RU2694128C1 - Система автономного электропитания арочного металлообнаружителя, выполненная на основе фотоэлектрической станции - Google Patents

Система автономного электропитания арочного металлообнаружителя, выполненная на основе фотоэлектрической станции Download PDF

Info

Publication number
RU2694128C1
RU2694128C1 RU2018139708A RU2018139708A RU2694128C1 RU 2694128 C1 RU2694128 C1 RU 2694128C1 RU 2018139708 A RU2018139708 A RU 2018139708A RU 2018139708 A RU2018139708 A RU 2018139708A RU 2694128 C1 RU2694128 C1 RU 2694128C1
Authority
RU
Russia
Prior art keywords
power supply
metal detector
autonomous power
solar modules
self
Prior art date
Application number
RU2018139708A
Other languages
English (en)
Inventor
Вячеслав Александрович Михайленко
Сергей Александрович Козлов
Никита Владимирович Ломакин
Original Assignee
Акционерное общество "Научно-производственный комплекс "Дедал"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственный комплекс "Дедал" filed Critical Акционерное общество "Научно-производственный комплекс "Дедал"
Priority to RU2018139708A priority Critical patent/RU2694128C1/ru
Application granted granted Critical
Publication of RU2694128C1 publication Critical patent/RU2694128C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к системам обнаружения с помощью индукционных катушек токопроводящих объектов, например огнестрельного и (или) холодного оружия, металлосодержащих взрывных устройств и т.п. Система автономного электропитания арочного металлообнаружителя содержит размещаемый на верхней панели металлообнаружителя автономный источник питания с солнечным модулем на его верхней поверхности, и размещаемые на боковых панелях металлообнаружителя с внешней стороны боковые солнечные модули, в автономном источнике питания установлен блок аккумуляторных батарей и контроллер заряда с внешним блоком индикации при этом автономный источник питания с солнечным модулем и боковые солнечные модули снабжены устройствами крепления и электрического соединения между собой, автономный источник питания снабжен разъемами для подключения к разъему питания металлообнаружителя и к внешнему зарядному устройству. Для удобства транспортировки боковые солнечные модули конструктивно разделены на несколько электрически соединенных сегментов, с возможностью их транспортирования в сложенном виде (книжкой). Изобретение способно обеспечить автономное питание металлообнаружителя посредством расхода солнечной энергии, аккумулированной солнечными модулями в течение не менее 24 часов. 1 з.п. ф-лы, 4 ил.

