна независимая подстройка трех основных параметров – частоты полюса ωs, затухания полюса ds и коэффициента передачи в полосе пропускания М.
Покажем это математически. Свойства схемы стандартного ФВЧ второго порядка, в том числе фиг. 2, определяются его передаточной функцией
Figure 00000001
где М – коэффициент передачи фильтра в полосе пропускания, ωs – частота полюса, ds – затухание полюса.
Ниже представлены уравнения для основных параметров заявляемой схемы ФВЧ фиг. 2:
- коэффициент передачи
Figure 00000002
- частота полюса
Figure 00000003
- затухание полюса
Figure 00000004
Независимая настройка параметров ФВЧ возможна тогда, когда при настройке последующего параметра схемы не потребуется изменять сопротивления резисторов, определяющие уже настроенный параметр.
Из анализа формул (2)-(4) следует, что в предлагаемом ФВЧ фиг. 2 такая настройка осуществима в следующей последовательности:
Первый этап: настраивается частота полюса ωs путем изменения сопротивлений четвертого 10 и пятого 11 резисторов. Далее номиналы этих резисторов фиксируются.
Второй этап: настраивается затухание полюса ds путем изменения сопротивлений первого 4 и второго 5 резисторов. На втором этапе сопротивления четвертого 10 и пятого 11 резисторов не изменяются.
Третий этап: настраивается коэффициент передачи М путем изменения сопротивления шестого 12 резистора. На этом этапе сопротивления первого 4, четвертого 10 и пятого 11 резисторов и не изменяются.
Эффективность и последовательность такого алгоритма настройки ФВЧ подтверждаются результатами компьютерного моделирования (фиг. 5-7).
Следует заметить, что другие известные ARC-фильтры верхних частот [17-21], выполненные на двух операционных усилителях, свойствами предлагаемой схемы фиг. 2 не обладают.
По виду ФЧХ фиг. 5 можно судить, что частота полюса ωs, на которой фазовый сдвиг равен 900, изменяется (за счет четвертого 10 и пятого 11 резисторов) в относительно широких пределах.
По виду ФЧХ фиг. 6 можно установить, что при изменении сопротивлений первого 4 и второго 5 резисторов изменяется наклон ФЧХ в области частоты полюса ωs и изменяется подъем АЧХ на этой частоте. При этом частота полюса остается неизменной (ωs=const). При настройке затухания полюса изменяются частоты, на которых фазовый сдвиг составляет 450 и 1350.
Рассмотрение фазо-частотной характеристики фиг. 7 показывает, что шестой 12 резистор не изменяет ее параметры, т.е. частота ωs и затухание ds полюса ФВЧ остаются неизменными. При этом изменяется только коэффициент передачи фильтра в полосе пропускания М (общий уровень АЧХ).
Следует заметить, что предложенная процедура настройки активного RC-фильтра верхних частот применима при использовании микросхем цифровых потенциометров, а также при его изготовлении по гибридно-пленочной технологии. В схеме фиг. 2 уменьшать и увеличивать величину настраиваемого параметра возможно за счет увеличения сопротивлений пар отдельных пятого 11 и четвертого 10 резисторов (R11/R10), первого 4 и второго 5 резисторов (R4/R5) и пятого 11 и шестого 12 резисторов (R11/R12). При этом подгонка резисторов (резка тела резистора) приводит только к увеличению их сопротивлений.
