RU2693841C1 - Витковый взрывомагнитный генератор - Google Patents

Витковый взрывомагнитный генератор Download PDF

Info

Publication number
RU2693841C1
RU2693841C1 RU2018142145A RU2018142145A RU2693841C1 RU 2693841 C1 RU2693841 C1 RU 2693841C1 RU 2018142145 A RU2018142145 A RU 2018142145A RU 2018142145 A RU2018142145 A RU 2018142145A RU 2693841 C1 RU2693841 C1 RU 2693841C1
Authority
RU
Russia
Prior art keywords
winding
extreme
source
explosive
crowbar
Prior art date
Application number
RU2018142145A
Other languages
English (en)
Inventor
Сергей Валентинович Друзин
Игорь Алексеевич Росляков
Илья Флегонтович Раевский
Александр Борисович Прищепенко
Алексей Юрьевич Фролов
Original Assignee
Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей" filed Critical Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей"
Priority to RU2018142145A priority Critical patent/RU2693841C1/ru
Application granted granted Critical
Publication of RU2693841C1 publication Critical patent/RU2693841C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • H02N11/004Generators adapted for producing a desired non-sinusoidal waveform

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

Изобретение относится к технике преобразования химической энергии, содержащейся во взрывчатых веществах, в электромагнитную энергию. Технический результат состоит в повышении к.п.д., упрощении конструкции, изготовления и эксплуатации. Витковый взрывомагнитный генератор включает в себя обмотку, состоящую из последовательно соединенных элементов: первого крайнего кроубара, первого полувитка, нагрузки, второго полувитка и второго крайнего кроубара. Лайнер с зарядом взрывчатого вещества и детонатором выполнен в виде трубы, расположенной внутри обмотки. Источник начальной энергии в виде конденсатора первым контактом подключен к первому крайнему кроубару и первому полувитку 5 обмотки. Второй его контакт подключен к имеющемуся третьему среднему кроубару, длина которого равна длине второго крайнего кроубара, подключенного ко второму полувитку, и больше длины первого крайнего кроубара, подключенного к первому контакту источника начальной энергии и первому полувитку обмотки. 2 ил.

