RU2692758C1 - Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции - Google Patents

Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции Download PDF

Info

Publication number
RU2692758C1
RU2692758C1 RU2018145705A RU2018145705A RU2692758C1 RU 2692758 C1 RU2692758 C1 RU 2692758C1 RU 2018145705 A RU2018145705 A RU 2018145705A RU 2018145705 A RU2018145705 A RU 2018145705A RU 2692758 C1 RU2692758 C1 RU 2692758C1
Authority
RU
Russia
Prior art keywords
parameters
pair
parameter
voltage
power
Prior art date
Application number
RU2018145705A
Other languages
English (en)
Inventor
Павел Владимирович Илюшин
Александр Леонидович Куликов
Original Assignee
Павел Владимирович Илюшин
Александр Леонидович Куликов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Павел Владимирович Илюшин, Александр Леонидович Куликов filed Critical Павел Владимирович Илюшин
Priority to RU2018145705A priority Critical patent/RU2692758C1/ru
Application granted granted Critical
Publication of RU2692758C1 publication Critical patent/RU2692758C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

Изобретение относится к электротехнике. Технический результат заключается в повышении оперативности и надежности АВР с целью снижения времени восстановления технологического режима предприятия при потере питания от основного источника электроснабжения. Достигается тем, что сравнивают три пары параметров, характеризующих электроснабжение промышленного энергорайона, когда в качестве первого параметра первой пары параметров принимают время бестоковой паузы до автоматического повторного включения у вводного выключателя, в качестве второго параметра первой пары параметров принимают время между появлением тока короткого замыкания на вводе питающего трансформатора со стороны низкого напряжения до вводного выключателя двухтрансформаторной подстанции, в качестве первого параметра второй пары параметров принимают мощность подключаемой аварийной нагрузки, а в качестве второго параметра второй пары параметров принимают мощность резервного ввода, в качестве первого параметра третьей пары параметров принимают частоту напряжения на резервируемой секции шин двухтрансформаторной подстанции, а в качестве второго параметра третьей пары параметров принимают частоту напряжения на резервирующей секции шин двухтрансформаторной подстанции и дополнительно контролируют срабатывание пускового органа по разности частот между секциями шин и по результатам формируют соответствующие управляющие воздействия. 3 ил.