Один из важных параметров ФВЧ фиг. 2 – это динамический диапазон изменения выходного напряжения первого 3 и дополнительного 13 операционных усилителей (ОУ), который определяется, с одной стороны спектром обрабатываемого сигнала, а также уровнем постоянных составляющих выходного напряжения данных ОУ. При этом, за счет «неидеальности» ОУ (наличия входных токов, напряжения смещения нуля), а также при больших сопротивлениях первого 4, пятого 11 резисторов и др., напряжение покоя на выходах первого 3 и дополнительного 13 операционных усилителей могут существенно отличатся от нулевого значения. Это отрицательно сказывается на динамическом диапазоне ФВЧ. Для устранения данного недостатка, в соответствии с п. 2 и п. 3 формулы изобретения, в предлагаемом ФВЧ фиг. 3 предусмотрено применение первого 15 и второго 16 мультидифференциальных операционных усилителей, а также первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя и второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя. Такое схемотехническое решение позволяет обеспечить управление уровнем постоянной составляющей на выходах первого 15 и второго 16 мультидифференциальных операционных усилителей за счет изменения сопротивлений первого 23 вспомогательного резистора второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя и второго 24 вспомогательного резистора второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя (фиг. 3). Возможно также применение микросхемы цифрового потенциометра в качестве элемента 25 и вспомогательного источника напряжения 26 (фиг. 4). Причем такое управление статическим уровнем выходного напряжения первого 15 и второго 16 мультидифференциальных операционных усилителей, т.е. управление динамическим диапазоном по их выходам не зависит от выбора частотозадающих резисторов схемы, т.к. осуществляется по вторым портам первого 15 и второго 16 мультидифференциальных операционных усилителей. В результате, на основе предлагаемой схемы ФВЧ реализуются ограничители спектра, в которых динамический диапазон изменения выходных напряжений, который можно характеризовать максимально возможной амплитудой неискаженного выходного синусоидального сигнала, оказывается выше, чем в схеме ФВЧ-прототипа. В конечном итоге это уменьшает уровень нелинейных искажений, вносимых в ФВЧ, что особенно заметно при малых напряжениях питания операционных усилителей.
Таким образом, предлагаемый ФВЧ имеет существенные преимущества в сравнении с известными схемотехническими решениями.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент RU 2149500, 2000 г.
2. Патент SU 1755364, 1992 г.
3. Патент SU 298059, 1971 г.
4. Патент SU 1758833, 1992 г.
5. Патент RU 2388140, 2010 г.
6. Патент RU 2293436, 2007 г.
7. Патент RU 2089998, 1997 г.
8. Патент RU 2058663, 1995 г.
9. Патент SU 1777233, 1992 г.
10. Патент SU 2089041, 1997 г.
11. Патент SU 799107, 1981 г.
12. Патент SU 1788570, 1993 г.
13. Патент RU 2019023, 1994 г.
14. Патент US 9240774 B2, 2016 г.
15. Патент SU 1732431, 1992 г.
16. Л. Фолкенберри, “Применения операционных усилителей в линейных”, ИС. - М.: Мир, 1985, с.223
17. G. S. Moschytz, P. Horn, “Active filter design handbook : for use with programmable pocket calculators and minicomputers”, Chichester England, New York, J. Wiley, 1981, 316 p.
18. S.А. Bukashkin, V.P. Vlasov, B.F. Zmiy, “Reference on ARC-circuit design”, under the editorship of А.А. Lanne, Мoscow, Radio and signal communication, 1984, 368 p.
19. R.P. Sallen and E.L. Key. “A Practical Method of Designing RC Active Filters”, IRE Trans. Circuit Theory. Vol. CT-2, March 1955, pp. 78-85.
20. D. Jurisic and G. S. Moschytz, "Low-noise active-RC low-, high- and band-pass allpole filters using impedance tapering," 10th Mediterranean Electrotechnical Conference, Information Technology and Electrotechnology for the Mediterranean Countries (MeleCon 2000), (Cat. No.00CH37099), vol.2., 2000, pp. 591-594. DOI: 10.1109/MELCON.2000.880002.
21. M. Fortunato, “A new filter topology for analog high-pass filters”, TI Analog Applications Journal, 2008, pp. 18-24.