Description

Изобретение относится к технике преобразования химической энергии, содержащейся во взрывчатых веществах, в электромагнитную энергию.
Известны витковые взрывомагнитные генераторы, которые включают в себя обмотку в виде двух полувитков, внутри которых расположен лайнер. Лайнер, изготовленный из сплавов алюминия или меди, имеет вид кольца, но с меньшим диаметром и смещенным центром относительно центра обмотки (имеется эксцентриситет). Внутри лайнера находится взрывчатое вещество, инициирование взрыва которого осуществляется с помощью детонатора. С одной стороны полувитки последовательно связаны с источником начальной энергии (как правило, конденсаторным накопителем) таким образом, что после его включения в обмотке протекает начальный ток, создающий магнитный поток. С другой стороны, полувитки последовательно связаны с полезной нагрузкой. Разрядный контур виткового взрывомагнитного генератора образуют следующие последовательно соединенные элементы: источник начальной энергии, один из полувитков, нагрузка, другой полувиток; первый и последний элемент также соединены между собой. Подрыв заряда взрывчатого вещества приводит к «распиранию» лайнера таким образом, что спустя некоторое время (время нарастания в разрядном контуре начального тока до наибольшего значения) лайнером отсекается источник начальной энергии, далее за счет продолжающегося «распирания» лайнера величина площади зазора между обмоткой и лайнером уменьшается. При относительно небольших потерях магнитного потока и значительном уменьшении площади зазора генератора увеличивается магнитное поле в разрядном контуре, вследствие чего нарастает ток, протекающий через нагрузку. Происходит это за счет того, что развиваемое давление продуктов детонации взрывчатого вещества больше противодавления пондеромоторных сил магнитного поля и расширяющийся лайнер совершает работу против сил магнитного давления. Таким образом, энергия химических связей, содержащаяся во взрывчатом веществе, расходуется на ускорение лайнера, то есть на увеличение его кинетической энергии, которая в свою очередь переходит в энергию магнитного поля, и далее в нагрузку.
К подобным устройствам относятся, например, витковые взрывомагнитные генераторы (Магнитокумулятивные генераторы - импульсные источники энергии: Монография. В 2 томах. Том 1 / Под ред. В. А. Демидова, А. Н. Пляшкевича, В. Д. Селемира. Саров: РФЯЦ-ВНИИЭФ, 2011. С.320-328), недостатком которых является наличие необходимости согласования момента включения источника начальной энергии и момента инициирования детонации взрывчатого вещества в лайнере. В виду значительной (в сотни килоампер) амплитуды начального тока, в блоке управления согласованием неизбежны энергетические потери от источника начальной энергии. Также наличие блока управления согласованием момента включения источника начальной энергии - конденсатора и момента инициирования детонации взрывчатого вещества усложняет устройство виткового взрывомагнитного генератора.
Как правило, блок управления согласованием момента включения источника начальной энергии - конденсатора и момента инициирования детонации взрывчатого вещества представляет собой генератор задержки наносекундной точности и является технически сложным устройством.
В качестве прототипа выбран витковый взрывомагнитный генератор (А. И. Павловский, Р. 3. Людаев, В. А. Васюков и др. «Магнитокумулятивные витковые генераторы быстронарастающих импульсов тока» В: «Сверхсильные магнитные поля. Физика. Техника. Применение». Труды третьей международной конференции по генерации мегагауссных магнитных полей и родственным экспериментам. Новосибирск, 13-17 июня 1983 г. под редакцией В. М. Титова и Г. А. Швецова. М: наука, 1984, с. 292-295), включающий в себя обмотку из двух полувитков и нагрузки и источник начальной энергии - конденсатор, которые совместно образуют разрядный контур. Внутри полувитков расположен лайнер в виде цилиндра, выполненный из сплава алюминия или меди и заполненный взрывчатым веществом. Начальный магнитный поток создается источником начальной энергии - конденсатором. Инициирование детонации взрывчатого вещества осуществляется цепочкой электродетонаторов. Цилиндрический лайнер, расширяющийся под действием взрыва взрывчатого вещества, достигает двух входных клемм - кроубаров (острия, выступающие из концов полувитков в направлении лайнера) в момент, когда начальный ток в контуре виткового генератора достигает наибольшего значения, одновременно отключая из цепи источник начальной энергии - конденсатор. При последующем расширении оболочки захваченный магнитный поток сжимается всей ее поверхностью и вытесняется в нагрузку. Включение источника начальной энергии -конденсатора осуществляется посредством замыкающего устройства -разрядника. Спустя время, за которое ток в разрядном контуре достигает необходимого значения, инициируется детонация взрывчатого вещества. Это время подбирается исходя из того, чтобы в момент достижения лайнером кроубаров ток в разрядном контуре имел наибольшее значение, т.е. источник начальной энергии - конденсатор был полностью разряжен. Таким образом, имеется необходимость временного согласования момента включения источника начальной энергии - конденсатора и момента инициирования детонации взрывчатого вещества, которая решается посредством использования блока управления согласованием. Блок управления согласованием, в свою очередь, требует наличия дополнительного энергопитания, что существенно уменьшает конечный КПД всего виткового взрывомагнитного генератора и в целом усложняет его конструкцию, ввиду значительной амплитуды (сотни килоампер) начального тока.
Техническим результатом данного изобретения является увеличение конечного КПД всего виткового взрывомагнитного генератора, упрощение его конструкции, изготовления и эксплуатации за счет исключения блока управления согласованием момента включения источника начальной энергии - конденсатора и момента инициирования детонации взрывчатого вещества с его источником энергопитания.