Description

Изобретение относится к автоматике систем электроснабжения, в частности систем электроснабжения промышленных потребителей с источниками распределенной генерации и может быть использовано для управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции.
В нашей стране имеет место тенденция роста вводов источников распределенной генерации (РГ), которые, как правило, сооружаются собственниками промышленных предприятий нефтегазодобывающей, горнодобывающей, металлургической, целлюлозно-бумажной и химической отраслей промышленности, и подключаются к распределительным электрическим сетям или к сетям внутреннего электроснабжения этих предприятий.
Одновременно, в указанных сетях широко применяются устройства автоматического включения резервного питания (АВР), которые используются для восстановления питания электроприемников потребителей путем автоматического присоединения резервного источника питания при отключении рабочего источника питания, приводящего к обесточению электроустановок потребителей.
Подключение генерирующих установок (ГУ) малой и средней мощности источников РГ неизбежно приводит к существенному изменению схемно-режимных ситуаций в прилегающей сети, оказывая влияние на находящиеся в эксплуатации устройства АВР.
Решая вопросы совместимости устройств АВР, с одной стороны, и современных ГУ источников РГ, с другой стороны, необходимо принимать во внимание требования к безотказной работе ГУ/источника РГ при изменениях параметров режима электрической сети, а также значимость конкретной ГУ/источника РГ в обеспечении бесперебойного электроснабжения электроустановок потребителя.
Известен способ запрета подстанционного автоматического включения резерва на устойчивое короткое замыкание [RU 2173017, H02J 9/06, H02J 13/00, 27.08.2001], заключающийся в том, что фиксируют ток короткого замыкания на вводе питающего трансформатора между вводным выключателем и выключателем АВР, после его исчезновения отсчитывают время бестоковой паузы автоматического повторного включения (АПВ) вводного выключателя и, если в момент окончания отсчета ток короткого замыкания не пропадает, подают сигнал на запрет срабатывания секционного выключателя АВР.
Недостатком этого способа является относительно низкая оперативность, что обусловливает его ограниченность применения и практическую невозможность использования для управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции.
Наиболее близким техническим решением к предполагаемому является способ комбинированного запрета автоматического включения резерва (АВР) на устойчивые короткие замыкания (КЗ) и провалы напряжения (ПН) [RU 2343617, H02J 9/06, H02J 13/00, 10.01.2009], заключающийся в сравнении четырех параметров, характеризующих режимы работы электрооборудования, первым из которых является время бестоковой паузы до автоматического повторного включения (АПВ) у вводного выключателя, в качестве второго параметра принимают время между появлением тока короткого замыкания на вводе питающего трансформатора со стороны низкого напряжения до вводного выключателя двухтрансформаторной подстанции и сравнивают его с первым параметром, для чего в момент исчезновения напряжения на секции фиксируют наличие тока короткого замыкания на вводе питающего трансформатора и после его отключения фиксируют отсутствие линейного напряжения, обусловленное отключением вводного выключателя, отсчитывают время бестоковой паузы до АПВ, и если в момент прекращения отсчета снова появится ток короткого замыкания, то делают вывод о том, что произошло устойчивое короткое замыкание на шинах подстанции между вводным выключателем и выключателем АВР и в этом случае подают сигнал запрета АВР, в противном случае, когда ток короткого замыкания отсутствует в момент прекращения отсчета, производят сравнение следующих двух параметров состояния, одним из которых принимают мощность подключаемой аварийной нагрузки, а другим - мощность резервной системы, после чего делают вывод о достаточности дополнительной нагрузочной способности резервного ввода для подключения аварийного участка сети основного источника без провала напряжения и, когда резерва недостаточно, подают сигнал на запрет АВР.
Недостатком этого способа является относительно низкая оперативность, что обусловливает его ограниченность применения и практическую невозможность использования для управления электроснабжением промышленного энергорайона с ГУ источников РГ при коротком замыкании на резервируемой секции шин подстанции. Низкая оперативность создает условия несвоевременного формирования сигнала запрета и неустойчивого управления системами электроснабжения, а также возникновения аварийных ситуаций, что приводит к снижению надежности управления системами электроснабжения.
Особенность реализации АВР при управлении электроснабжением промышленного энергорайона с источниками РГ при коротком замыкании на резервируемой секции шин подстанции заключается в том, что параметры срабатывания АВР должны выбираться с учетом следующих условий:
- при понижении напряжения на шинах собственной секции (которая резервируется АВР от соседней секции) в случае КЗ на присоединениях (фидерах) за выключателем собственной секции или КЗ на присоединениях системы шин питающей данную секцию (глубокое снижение напряжения). КЗ в этих случаях ликвидируются быстродействующими защитами, время его ликвидации составляет около 0,09-0,11 с.
