RU2692542C1 - Способ плавки и литья литейного алюминиевого сплава - Google Patents
Способ плавки и литья литейного алюминиевого сплава Download PDFInfo
- Publication number
- RU2692542C1 RU2692542C1 RU2018118712A RU2018118712A RU2692542C1 RU 2692542 C1 RU2692542 C1 RU 2692542C1 RU 2018118712 A RU2018118712 A RU 2018118712A RU 2018118712 A RU2018118712 A RU 2018118712A RU 2692542 C1 RU2692542 C1 RU 2692542C1
- Authority
- RU
- Russia
- Prior art keywords
- silicon
- melt
- aluminum
- temperature
- mixing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 23
- 238000005266 casting Methods 0.000 title claims abstract description 15
- 238000002844 melting Methods 0.000 title claims abstract description 7
- 230000008018 melting Effects 0.000 title claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 82
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000010703 silicon Substances 0.000 claims abstract description 78
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 46
- 239000000956 alloy Substances 0.000 claims abstract description 46
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 44
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 239000000155 melt Substances 0.000 claims abstract description 29
- 238000002156 mixing Methods 0.000 claims abstract description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 21
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052796 boron Inorganic materials 0.000 claims abstract description 20
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 10
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 10
- 239000011777 magnesium Substances 0.000 claims abstract description 10
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 10
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 10
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 8
- 238000002425 crystallisation Methods 0.000 claims abstract description 7
- 230000008025 crystallization Effects 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 229910018125 Al-Si Inorganic materials 0.000 abstract description 5
- 229910018520 Al—Si Inorganic materials 0.000 abstract description 5
- 238000005272 metallurgy Methods 0.000 abstract description 3
- 230000002349 favourable effect Effects 0.000 abstract description 2
- 241000282887 Suidae Species 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 16
- 229910052720 vanadium Inorganic materials 0.000 description 13
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 12
- 229910052726 zirconium Inorganic materials 0.000 description 9
- 229910000676 Si alloy Inorganic materials 0.000 description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 8
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005275 alloying Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910021355 zirconium silicide Inorganic materials 0.000 description 2
- WEAMLHXSIBDPGN-UHFFFAOYSA-N (4-hydroxy-3-methylphenyl) thiocyanate Chemical compound CC1=CC(SC#N)=CC=C1O WEAMLHXSIBDPGN-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- JXOOCQBAIRXOGG-UHFFFAOYSA-N [B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[Al] Chemical compound [B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[Al] JXOOCQBAIRXOGG-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Изобретение относится к области металлургии литейных сплавов на основе алюминия и может быть использовано для производства алюминиевых сплавов на основе системы Al-Si, дополнительно легированных магнием, медью, марганцем, стронцием и другими элементами. Способ плавки и литья литейного алюминиевого сплава, содержащего от 5 до 22 мас. % кремния и, по меньшей мере, один металл, выбранный из группы, содержащей железо, магний, марганец, стронций и медь, включает получение жидкой лигатуры, содержащей кремний в количестве 20-75 мас. %, получение расплава алюминиевого сплава путем смешивания расплава алюминия, расплава лигатуры, содержащей кремний, и твердые компоненты, содержащие кремний и по меньшей мере один элемент из группы, включающей железо, магний, марганец, стронций и медь, и кристаллизацию расплава алюминиевого сплава, при этом приготовление жидкой лигатуры выполняют путем смешивания расплава алюминия с температурой не выше 860°С, содержащего бор от 0,0001 до 0,03 мас. %, и расплава кремния с температурой не ниже 1440°С, при этом смешивание осуществляют по меньшей мере в 3 приема с последовательным увеличением концентрации кремния в расплаве лигатуры, после чего осуществляют выдержку расплава лигатуры в течение не менее 30 минут, причем количество первичных кристаллов кремния не должно превышать более 5 мас. %, получение расплава алюминиевого сплава заданного химического состава осуществляют путем смешивания расплава алюминия с температурой, равной 700-860°С, и жидкой лигатуры с кремнием и бором, обеспечивая количество кремния в расплаве не менее 80 мас. % от количества кремния в получаемом сплаве, а кристаллизацию расплава осуществляют при температуре, превышающей температуру ликвидуса алюминиевого сплава не менее чем на 30°С, с получением литых брусков или чушек. Изобретение направлено на повышение производительности приготовления расплава и получение структуры литейного алюминиевого сплава с благоприятной морфологией. 2 з.п. ф-лы, 4 табл., 3 пр.