Claims (3)

1. ARC-фильтр верхних частот с независимой подстройкой основных параметров, содержащий вход (1) и выход (2) устройства, первый (3) операционный усилитель, выход которого подключен к выходу (2) устройства, первый (4) и второй (5) последовательно соединенные резисторы, включённые между выходом первого (3) операционного усилителя и общей шиной источников питания (6), причем общий узел первого (4) и второго (5) последовательно соединенных резисторов связан с инвертирующим входом первого (3) операционного усилителя, последовательно соединенные третий (7) резистор и первый (8) конденсатор, включенные между выходом первого (3) операционного усилителя и его неинвертирующим входом, причем к общему узлу третьего резистора (7) и первого (8) конденсатора подключен первый вывод второго (9) конденсатора, четвертый (10), пятый (11) и шестой (12) резисторы, отличающийся тем, что четвертый (10) резистор включён между инвертирующим входом первого (3) операционного усилителя и инвертирующим входом  дополнительного операционного усилителя (13), пятый (11) резистор включен между выходом и инвертирующим входом второго (13) дополнительного операционного усилителя, шестой (12) резистор включен между входом (1) устройства и инвертирующим входом дополнительного операционного усилителя (13), выход которого соединен со вторым выводом второго (9) конденсатора, причем неинвертирующий вход первого (3) операционного усилителя связан с общей шиной источников питания (6) через дополнительный резистор (14), а неинвертирующий вход дополнительного операционного усилителя (13) соединен с общей шиной источника питания (6).
2. ARC-фильтр верхних частот с независимой подстройкой основных параметров по п.1, отличающийся тем, что в качестве первого (3) и дополнительного (13) операционных усилителей используются соответствующие первый (15) и второй (16) мультидифференциальные операционные усилители с двумя входными портами, причем схема включения инвертирующего и неинвертирующего входов первого входного порта первого (15) мультидифференциального операционного усилителя соответствует схеме включения инвертирующего и неинвертирующего входов первого (3) операционного усилителя по п.1 формулы изобретения, схема включения инвертирующего и неинвертирующего входов первого порта второго (16) мультидифференциального операционного усилителя соответствует схеме включения инвертирующего и неинвертирующего входов дополнительного операционного усилителя (13) по п.1 формулы изобретения, инвертирующий и неинвертирующие входы второго порта первого (15) мультидифференциального операционного усилителя связаны с первым (17) и вторым (18) входами первой (19) цепи симметрирования статического режима первого (15) мультидифференциального операционного усилителя, инвертирующий и неинвертирующие входы второго порта второго (16) мультидифференциального операционного усилителя связаны с первым (20) и вторым (21) входами второй (22) цепи симметрирования статического режима второго (16) мультидифференциального операционного усилителя.
3. ARC-фильтр верхних частот с независимой подстройкой основных параметров по п.2, отличающийся тем, что первая (19) цепь симметрирования статического режима первого (15) мультидифференциального операционного усилителя и вторая (22) цепь симметрирования статического режима второго (16) мультидифференциального операционного усилителя включают первый (23) и второй (24) вспомогательные резисторы, причем первый (23) вспомогательный резистор первой (19) цепи симметрирования статического режима первого (15) мультидифференциального операционного усилителя включен между её первым (17) входом и общей шиной источников питания (6), второй (24) вспомогательный резистор первой (19) цепи симметрирования статического режима первого (15) мультидифференциального операционного усилителя включен между её вторым (18) входом и общей шиной источников питания (6), первый (23) вспомогательный резистор второй (22) цепи симметрирования статического режима второго (16) мультидифференциального операционного усилителя включен между её первым (20) входом и общей шиной источников питания (6), а второй (24) вспомогательный резистор второй (22) цепи симметрирования статического режима второго (16) мультидифференциального операционного усилителя включен между её вторым (21) входом и общей шиной источников питания (6).
RU2018132374A 2018-09-11 2018-09-11 Arc-фильтр верхних частот с независимой подстройкой основных параметров RU2694135C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018132374A RU2694135C1 (ru) 2018-09-11 2018-09-11 Arc-фильтр верхних частот с независимой подстройкой основных параметров

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018132374A RU2694135C1 (ru) 2018-09-11 2018-09-11 Arc-фильтр верхних частот с независимой подстройкой основных параметров

Publications (1)

Publication Number Publication Date
RU2694135C1 true RU2694135C1 (ru) 2019-07-09

Family

ID=67252440

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018132374A RU2694135C1 (ru) 2018-09-11 2018-09-11 Arc-фильтр верхних частот с независимой подстройкой основных параметров

Country Status (1)

Country Link
RU (1) RU2694135C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU200408U1 (ru) * 2019-07-22 2020-10-22 Федеральное государственное бюджетное научное учреждение "Институт экспериментальной медицины" (ФГБНУ "ИЭМ") Полосовой фильтр с перестраиваемым частотным диапазоном для непрерывного спектрального анализа кардиоинтервалограммы
RU2748610C1 (ru) * 2020-12-08 2021-05-28 федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» (ДГТУ) Широкополосный полосовой фильтр четвертого порядка с одним входом и парафазным выходом
RU2800970C1 (ru) * 2023-03-24 2023-08-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Фильтр низких частот