- при понижении напряжения на шинах собственной секции (которая резервируется АВР от соседней секции) в случае КЗ на присоединениях (фидерах) за выключателями и элементами с сосредоточенными параметрами (реакторами, трансформаторами) собственной секции или аналогичном КЗ на присоединениях системы шин питающей данную секцию (остаточное напряжение составляет 20-40% Uном). КЗ в этих случаях ликвидируются защитами с выдержкой времени, которые составляют около 1,1-1,6 с.
Для исключения действия устройства АВР в данном случае выбирается соответствующая выдержка времени. В расчетах применяют наибольшую выдержку времени защит присоединений, отходящих от шин данной секции (резервируемой АВР) и системы шин питающей данную секцию плюс время запаса (Δt), т.е. время срабатывания устройства АВР составит около 2-2,5 с.
- если в системе электроснабжения наряду с анализируемым устройством АВР есть еще и устройство АВР, расположенное ближе к источнику питания (например, когда установлено устройство АВР на стороне 110 кВ, а также установлено устройство АВР на стороне 6-10 кВ), то согласование между собой устройств АВР производится уставками по времени срабатывания. Следовательно, время срабатывания АВР на стороне 6-10 кВ должно быть больше времени АВР на стороне 110 кВ. Время запаса (Δt), в зависимости от применяемых типов выключателей и реле времени принимают равным 1-2 с, поэтому время срабатывания устройства АВР на стороне 6-10 кВ составит около 3-4,5 с.
- если на питающей воздушной линии (ВЛ) имеется устройство АПВ, то время действия АВР должно быть больше времени АПВ, чтобы АВР срабатывало только в случае неуспешного АПВ. Как правило, выдержки времени линейных АПВ по условию правильной работы защиты при повреждениях на линиях принимаются не менее 4-5 с, т.е. время работы устройства АВР будет составлять около 6,25-7,25 с.
Учитывая вышеприведенные особенности, встречаются случаи, когда включение резервного питания происходят через 2-7,25 с после возникновения аварийного возмущения, что создает значительные трудности в случае присоединения к сетям источников РГ.
Существующие устройства АВР выполняют автоматическое включение резервного питания без контроля разности фаз напряжений. При использовании ГУ на источниках РГ, которые не допускают включений с большой разностью фаз напряжений, очевидна необходимость повышения быстродействия АВР.
Оценим быстродействие АВР, которое является достаточным, чтобы предотвратить срабатывание устройства АВР при большой разности фаз напряжений. Для этого достаточно, чтобы синхронная динамическая устойчивость ГУ к моменту включения резервного питания не успевала нарушиться. В таком случае асинхронный режим ГУ не возникает даже кратковременно, а, следовательно, отсутствуют условия для возникновения большой разности фаз напряжений в момент включения.
Основной параметр, определяющий критическое время по динамической устойчивости ГУ, - механическая постоянная инерции ГУ, ТJ, с. Значения ТJ, например, близкие к 1 с, характерны для газопоршневых установок (ГПУ) и трехвальных газотурбинных установок (ГТУ), около 3 с -для мощных ГПУ и двухвальных ГТУ и др.
Как будет показано ниже, для схемы, приведенной на фиг. 1, рассчитаны два крайних случая: трехфазное КЗ вблизи шин и потеря основного питания без КЗ, поэтому все реальные случаи будут оказываться в этом диапазоне. Время отключения маломасляных выключателей принято 0,07 с, вакуумных - 0,04 с; время включения, соответственно, 0,14 и 0,08 с. Результаты расчетов показаны ниже на фиг. 2а.
Значения критического времени на фиг. 2а, в случаях отсутствия КЗ, при малых ТJ резко снижаются. Это обусловлено тем, что малоинерционные ГУ не успевают в начале аварийного режима принять дополнительную нагрузку и их скорость вращения быстро увеличивается, приближая момент перехода в асинхронный режим. При близких КЗ взаимное влияние ГУ и асинхронных двигателей (АД) практически отсутствует.
Худшими, в отношении переходных процессов ГУ, являются случаи с возникновением многофазных КЗ. Таким образом, наличие в узле нагрузки таких ГУ, которые не допускают несинхронных включений с большой разностью фаз напряжений, не оставляет времени для отстройки АВР от возмущений, при которых действие АВР не требуется. Это практически не зависит от относительной мощности ГУ, как следует ниже из фиг. 2б.
Пример переходного процесса с трехфазным КЗ и АВР для схемы, приведенной на фиг. 1, с продолжительностью перерыва питания 0,3 с и параметрами, характерными для вакуумных или маломасляных выключателей, показан ниже на фиг. 3. Этот процесс был бы полностью благополучным и для ГУ источника РГ и для нагрузки, если бы несинхронное включение с большой разностью фаз было допустимо для ГУ. Но в данном случае разность фаз напряжений к моменту АВР составляет 155°, что может привести к механическому разрушению приводного двигателя ГУ источника РГ.
В связи с проиллюстрированными выше требованиями к быстродействию АВР применение пусковых органов, действующих только по факту снижения напряжения, в общем случае не всегда приемлемо.
В то же время, снижение частоты на резервируемой секции шин (по отношению к частоте резервного источника) является необходимым и достаточным признаком потери внешнего питания в случае пассивной нагрузки, в том числе содержащей синхронные двигатели. Присоединение ГУ источников РГ влияет на процессы изменения напряжения U(t) примерно таким же образом, как и в случае подключения синхронных электродвигателей, но процессы изменения частоты ƒ(t) меняет радикально.
Таким образом, необходимость повышения быстродействия АВР в системах электроснабжения обусловлена присоединением источников РГ с современными ГУ. Поскольку возможны режимы, в которых ГУ могут быть отключены, то пусковые органы по напряжению в схемах АВР целесообразно сохранять. Применение пускового органа по частоте в схемах АВР промышленных энергорайонов с ГУ источников РГ эффективно и необходимо.