Технический результат достигается за счет того, что витковый взрывомагнитный генератор включает в себя обмотку, состоящую из последовательно соединенных элементов: первого крайнего кроубара, первого полувитка, нагрузки, второго полувитка и второго крайнего кроубара; лайнер в виде трубы, расположенной внутри обмотки, с зарядом взрывчатого вещества и детонатором, источник начальной энергии, первый из двух контактов которого подключен к первому крайнему кроубару обмотки, содержит третий средний кроубар, второй из двух контактов источника начальной энергии подключен к третьему среднему кроубару, длина которого равна длине второго крайнего кроубара, подключенного ко второму полувитку, и больше длины первого крайнего кроубара, подключенного к первому контакту источника начальной энергии и первому полувитку обмотки.
Второй из двух контактов источника начальной энергии подключен к имеющемуся третьему среднему кроубару, длина которого равна длине второго крайнего кроубара, подключенного ко второму полувитку, и больше длины первого крайнего кроубара, подключенного к первому контакту источника начальной энергии и первому полувитку обмотки. Лайнер, расширяясь под давлением продуктов детонации, набирает скорость в 2-3 км/с, а затем, достигая второго крайнего кроубара и среднего кроубара, замыкает разрядный контур, таким образом, что в нем начинает течь ток. Спустя время, за которое достигается наибольшее значение начального тока в контуре, лайнер, продолжая расширяться, достигает первого крайнего кроубара меньшей длины. При этом происходит отключение источника начальной энергии от разрядного контура виткового взрывомагнитного генератора, при сохранении в нем магнитного потока. Далее устройство работает аналогично прототипу. Таким образом, за счет отсутствия блока управления согласованием момента включения источника начальной энергии - конденсатора и момента инициирования детонации взрывчатого вещества, который требует собственного источника энергопитания, суммарный КПД виткового взрывомагнитного генератора увеличивается, конструкция упрощается. Также упрощается его изготовление и эксплуатация. Тем самым достигается заявленный технический результат.
Схема виткового взрывомагнитного генератора представлена на фигуре 1.
Временная зависимость тока в разрядном контуре представлена на фигуре 2.
Принятые обозначения:
1. Источник начальной энергии - конденсатор.
2. Средний кроубар.
3. Первый крайний кроубар.
4. ой крайний кроубар.
5. Первый полувиток.
6. Второй полувиток.
7. Лайнер.
8. Взрывчатое вещество.
9. Детонатор.
10. Нагрузка.
11. Момент времени инициирования взрыва взрывчатого вещества.
12. Момент времени достижения расширяющимся лайнером кроубаров 2 и 4.
13. Момент времени достижения наибольшего значения начального тока.
14. Момент времени достижения расширяющимся лайнером полувитков 5 и 6.
15. Момент времени достижения наибольшего значения тока в нагрузке.
Устройство состоит из источника начальной энергии - конденсатора 1, который вторым контактом подключен к среднему кроубару 2, а первым контактом к первому крайнему кроубару 3 и первому полувитку 5. Первый полувиток 5, подключенный к первому крайнему кроубару 3, другим своим концом подключен к одному контакту нагрузки 10, которая вторым своим контактом соединена с концом второго полувитка 6, подключенного ко второму крайнему кроубару 4. Таким образом, образуется разрядный контур. Длиной кроубара считается расстояние от окружности, вписанной внутри полувитков, до конца кроубара в направлении лайнера. Средний кроубар 2 и второй крайний кроубар 4 имеют одинаковую длину, которая больше длины первого крайнего кроубара 3 на величину Δ. Первый полувиток 5 и второй полувитк 6 вместе имеют форму кольца, относительно которого с эксцентриситетом в направлении среднего кроубара 2 располагается лайнер 7 с взрывчатым веществом 8 и детонатором 9. Лайнер 7 представляет собой кольцо из деформируемого и токопроводящего материала.
Устройство работает следующим образом. Срабатывание детонатора 9 инициирует детонацию взрывчатого вещества 8, лайнер 7 под действием давления продуктов детонации расширяется и набирает скорость. В момент достижения лайнером 7 среднего кроубара 2 и второго крайнего кроубара 4 происходит замыкание разрядного контура, т.е включение в него источника начальной энергии - конденсатора 1, который разряжаясь приводит к появлению начального тока в разрядном контуре и созданию начального магнитного поля в области между лайнером 7 и полувитками 5 и 6. Разность длин Δ среднего кроубара 2 и первого крайнего кроубара 3 определяется из условия достижения наибольшего значения начального тока (Iн max) в разрядном контуре за время tΔ. В момент достижения наибольшего значения начального тока лайнер 7, проходя расстояние Δ, замыкает первый крайний кроубар 3, после чего источник начальной энергии - конденсатор 1 отключается из разрядного контура, а ток продолжает течь за счет наличия магнитного поля. Таким образом, отпадает необходимость в использовании блока управления согласованием момента включения источника начальной энергии - конденсатора и момента инициирования детонации взрывчатого вещества. Дальнейшее движение лайнера 7 приводит к уменьшению зазора между ним и полувитками 5 и 6, что влечет за собой, при относительно малых потерях магнитного потока, увеличение тока, протекающего через нагрузку 10, до значения - Imах.
Таким образом, достигается заявленный технических результат, увеличивается конечный КПД всего виткового взрывомагнитного генератора, упрощается его конструкция, изготовление и эксплуатация.
При опытном производстве предлагаемого виткового взрывомагнитного генератора с тремя кроубарами 2, 3 и 4 и без блока управления согласованием момента включения разрядника и момента подрыва взрывчатого вещества была получена экономия в размере 1200000 рублей.