Description
Область техники
Изобретение относится к области металлургии литейных сплавов на основе алюминия и может быть использовано для производства алюминиевых сплавов на основе системы Al-Si, дополнительно легированных магнием, медью, марганцем, стронцием и другими элементами.
Предшествующий уровень техники
Основной способ получения литейных алюминиевых сплавов на основе кремниевой эвтектики включает приготовление расплава с заданной концентрацией кремния, предусматривающий растворение твердого (кристаллического) кремния в жидком расплаве алюминия. Для минимизации и/или снижения окисления кристаллического кремния при повышенных температурах введение кремния в расплав выполняют в присутствии флюсов и/или с использованием специальных устройств перемешивания расплава (Курдюмов А.В., Пикунов М.В. Производство отливок из сплавов цветных металлов, Москва: МИСИС, 1996 - 504 с.). Среди недостатков традиционного способа следуют выделить три. Основной - потеря кремния за счет окисления поверхности твердых кусков шихты, находящихся на поверхности расплава ввиду разницы плотностей кремния и алюминиевого расплава. Использование флюсов усиливает экологическую нагрузку, а использование специализированных перемешивающих механизмов усложняет и удорожает процесс приготовления расплава за счет приобретения и содержания дополнительного оборудования.
Известен альтернативный способ приготовления расплава, по которому сплавы готовятся в две стадии. На первой стадии готовится алюминиево-кремниевая лигатура на основе алюминия и кристаллического кремния, для чего в расплавленный алюминий небольшими порциями вводится кристаллический кремний. Далее приготовленный расплав кристаллизуют в виде чушки. Типичная концентрация кремния в лигатуре обычно составляет 20-50 масс. % Si. На второй стадии в алюминиевый расплав вводится приготовленная на первой стадии алюминиево-кремниевая лигатура и другие необходимые легирующие элементы (Курдюмов А.В., Пикунов М.В. Производство отливок из сплавов цветных металлов, Москва: МИСИС, 1996 - 504 с.). Среди недостатков данного способа является низкая производительность приготовления сплава и относительно высокая себестоимость данного производства.
Известен способ получения низколегированного алюминиево-кремниевого сплава, отраженный в патенте РФ 2015187, опубл. 30.06.1994. Предложенный способ получения низколегированного алюминиево-кремниевого сплава с содержанием кремния 2-14% масс, предусматривает растворение расчетного количества кристаллического кремния в алюминиево-кремниевой основе, в качестве основы используют сплав, полученный в электролизерах для производства алюминия с массовым отношением кремния в этой основе к общему содержанию кремния в полученном сплаве не менее 0,45. Среди недостатка предложенного способа следует выделить условие использования основы сплава в электролизере, что приводит к ухудшению рабочих показатели электролизера, в частности выход по току.
Известен способ получения алюминиево-кремниевых сплавов и устройство для его реализации, отраженный в патенте РФ 2025526, опубл. 30.12.1994. Предложенный способ предусматривает последовательное приготовление расплава и его перемешивание в течение заданного времени. Перемешивание расплава осуществляют по всему объему турбулентными потоками инертного газа за счет периодического изменения его давления по всей высоте расплава. Среди недостатков предложенного способа следует выделить потери алюминия (повышенное образование шлака) за счет окисления расплава при возникновении турбулентных потоков, а также использование специализированных устройств для продувки алюминиевого расплава инертным газом.
Известен способ получения кремнийжелезосодержащих сплавов, отраженный в патенте РФ 2215803, опубл. 27.05.2003. Предлагаемая технология включает подачу и растворение в жидком алюминии расчетного количества легирующих компонентов в виде сплава, при этом в алюминий подают жидкую и/или твердую лигатуру, приготовленную из алюминия и ферросилиция. В результате снижаются энергозатраты на приготовление расплава заданного и реализуется более полное усвоение легирующих элементов. Среди недостатков предложенного способа следует выделить то, что конечный химический состав алюминиевого сплава будет содержать высокие концентрации железа, что существенно ухудшит его потребительские характеристики, в частности стойкость к ударным воздействиям, технологические ограничения по получению чистых (по содержанию железа) литейных алюминиевых сплавов.