Задачей изобретения является повышение оперативности и надежности АВР с целью снижения времени восстановления технологического режима предприятия при потере питания от основного источника электроснабжения.
Такой положительный эффект достигается за счет придания способу-прототипу дополнительных адаптивных свойств запрета для схем электроснабжения с источниками РГ, вследствие чего оптимизируется алгоритм формирования управляющих воздействий и АВР в целом.
Поставленная задача решается, а требуемый технический результат достигается тем, что в способе, заключающемся в том, что при отключенном положении всех генерирующих установок источника распределенной генерации сравнивают первую пару параметров, характеризующих электроснабжение промышленного энергорайона, когда в качестве первого параметра первой пары параметров принимают время бестоковой паузы до автоматического повторного включения у вводного выключателя, а в качестве второго параметра первой пары параметров принимают время между появлением тока короткого замыкания на вводе питающего трансформатора со стороны низкого напряжения до вводного выключателя двухтрансформаторной подстанции, который сравнивают с первым параметром первой пары параметров, для чего в момент исчезновения напряжения на резервируемой секции шин подстанции фиксируют наличие тока короткого замыкания на вводе питающего трансформатора, и после его отключения фиксируют отсутствие линейного напряжения, обусловленное отключением вводного выключателя, отсчитывают время бестоковой паузы до автоматического повторного включения, и, если в момент прекращения отсчета вновь определяют ток короткого замыкания, то фиксируют устойчивое короткое замыкание на шинах подстанции между вводным выключателем и выключателем автоматического включения резерва и подают сигнал на запрет автоматического включения резерва, в противном случае, когда ток короткого замыкания отсутствует в момент прекращения отсчета, производят сравнение второй пары параметров, характеризующих электроснабжение промышленного энергорайона, когда в качестве первого параметра второй пары параметров принимают мощность подключаемой аварийной нагрузки, а в качестве второго параметра второй пары параметров принимают мощность резервного ввода, который сравнивают с первым параметром второй пары параметров и в случае, когда фиксируют недостаточность дополнительной нагрузочной способности резервного ввода для подключения аварийного участка промышленного энергорайона без провала напряжения формируют сигнал на запрет автоматического включения резерва, согласно изобретению, при включенном положении генерирующих установок источника распределенной генерации и запрете автоматического повторного включения резерва сравнивают третью пару параметров, характеризующих электроснабжение промышленного энергорайона, когда в качестве первого параметра третьей пары параметров принимают частоту напряжения на резервируемой секции шин двухтрансформаторной подстанции, а в качестве второго параметра третьей пары параметров принимают частоту напряжения на резервирующей секции шин двухтрансформаторной подстанции, который сравнивают с первым параметром третьей пары параметров и при определении факта снижения частоты напряжения на резервируемой секции шин двухтрансформаторной подстанции относительно частоты напряжения на резервирующей секции шин двухтрансформаторной подстанции формируют сигнал на пуск автоматического включения резерва без выдержки времени и одновременно производят оценку достаточности запаса мощности в резервной системе и в случае, когда фиксируют недостаточность дополнительной нагрузочной способности резервного ввода для подключения аварийного участка промышленного энергорайона без провала напряжения, формируют сигнал на запрет автоматического включения резерва, при этом, дополнительно контролируют срабатывание пускового органа по разности частот и при разности частот между секциями шин больше уставочных значений формируют сигнал на запрет автоматического включения резерва. На чертеже представлены:
на фиг. 1 - функциональная схема устройства, которая реализует предложенный способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции;
на фиг. 2а и фиг. 2б - графики, поясняющие длительности перерыва питания, допустимые для генерирующих установок источников распределенной генерации в промышленном энергорайоне;
на фиг. 3 - осциллограмма рассчитанного переходного процесса с трехфазным КЗ и действием АВР (высокая вероятность механического разрушения приводного двигателя ГУ).
Устройство (фиг. 1) содержит первый 1 и второй 2 независимые вводы, работающие параллельно, первый 3 и второй 4 питающие трансформаторы, вводной выключатель 5 первого ввода, вводной выключатель 6 второго ввода, первая 7 и вторая 8 секции шин, секционный выключатель 9, первый 10, второй 11, третий 12, четвертый 13 выключатели на отходящих линиях, первый 14 и второй 15 блоки контроля напряжения секций шин, первый 16 и второй 17 блоки контроля токов ввода, первый 18 и второй 19 блоки контроля мощностей выделенной нагрузки вводов, первый 20 и второй 21 блоки контроля резервов мощности подключаемого источника секций шин, звено 22 сравнения данных (ЗСД), блок 23 обработки параметров (УОП), оперативно-информационный блок 24 (ОИК), первый 25 и второй 26 измерители частоты секций шин, первый 27, второй 28, третий 29 и четвертый 30 блоки сравнения, первый 31 и второй 32 сумматоры, пятый 33 и шестой 34 выключатели на отходящих линиях.