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2149500C1 (ru) * 1999-06-01 2000-05-20 Таганрогский государственный радиотехнический университет Активный rc-фильтр верхних частот
US20040066226A1 (en) * 2002-09-30 2004-04-08 Texas Instruments Incorporated Minimizing noise in data channels implemented using frequency division multiplexing
WO2008066552A1 (en) * 2006-11-30 2008-06-05 Zyion, Inc. Active lc band pass filter
WO2015044703A1 (en) * 2013-09-27 2015-04-02 Freescale Semiconductor, Inc. Integrated calibration circuit and a method for calibration of a filter circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2149500C1 (ru) * 1999-06-01 2000-05-20 Таганрогский государственный радиотехнический университет Активный rc-фильтр верхних частот
US20040066226A1 (en) * 2002-09-30 2004-04-08 Texas Instruments Incorporated Minimizing noise in data channels implemented using frequency division multiplexing
WO2008066552A1 (en) * 2006-11-30 2008-06-05 Zyion, Inc. Active lc band pass filter
WO2015044703A1 (en) * 2013-09-27 2015-04-02 Freescale Semiconductor, Inc. Integrated calibration circuit and a method for calibration of a filter circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU200408U1 (ru) * 2019-07-22 2020-10-22 Федеральное государственное бюджетное научное учреждение "Институт экспериментальной медицины" (ФГБНУ "ИЭМ") Полосовой фильтр с перестраиваемым частотным диапазоном для непрерывного спектрального анализа кардиоинтервалограммы
RU2748610C1 (ru) * 2020-12-08 2021-05-28 федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» (ДГТУ) Широкополосный полосовой фильтр четвертого порядка с одним входом и парафазным выходом
RU2800970C1 (ru) * 2023-03-24 2023-08-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Фильтр низких частот
RU2813367C1 (ru) * 2023-11-14 2024-02-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дискретно-аналоговый фильтр низких частот на переключаемых конденсаторах с повышенной добротностью полюса
RU2813369C1 (ru) * 2023-11-14 2024-02-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дискретно-аналоговый фильтр с тремя заземленными конденсаторами
RU2813368C1 (ru) * 2023-11-14 2024-02-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дискретно-аналоговый фильтр низких частот на переключаемых конденсаторах
RU2818303C1 (ru) * 2023-11-24 2024-05-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дискретно-аналоговый фильтр низких частот второго порядка с тремя частотозадающими конденсаторами
RU2818306C1 (ru) * 2023-11-27 2024-05-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дискретно-аналоговый фильтр на переключаемых конденсаторах с сумматором сигналов, выполненным на мультидифференциальном операционном усилителе
RU2818308C1 (ru) * 2023-11-29 2024-05-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дискретно-аналоговый ARCS-фильтр низких частот с двумя электронными ключами

Similar Documents

Publication Publication Date Title
RU2704530C1 (ru) Широкополосный полосовой фильтр с независимой подстройкой частоты полюса, затухания полюса и коэффициента передачи
US6344773B1 (en) Flexible monolithic continuous-time analog low-pass filter with minimal circuitry
RU2677362C1 (ru) Активный rc-фильтр
RU2701095C1 (ru) Низкочувствительный полосовой фильтр с независимой подстройкой основных параметров
Sotner et al. Reconnection-less OTA-based biquad filter with electronically reconfigurable transfers
RU2694135C1 (ru) Arc-фильтр верхних частот с независимой подстройкой основных параметров
Kumngern et al. Single-element control third-order quadrature oscillator using OTRAs
Sotner et al. Novel solution of notch/all-pass filter with special electronic adjusting of attenuation in the stop band
Jerabek et al. Fully-differential current amplifier and its application to universal and adjustable filter
RU2656728C1 (ru) Arc-фильтр нижних частот с независимой настройкой основных параметров
RU2694134C1 (ru) Полосовой arc-фильтр на двух операционных усилителях с повышением частоты полюса и независимой подстройкой основных параметров
RU2701038C1 (ru) Полосовой фильтр на двух операционных усилителях с независимой подстройкой основных параметров
US6255905B1 (en) Active filter circuit having a T-network input arrangement that provides a high input impedance
RU2721405C1 (ru) Универсальный программируемый ARC- фильтр на основе матриц R-2R
RU2718830C1 (ru) Полосовой фильтр второго порядка с независимой подстройкой основных параметров
Nikolić et al. A tunable bandwidth 6th-order active low-pass filter in 0.18 um CMOS technology
Pandiev Analysis and simulation modeling of programmable CFOA-based universal filters with CMOS digital potentiometers
RU2772314C1 (ru) Фильтр высоких частот семейства саллена - ки с независимой подстройкой основных параметров
RU2749400C1 (ru) Режекторный фильтр четвертого порядка
RU2720558C1 (ru) Полосовой фильтр на двух операционных усилителях с независимой подстройкой основных параметров
RU2786942C1 (ru) Активный rc-фильтр низких частот подкласса саллен-ки на основе повторителей напряжения
RU2788186C1 (ru) Активный rc-фильтр высоких частот подкласса саллен-ки на основе повторителей напряжения
Kumngern et al. Current-Mode Quadrature Qscillator and Universal Filter Using ZC-CCFTAs
RU2771980C1 (ru) Фильтр низких частот семейства саллена-ки с независимой подстройкой основных параметров
RU2748608C1 (ru) Режекторный фильтр четвертого порядка