Description

Предлагаемое изобретение относится к системам обнаружения с помощью индукционных катушек токопроводящих объектов, например огнестрельного и (или) холодного оружия, металлосодержащих взрывных устройств и т.п.
Широко известны металлообнаружители арочного типа, предназначенные для обнаружения металлических объектов, например огнестрельного и (или) холодного оружия, металлосодержащих взрывных устройств и т.п., например, металлообнаружитель «Признак» https://www.dedal.ru/projects/sredstva-obnaruzheniya-pronosa-provoza-zapreshchennykh-predmetov-i-veshchestv/priznak.html. Система питания данных устройств основывается на кабельном энергоснабжении, что затрудняет или вообще делает невозможным их использование в местах, где отсутствует централизованное электропитание, например, территория массовых мероприятий, временных КПП, территорий военных конфликтов и т.п.
Технической проблемой, решение которой обеспечивается предлагаемым техническим решением, является обеспечение автономного электропитания металлообнаружителей арочного типа.
Для решения данной технической проблемы предлагается система автономного электропитания арочного металлообнаружителя, содержащая размещаемый на верхней панели металлообнаружителя автономный источник питания с солнечным модулем на его верхней поверхности, и размещаемые на боковых панелях металлообнаружителя с внешней стороны боковые солнечные модули; в автономном источнике питания установлен блок аккумуляторных батарей и контроллер заряда с внешним блоком индикации; при этом автономный источник питания с солнечным модулем и боковые солнечные модули снабжены устройствами крепления и электрического соединения между собой; автономный источник питания снабжен разъемами для подключения к разъему питания металлообнаружителя и к внешнему зарядному устройству.
Дополнительно, для удобства транспортировки, боковые солнечные модули конструктивно разделены на несколько электрически соединенных сегментов, с возможностью их транспортирования в сложенном виде (книжкой).
Благодаря наличию данных существенных признаков достигается следующий технический результат - обеспечение автономной работы металлообнаружителя. Дополнительно, комплект автономного электроснабжения выполнен малогабаритным, быстроразвертываемым, не требующем доработки самого металл обнаружителя.
Предлагаемое решение может быть использовано в различного вида металлообнаружителях арочного типа, предназначенных для обнаружения металлических объектов, например огнестрельного и (или) холодного оружия, металлосодержащих взрывных устройств и т.п. Решение может быть использовано в том числе и в металлообнаружителях с дополнительными функциями типа обнаружения радиоактивных веществ и т.п.
Предлагаемое техническое решение поясняется рисунками фиг. 1-4.
На рисунке фиг. 1 изображен общий вид металлообнаружителя с системой автономного электропитания на основе фотоэлектрической станции.
На рисунке фиг. 2 изображен металлообнаружитель и комплект закрепляемого на нем оборудования фотоэлектрической станции.
На рисунке фиг. 3 изображен автономный источник питания (виды спереди, снизу и поперечный разрез) с солнечным модулем на его верхней поверхности.
На рисунке фиг. 4 изображен пример крепления оборудования фотоэлектрической станции на металлообнаружителе - на автономном источнике питания закреплена ответная часть крепления типа «липучка».
Изображенный на рисунках фиг. 1-4 металлообнаружитель с системой автономного электропитания на основе фотоэлектрической станции (ФЭС) содержит размещаемый на верхней панели 2 металлообнаружителя 1 автономный источник питания 4 с солнечным модулем ламинированным 5 на его верхней поверхности, и размещаемые на боковых панелях 3 металлообнаружителя 1 с внешней стороны боковые солнечные модули ламинированные 6. В автономном источнике питания 4 установлен блок аккумуляторных батарей 7 и контроллер заряда с внешним блоком индикации 8. Автономный источник питания (АИП) 4 с солнечным модулем 5 и боковые солнечные модули 6 снабжены электрическими разъемами 10 для соединения между собой. Автономный источник питания 4 снабжен ключем-выключателем 14, разъемом 11 для подключения к разъему питания металлообнаружителя 1 и разъемом 12 для подключения к внешнему зарядному устройству (на рисунках не приведено). Крепление солнечных модулей 6 к автономному источнику питания 4 в данном случае выполнено по типу «липучки» (текстильной застежки) 9 (могут быть использованы различного типа хомуты или замки). Крепление системы автономного электропитания к металлообнаружителю 1 может быть выполнено различным образом, например, с помощью хомутов, замков или тех же «липучек». В данном случае корпус автономного источника питания 4 имеет специальные выступы-ограничители 13, размещаемые между верхними соединительными планками металлообнаружителя 1, поэтому отдельные узлы крепления отсутствуют.
Предлагаемая система автономного электропитания на основе фотоэлектрической станции представляет собой сборную конструкцию, основными элементами которой являются автономный источник питания 4 с солнечным модулем 5 на его верхней поверхности и боковые солнечные модули 6. Автономный источник питания 4 представляет собой корпус, например, из ABS-пластика, класса защиты IP 65 и состоит из двух частей: крышка, на которую устанавливается модуль солнечный ламинированный 5 и отсек, где расположены аккумуляторные батареи 7, а также контроллер заряда с внешним блоком индикации 8. На корпусе размещены разъемы блочные 11 и 12 - соединители, например, серии FQ-14 с соответствующим обозначением назначения. Внешний блок индикации 8 контроллера заряда располагается, как правило на лицевой панели автономного источника питания 4 и показывает процент заряда ФЭС, выходное напряжение и ток нагрузки. Внешнее зарядное устройство (ЗУ) подключается отдельно и представляет собой самостоятельное изделие. Солнечные модули 5 и 6 изготавливаются из монокристаллического кремния с высокой энергоэффективностью и осуществляют преобразование энергии солнечного излучения в электроэнергию постоянного тока. Солнечные модули 6 конструктивно разделены и прошиты на несколько сегментов, что позволяет транспортировать их в сложенном «книжкой» виде. Подключение всех модулей 5 и 6 к АИП 4 осуществляется специальным двухжильным кабелем, например, SOLARFLEX с соединителем серии FQ14 и обеспечивает класс защиты соединения не хуже IP65.
Заложенные конструктивные и технические решения способны обеспечить автономное питание металлообнаружителя посредством расхода солнечной энергии, аккумулированной солнечными модулями в течение не менее 24 часов.
Система автономного электропитания на основе фотоэлектрической станции (ФЭС) транспортируется к месту монтажа, как правило, в сложенном виде в кейсе. Для экономии времени ввода в эксплуатацию аккумуляторные батареи находятся в заряженном состоянии (при необходимости могут заряжаться от внешнего ЗУ на месте). При необходимости использования в металлообнаружителях с дополнительными функциями обнаружения радиоактивных веществ система автономного электропитания на основе фотоэлектрической станции (ФЭС) может быть дополнена автономным внешним ЗУ необходимой емкости.