Для схемы, приведенной на фиг. 1, рассчитаны два крайних случая: трехфазное КЗ вблизи шин и потеря основного питания без КЗ, поэтому все реальные случаи окажутся в этом диапазоне. Время отключения маломасляных выключателей принято 0,07 с, вакуумных - 0,04 с; время включения, соответственно, 0,14 и 0,08 с. Результаты расчетов показаны на фиг. 2а.
Значения критического времени на фиг. 2а, в случаях отсутствия КЗ, при малых TJ резко снижаются. Это обусловлено тем, что малоинерционные ГУ не успевают в начале аварийного режима принять дополнительную нагрузку и их скорость вращения быстро увеличивается, приближая момент перехода в асинхронный режим. При близких КЗ взаимное влияние ГУ и асинхронных двигателей (АД) практически отсутствует.
Худшими, в отношении переходных процессов ГУ, являются случаи с возникновением многофазных КЗ. Таким образом, наличие в узле нагрузки таких ГУ, которые не допускают несинхронных включений с большой разностью фаз напряжений, не оставляет времени для отстройки АВР от возмущений, при которых действие АВР не требуется. Это практически не зависит от относительной мощности ГУ, как следует из фиг. 2б.
Пример переходного процесса с трехфазным КЗ и АВР для устройства, представленного на фиг. 1, с продолжительностью перерыва питания 0,3 с и параметрами, характерными для вакуумных или маломасляных выключателей, показан на фиг. 3. Этот процесс был бы полностью благополучным и для ГУ источника РГ и для нагрузки, если бы несинхронное включение с большой разностью фаз было допустимо для ГУ. Но в данном случае разность фаз напряжений к моменту АВР составляет 155°, что может привести к механическому разрушению приводного двигателя ГУ.
Способ управления электроснабжением промышленного энергорайона с источниками РГ при коротком замыкании на резервируемой секции шин подстанции реализуется следующим образом.
Способ реализуется в двух основных режимах: при включенном и при отключенном положении ГУ источников РГ в промышленного энергорайоне с источниками РГ. Переключение режимов осуществляется на основе анализа состояния коммутационных аппаратов системы электроснабжения (телесигнализация) оперативно-информационным блоком 24, выполненным, например, с применением SCADA-системы. При этом, управляющий сигнал для переключения режимов с выхода блока 24 выдается на вход блока 23 (УОП).
В режиме, когда в схеме электроснабжения ГУ источников РГ отключены, предлагаемый способ реализуется аналогично способу-прототипу. Информация об отключении ГУ формируется на основе данных телесигнализации, а за счет подачи управляющего сигнала с выхода блока на вход блока 23 результаты функционирования элементов 25-32 устройства (см. фиг. 1) блокируются.
В нормальном режиме по вводам на секции шин 7 и 8 протекает рабочий ток. Так как величина рабочего тока значительно меньше величины тока короткого замыкания (КЗ), то релейная защита не срабатывает на отключение вводных выключателей 5 и 6, которые снабжены устройством автоматического повторного включения (АПВ), в результате чего АВР не запускается.
При коротком замыкании на секции шин 7 за выключателем 5 блок контроля тока 16 фиксирует значительное увеличение тока от трансформатора 3 и выдает сигнал вида IС.Ш.7→∞ на вход блока 23. Одновременно с ним блок 14 контроля напряжения фиксирует исчезновение (глубокое снижение) линейных напряжений на секции шин 7 и подает сигнал в блок 23 вида UС.Ш.7→0. Через заданную выдержку времени релейная защита отключает вводной выключатель 5, оснащенный устройством АПВ. При этом исчезают ток КЗ и линейные напряжения на секции шин 7. Эти события регистрируются соответствующими блоками контроля напряжения 14 и тока 16, которые выдают сигналы вида IС.Ш.7→0. и UС.Ш.7→0 в блок 23, где проводится повторный анализ поступающей с блоков информации. Затем срабатывает устройство АПВ выключателя 5 с заданной выдержкой tАПВ5. Блок 23 производит задержку по времени tУОП, равную бестоковой паузе АПВ: tУОП = tАПВ5, которое совпадает с моментом поступления повторных сигналов с блоков контроля напряжения 14 и тока
Figure 00000001
При этом блок 23 формирует и подает команду на запрет АВР и включение выключателя 9. При восстановлении нормального режима работы на секции шин 7 появится напряжение, что будет зафиксировано логической частью АВР и схема вернется в исходное состояние.
При неустойчивом КЗ на первой секции шин 7 повторных сигналов из первого блока 14 контроля напряжения и первого блока 16 контроля тока не поступает в блок 23, поэтому вынужденной задержки времени не производится. В этот момент блок 18 контроля мощности фиксирует величину мощности на выделенной нагрузке и выдает это значение в звено 22 сравнения данных в виде Pраб.С.Ш.7 = m7 Одновременно с этим блок 21 контроля резерва мощности определяет запас мощности в резервной системе и затем подает команду Pрез..С.Ш.8 = n8 в звено 22, где реализуется проверка требования о соблюдении уровней мощности в узлах нагрузки: m7 ≈ n8. Когда резерва недостаточно для подключения аварийного участка сети без посадки напряжения, звено 22 подает команду в блок 23 в виде сигнала: m7 >> n8, что свидетельствует об опасности возникновения провала напряжения. Затем блок 23 производит задержку по времени tУОП, равную бестоковой паузе АПВ: tУОП=tАПВ5, которое совпадает с моментом поступления сигнала со звена сравнения данных. В силу чего блок 23 формирует и подает команду на запрет АВР и включение выключателя 9. При восстановлении нормального режима на секции шин 7 появится напряжение и устройство вернется в исходное состояние.