Claims (1)

  1. Витковый взрывомагнитный генератор, включающий в себя обмотку, состоящую из последовательно соединенных элементов: первого крайнего кроубара, первого полувитка, нагрузки, второго полувитка и второго крайнего кроубара; лайнер в виде трубы, расположенной внутри обмотки, с зарядом взрывчатого вещества и детонатором, источник начальной энергии, первый из двух контактов которого подключен к первому крайнему кроубару обмотки, отличающийся тем, что содержит третий средний кроубар, второй из двух контактов источника начальной энергии подключен к третьему среднему кроубару, длина которого равна длине второго крайнего кроубара, подключенного ко второму полувитку, и больше длины первого крайнего кроубара, подключенного к первому контакту источника начальной энергии и первому полувитку обмотки.
RU2018142145A 2018-11-29 2018-11-29 Витковый взрывомагнитный генератор RU2693841C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018142145A RU2693841C1 (ru) 2018-11-29 2018-11-29 Витковый взрывомагнитный генератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018142145A RU2693841C1 (ru) 2018-11-29 2018-11-29 Витковый взрывомагнитный генератор

Publications (1)

Publication Number Publication Date
RU2693841C1 true RU2693841C1 (ru) 2019-07-05

Family

ID=67252303

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018142145A RU2693841C1 (ru) 2018-11-29 2018-11-29 Витковый взрывомагнитный генератор

Country Status (1)

Country Link
RU (1) RU2693841C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU321190A1 (ru) * 1970-02-20 1974-09-05 А. Я. Кошелев, В. С. Фоменко , В. И. Чижов
SU728653A1 (ru) * 1978-11-22 1981-08-07 Предприятие П/Я Г-4665 Взрывомагнитный генератор тока
RU2000101675A (ru) * 2000-01-26 2002-01-20 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Витковый взрывомагнитный генератор
RU2388135C1 (ru) * 2009-02-24 2010-04-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Спиральный взрывомагнитный генератор
UA74115U (en) * 2012-04-02 2012-10-25 Академия Военно-Морских Сил Имени П.С.Нахимова Flat-spiral complex magnetic explosion generator
CN208158295U (zh) * 2018-05-22 2018-11-27 河北中盈昌晖新能源科技有限公司 一种防爆型磁动力发电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU321190A1 (ru) * 1970-02-20 1974-09-05 А. Я. Кошелев, В. С. Фоменко , В. И. Чижов
SU728653A1 (ru) * 1978-11-22 1981-08-07 Предприятие П/Я Г-4665 Взрывомагнитный генератор тока
RU2000101675A (ru) * 2000-01-26 2002-01-20 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Витковый взрывомагнитный генератор
RU2388135C1 (ru) * 2009-02-24 2010-04-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Спиральный взрывомагнитный генератор
UA74115U (en) * 2012-04-02 2012-10-25 Академия Военно-Морских Сил Имени П.С.Нахимова Flat-spiral complex magnetic explosion generator
CN208158295U (zh) * 2018-05-22 2018-11-27 河北中盈昌晖新能源科技有限公司 一种防爆型磁动力发电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Сверхсильные магнитные поля. Физика. Техника. Применение". Труды третьей международной конференции по генерации мегагауссных магнитных полей и родственным экспериментам. Новосибирск, 13-17 июня 1983 г. под ред.В.М.Титова и Г.А.Швецова. М: Наука, 1984, с.292-295. *

Similar Documents

Publication Publication Date Title
US10615695B1 (en) High voltage generation for ESAD munition fuzing circuitry
US3356869A (en) Single pulse power generator
CN110469425B (zh) 一种推力可调式多级脉冲固体火箭发动机
US10197372B2 (en) Ignition generator for insensitive and tailorable effects, as a warhead initiator
RU2649494C1 (ru) Импульсный детонационный ракетный двигатель
US3191092A (en) Plasma propulsion device having special magnetic field
US9399954B2 (en) Ignition exciter discharge switch
US9658026B1 (en) Explosive device utilizing flux compression generator
RU2693841C1 (ru) Витковый взрывомагнитный генератор
US9658044B2 (en) Method and apparatus for executing a weapon safety system utilizing explosive flux compression
EP3351058B1 (en) Space plasma generator for ionospheric control
US11692797B2 (en) Permanent magnet seed field system for flux compression generator
RU91467U1 (ru) Взрывомагнитный генератор
RU2698245C2 (ru) Генератор импульсов высокого напряжения
US4325305A (en) Electrical augmentation of detonation wave
RU2468495C1 (ru) Взрывной магнитокумулятивный генератор
RU191879U1 (ru) Комбинированная боевая часть на основе взрывомагнитных генераторов СВЧ-излучения
Driga et al. Electrothermal accelerators: The power conditioning point of view
Wu et al. Pulsed alternators technologies and application
RU112501U1 (ru) Взрывомагнитный генератор
RU60144U1 (ru) Детонационный двигатель с устройством магнитогазодинамического управления
RU2554018C2 (ru) Боевая часть авиабомбы, ракеты, морской мины, фугаса
RU2207492C2 (ru) Способ формирования ударной волны и устройство для его осуществления
RU2756345C2 (ru) Плазменно-электромагнитное оружие
Sha et al. Gun-type Liquid Metal MHD Pulse Generator Concept and Analysis