Claims (2)

1. Система автономного электропитания арочного металлообнаружителя, содержащая размещаемый на верхней панели металлообнаружителя автономный источник питания с солнечным модулем на его верхней поверхности, и размещаемые на боковых панелях металлообнаружителя с внешней стороны боковые солнечные модули; в автономном источнике питания установлен блок аккумуляторных батарей и контроллер заряда с внешним блоком индикации; при этом автономный источник питания с солнечным модулем и боковые солнечные модули снабжены устройствами крепления и электрического соединения между собой; автономный источник питания снабжен разъемами для подключения к разъему питания металлообнаружителя и к внешнему зарядному устройству.
2. Система по п. 1, отличающаяся тем, что боковые солнечные модули конструктивно разделены на несколько электрически соединенных сегментов, с возможностью их транспортирования в сложенном виде.
RU2018139708A 2018-11-12 2018-11-12 Система автономного электропитания арочного металлообнаружителя, выполненная на основе фотоэлектрической станции RU2694128C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018139708A RU2694128C1 (ru) 2018-11-12 2018-11-12 Система автономного электропитания арочного металлообнаружителя, выполненная на основе фотоэлектрической станции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018139708A RU2694128C1 (ru) 2018-11-12 2018-11-12 Система автономного электропитания арочного металлообнаружителя, выполненная на основе фотоэлектрической станции

Publications (1)

Publication Number Publication Date
RU2694128C1 true RU2694128C1 (ru) 2019-07-09

Family

ID=67252436

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018139708A RU2694128C1 (ru) 2018-11-12 2018-11-12 Система автономного электропитания арочного металлообнаружителя, выполненная на основе фотоэлектрической станции

Country Status (1)

Country Link
RU (1) RU2694128C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145456B2 (en) * 2003-04-29 2006-12-05 Fisher Research Labs, Inc. Efficient electronics for a walk-through metal detector
US20080284425A1 (en) * 2005-01-11 2008-11-20 Frederick Dean Fluck Metal Detection System and Method
RU2647991C1 (ru) * 2016-11-18 2018-03-21 Общество с ограниченной ответственностью "Локаторная техника" Металлообнаружитель

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145456B2 (en) * 2003-04-29 2006-12-05 Fisher Research Labs, Inc. Efficient electronics for a walk-through metal detector
US7193524B2 (en) * 2003-04-29 2007-03-20 Fisher Research Labs, Inc. Systems and methods for a portable walk-through metal detector
US20080284425A1 (en) * 2005-01-11 2008-11-20 Frederick Dean Fluck Metal Detection System and Method
RU2647991C1 (ru) * 2016-11-18 2018-03-21 Общество с ограниченной ответственностью "Локаторная техника" Металлообнаружитель

Similar Documents

Publication Publication Date Title
US20190028056A1 (en) Foldable solar battery pack
EP0332004A2 (en) Light-rechargeable battery
RU2005136989A (ru) Устройство детектирования металла, модуль детектирования, модульный детектор (варианты) и способ обеспечения детектирования металла
US9640697B2 (en) Solar energy collection systems and methods
RU2694128C1 (ru) Система автономного электропитания арочного металлообнаружителя, выполненная на основе фотоэлектрической станции
US20130298962A1 (en) Portable modular solar energy power generating system
EP3216121A1 (en) Mobile device for converting solar energy to electricity
CN105322639A (zh) 具有太阳能电池板和电池的电源供应装置
EP2629338A2 (en) Autonomous and portable solar energy equipment
JP3165178U (ja) 集合住宅等の電力供給装置
US20190020306A1 (en) Bypass mechanisms for energy generation systems
KR20130123752A (ko) 전력저장 장치 충전 시스템, 이에 적용되는 이동형 충전 장치 및 전력저장 장치 충전 시스템을 이용한 전력저장 장치의 충전 방법
JP6346542B2 (ja) 可搬型太陽光発電給電システム
US20220029450A1 (en) Power Generating Shed Assembly
CN213632413U (zh) 一种具有新能源供电的红外热像仪
Rana et al. Solar power mobile charger using Buck converter
WO1995026067A1 (en) Solar power supply unit for battery operated devices
JP3169858U (ja) 電力供給システム
Udathenne Gedara Supercapacitor assisted LED (SCALED) converter technique for solar powered DC-microgrids
CN106159646A (zh) 防水手持激光器
SK500602020A3 (sk) Batériový modul na mobilné modulárne fotovoltické sústavy
BR202019009395U2 (pt) lixeira equipada com modulo solar fotovoltaico, eletrônica de controle, bateria de acumulação e tomadas para alimentação elétrica
SK501152020U1 (sk) Batériový modul na mobilné modulárne fotovoltické sústavy
JP2013099215A (ja) 集合住宅等の給電システム
RU2031513C1 (ru) Устройство для заряда аккумуляторной батареи