В режиме, когда в устройстве (см. фиг. 1) ГУ источников РГ включены, предлагаемый способ реализуется следующим образом. Для повышения оперативности задействуют блоки 25-32 (см. фиг. 1). Управляющий сигнал с выхода блока 24 на вход блока 23 не поступает и в этом режиме информация с выходов блоков контроля напряжения 14 и тока 16 в блоке 23 не используется.
Пуск АВР выполняется за счет использования соответствующих пусковых органов по частоте. Такие пусковые органы по частоте реализуются совокупным применением измерителей частоты секций шин 25 и 26 и блоков сравнения 27 и 28. Измерение частоты осуществляется на основе информации, поступающей от блоков контроля напряжения 14 и 15, например, на основе последовательных мгновенных значений напряжения, в соответствующие измерители частоты секций шин 25 и 26, которые производят расчет значений частоты. Значения частоты с выходов измерителей частоты 25 и 26 передаются на первые входы блоков сравнения 27 и 28, на вторые входы которых с выходов блока 24 поступают уставочные величины пусковых органов по частоте. При снижении частоты ниже уставочных значений, связанном с повреждением на питающей линии (или трансформаторе), и последующими действиями релейной защиты, на выходе соответствующей блоков сравнения 27 или 28 появляется управляющий сигнал для блока 23, который затем осуществляет пуск АВР. В отличие от предыдущего режима применение пусковых органов по частоте позволяет обеспечить высокую оперативность предлагаемого способа за счет срабатывания без выдержки времени на АПВ, которое в рассматриваемом режиме не используется. Уставочные значения по частоте формируются исходя из состава и особенностей ГУ источников РГ, присоединенных к каждой секции шин, а также состава и особенностей двигательной нагрузки. При восстановлении нормального режима работы на резервируемой секции шин появится напряжение, что фиксируется логической частью АВР и устройство (фиг. 1) вернется в исходное состояние.
Дополнительно в условиях снижения частоты информация о ее значениях с выходов измерителей частоты 25 и 26 поступает на входы блока 24. По значениям частоты из памяти блока 24 выдаются данные уставочных значений на срабатывание пускового органа по разности частот, реализуемого на элементах 29 и 31 для секции шин 7 и на элементах 30 и 32 для секции шин 8. Уставочные значения разности частот также формируются, исходя из состава и особенностей ГУ источников РГ, присоединенных к каждой секции шин, а также состава и особенностей двигательной нагрузки. Определение текущих уставочных значений обеспечивается по данным телесигнализации, поступающим на вход ОИК 24. Разность частот напряжения для резервируемой секции шин 7 рассчитывается путем вычитания значений частоты напряжения на секции шин 8 и частоты напряжения на секции 7, реализуемая с помощью подачи информации с выходов измерителей частоты 25 и 26 на соответствующие суммирующие и вычитающие входы сумматора 31. Аналогичным образом выполняется расчет разности частот для секции шин 8. Сравнение текущих значений разности частот с соответствующими уставками осуществляется в блоках сравнения 29 и 30, а выходы блоков сравнения 29 и 30 подключены к блоку 23. Тем самым обеспечивается выдача управляющих сигналов в блок 23 при достижении разности частот между секциями шин больше уставочных значений и запрет АВР при существенном рассогласовании частот, колебаний напряжения между резервируемой и резервирующей секциями шин. Необходимость во введение запрета АВР при существенном отличии частот между секциями шин обусловлена тем, что подключение секции шин с ГУ источника РГ с низкой частотой и соответственно большим дефицитом мощности может послужить причиной дальнейшего развития аварийной ситуации и привести к значительным ущербам для промышленного потребителя.
В режиме, когда в схеме электроснабжения ГУ источников РГ включены, как и в режиме отключенных ГУ источников РГ, производится оценка достаточности запаса мощности в резервной системе. Применительно к АВР для секции шин 7 блок 18 контроля мощности фиксирует величину мощности на выделенной нагрузке и выдает это значение в звено 22 в виде сигнала
Figure 00000002
Одновременно с этим блок 21 контроля резерва мощности определяет запас мощности в резервной системе и затем подает команду Pрез..С.Ш.8 = n8 в звено 22, где реализуется проверка требования о соблюдении уровней мощности в узлах нагрузки: m7 ≈ n8. Когда резерва недостаточно для подключения аварийного участка, звено 22 подаст команду в блок 23 в виде сигнала m7 >> n8, что свидетельствует об опасности развития аварийной ситуации. В результате чего блок 23 формирует и подает команду на запрет АВР и включение выключателя 9.
Следует отметить, что необходимость введения запрета АВР исходя из результатов оценки достаточности запаса мощности в резервной системе и достижения существенной разности частот между секциями шин, обусловлена составом и особенностями ГУ источников РГ, а также двигательной нагрузки, подключенным в текущий момент времени к секциям шин. Указанные состав и особенности влияют на процесс развития аварийной ситуации и возможности восстановления нормального электроснабжения потребителей энергорайона.
Таким образом, в предложенном способе достигается требуемый технический результат, заключающийся в повышении оперативности и надежности способа управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции, вследствие того, что, оптимизируется алгоритм формирования управляющих воздействий и АВР.

Claims (1)

  1. Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции, заключающийся в том, что при отключенном положении всех генерирующих установок источника распределенной генерации сравнивают первую пару параметров, характеризующих электроснабжение промышленного энергорайона, когда в качестве первого параметра первой пары параметров принимают время бестоковой паузы до автоматического повторного включения у вводного выключателя, а в качестве второго параметра первой пары параметров принимают время между появлением тока короткого замыкания на вводе питающего трансформатора со стороны низкого напряжения до вводного выключателя двухтрансформаторной подстанции, который сравнивают с первым параметром первой пары параметров, для чего в момент исчезновения напряжения на резервируемой секции шин подстанции фиксируют наличие тока короткого замыкания на вводе питающего трансформатора, и после его отключения фиксируют отсутствие линейного напряжения, обусловленное отключением вводного выключателя, отсчитывают время бестоковой паузы до автоматического повторного включения, и, если в момент прекращения отсчета вновь определяют ток короткого замыкания, фиксируют устойчивое короткое замыкание на шинах подстанции между вводным выключателем и выключателем автоматического включения резерва и подают сигнал на запрет автоматического включения резерва, в противном случае, когда ток короткого замыкания отсутствует в момент прекращения отсчета, производят сравнение второй пары параметров, характеризующих электроснабжение промышленного энергорайона, когда в качестве первого параметра второй пары параметров принимают мощность подключаемой аварийной нагрузки, а в качестве второго параметра второй пары параметров принимают мощность резервного ввода, который сравнивают с первым параметром второй пары параметров, и в случае, когда фиксируют недостаточность дополнительной нагрузочной способности резервного ввода для подключения аварийного участка промышленного энергорайона без провала напряжения, формируют сигнал на запрет автоматического включения резерва, отличающийся тем, что при включенном положении генерирующих установок источника распределенной генерации и запрете автоматического повторного включения резерва сравнивают третью пару параметров, характеризующих электроснабжение промышленного энергорайона, когда в качестве первого параметра третьей пары параметров принимают частоту напряжения на резервируемой секции шин двухтрансформаторной подстанции, а в качестве второго параметра третьей пары параметров принимают частоту напряжения на резервирующей секции шин двухтрансформаторной подстанции, который сравнивают с первым параметром третьей пары параметров и при определении факта снижения частоты напряжения на резервируемой секции шин двухтрансформаторной подстанции относительно частоты напряжения на резервирующей секции шин двухтрансформаторной подстанции формируют сигнал на пуск автоматического включения резерва без выдержки времени и одновременно производят оценку достаточности запаса мощности в резервной системе и в случае, когда фиксируют недостаточность дополнительной нагрузочной способности резервного ввода для подключения аварийного участка промышленного энергорайона без провала напряжения, формируют сигнал на запрет автоматического включения резерва, при этом дополнительно контролируют срабатывание пускового органа по разности частот и при разности частот между секциями шин больше уставочных значений формируют сигнал на запрет автоматического включения резерва.
RU2018145705A 2018-12-24 2018-12-24 Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции RU2692758C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145705A RU2692758C1 (ru) 2018-12-24 2018-12-24 Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145705A RU2692758C1 (ru) 2018-12-24 2018-12-24 Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции

Publications (1)

Publication Number Publication Date
RU2692758C1 true RU2692758C1 (ru) 2019-06-27

Family

ID=67038350

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145705A RU2692758C1 (ru) 2018-12-24 2018-12-24 Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции

Country Status (1)

Country Link
RU (1) RU2692758C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985309A (zh) * 2021-10-28 2022-01-28 西安热工研究院有限公司 一种发电厂保安电源系统的性能测试系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1744757A1 (ru) * 1990-01-05 1992-06-30 Всесоюзный Научно-Исследовательский, Проектно-Конструкторский И Технологический Институт Релестроения Способ автоматического включени резервного питани потребителей
US6560128B1 (en) * 1999-02-12 2003-05-06 Satcon Power Systems Canada Ltd. Ferroresonance-suppressing static transfer switch
RU2305355C1 (ru) * 2006-05-02 2007-08-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Орловский государственный аграрный университет" (ФГОУ ВПО ОрелГАУ) Способ контроля успешного срабатывания выключателя пункта автоматического включения резерва в кольцевой сети, питающейся от разных шин двухтрансформаторной подстанции
RU111364U1 (ru) * 2011-09-14 2011-12-10 Сергей Петрович Сергеев Блок автоматического включения резерва электропитания устройств железнодорожной автоматики и телемеханики
RU2447565C1 (ru) * 2011-02-17 2012-04-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ МЭИ") Способ автоматического включения резервного электропитания потребителей и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1744757A1 (ru) * 1990-01-05 1992-06-30 Всесоюзный Научно-Исследовательский, Проектно-Конструкторский И Технологический Институт Релестроения Способ автоматического включени резервного питани потребителей
US6560128B1 (en) * 1999-02-12 2003-05-06 Satcon Power Systems Canada Ltd. Ferroresonance-suppressing static transfer switch
RU2305355C1 (ru) * 2006-05-02 2007-08-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Орловский государственный аграрный университет" (ФГОУ ВПО ОрелГАУ) Способ контроля успешного срабатывания выключателя пункта автоматического включения резерва в кольцевой сети, питающейся от разных шин двухтрансформаторной подстанции
RU2447565C1 (ru) * 2011-02-17 2012-04-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ МЭИ") Способ автоматического включения резервного электропитания потребителей и устройство для его осуществления
RU111364U1 (ru) * 2011-09-14 2011-12-10 Сергей Петрович Сергеев Блок автоматического включения резерва электропитания устройств железнодорожной автоматики и телемеханики

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985309A (zh) * 2021-10-28 2022-01-28 西安热工研究院有限公司 一种发电厂保安电源系统的性能测试系统及方法
CN113985309B (zh) * 2021-10-28 2024-01-19 西安热工研究院有限公司 一种发电厂保安电源系统的性能测试系统及方法

Similar Documents

Publication Publication Date Title
Antonova et al. Distributed generation and its impact on power grids and microgrids protection
US10193382B2 (en) Segment protected parallel bus
Kimbark Improvement of power system stability by changes in the network
Abedrabbo et al. Impact of DC grid contingencies on AC system stability
CN104300580A (zh) 基于广域信息的含分布式电源配电网的重合闸方法
CN107612021A (zh) 一种适用于大量小电源接入地方电网的区域备自投控制方法
JPS6338929B2 (ru)
TWI723454B (zh) 電源系統
RU188256U1 (ru) Устройство управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции
RU2692758C1 (ru) Способ управления электроснабжением промышленного энергорайона с источниками распределенной генерации при коротком замыкании на резервируемой секции шин подстанции
US20210091558A1 (en) Sectionalizing sequence order
RU2662728C2 (ru) Способ противоаварийного управления режимом параллельной работы синхронных генераторов в электрических сетях
CN103219793B (zh) 多功能微机控制备自投的解耦控制方法
Oudalov et al. Microgrid protection
Chen et al. A coordinated strategy of protection and control based on wide-area information for distribution network with the DG
Meng China's protection technique in preventing power system blackout to world
CN111431181A (zh) 电力系统中备自投的控制方法、装置及电力系统的备自投
RU2343617C1 (ru) Способ комбинированного запрета автоматического включения резерва на устойчивые короткие замыкания и провалы напряжения
Sidhu Tarlochan et al. A Modern Automatic Bus Transfer Scheme
Sishuba et al. Adaptive control system for continuity of supply using dispersed generators
Pandya et al. Considerations for the Protection of Adjustable Speed Drive Installations
RU2460198C1 (ru) Устройство защиты от потери питания
RU2718113C1 (ru) Система управления накопителем электрической энергии для расширения области допустимых режимов генерирующих установок источников распределенной генерации при кратковременных отклонениях частоты
Anwar et al. Fault-Aware-Soft-Restart method for shipboard MVAC power system using inverter coupled energy storage system
RU2807318C1 (ru) Способ бесперебойного электроснабжения потребителей при обрыве проводника

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201225