Известен способ получения заэвтектических алюминиево-кремниевых сплавов, отраженный в патенте РФ 2041967, опубл. 20.08.1995. Способ предусматривает введение жидкого кремния частями, обеспечивая снижение содержания окисных включений в сплаве и повышению степени усвоения легкоплавких металлов. Среди недостатка предложенного способа следует выделить достаточную трудоемкость выдерживания заданного состава при использовании жидкой лигатуры, что требует использования подшихтовки, удлиняющий цикл приготовления расплава.
Известен способ получения алюминиево-кремниевых сплавов, отраженный в патенте 2266971, опубл. 27.12.2005. Способ получения алюминиево-кремниевых сплавов включает введение расплавленного кремния в расплав алюминия или его сплава, корректировку расплава и разливку в формы, при этом проводят обработку расплавом алюминия или его сплавом металлсодержащих отходов алюминиевого и/или кремниевого производства, рассчитываемых по формуле, после чего в полученный расплав вводят расплавленный кремний. Среди недостатка предложенного способа следует выделить достаточную трудоемкость при использовании отходов, а также проблемы с выдерживанием заданного состава при использовании жидкой лигатуры, что требует использования подшихтовки, удлиняющий цикл приготовления расплава.
Наиболее близким к предложенному изобретению является способ получения алюминиево-кремниевого сплава, отраженный в патенте РФ 2432411, опубл. 11.02.2010. Способ включает подачу и растворение в жидком алюминии алюминиево-кремниевой лигатуры. В качестве алюминиево-кремниевой лигатуры используют жидкую алюминиево-кремниевую лигатуру с содержанием кремния 25-45 вес. %. При этом количество кремния в лигатуре составляет не менее 60 вес. % от количества кремния в получаемом сплаве. В жидкий алюминий могут дополнительно подавать и растворять твердый кремнийсодержащий компонент в виде твердой алюминиево-кремниевой лигатуры и/или в виде кристаллического кремния. Технология предусматривает смешивание жидкой алюминиево-кремниевой лигатуры и жидкого алюминия и жидкого кремния с температурой в диапазоне 1430-1520°С. Среди недостатков предложенного способа следует выделить следующие - низкое качество алюминиевого сплава в виду возможного присутствия в структуре силицидов ванадия и циркония при использовании сырья с относительно высоким содержанием циркония и ванадия.
Раскрытие изобретения
Задачами предлагаемого технического решения являются повышение технико-экономических показателей технологии производства алюминиево-кремниевых сплавов и улучшение структуры чушки из сплавов системы Al-Si и как следствие механических свойств отливок, полученных из этих сплавов.
Техническими результатами являются повышение производительности приготовления расплава, снижение затрат на приготовление сплава и получение структуры литейного алюминиевого сплава с благоприятной морфологией.
Технический результат достигается тем, что в способе плавки и литья литейного алюминиевого сплава, содержащего от 5 до 22 масс. % кремния и, по меньшей мере, один металл, выбранный из группы: железо, магний, марганец, стронций и медь, включающий: получение жидкой лигатуры, содержащей кремний в количестве 20-75 (масс. %); получение расплава алюминиевого сплава путем смешивания расплава алюминия, расплава лигатуры, содержащей кремний и твердые компоненты, содержащие кремний и, по меньшей мере, один элемент из группы, включающей железо, магний, марганец, стронций и медь; кристаллизацию расплава алюминиевого сплава,
новым является то, что
а) приготовление жидкой лигатуры выполняют путем смешивания расплава алюминия с температурой не выше 860°С, содержащего бор в количестве 0,0001-0,03 масс. %, и расплава кремния с температурой не ниже 1440°С осуществляют, по меньшей мере, в 3 приема, с последовательным увеличением концентрации кремния в расплаве лигатуры;
б) выдержку расплава лигатуры с кремнием и бором выполняют в течение не менее 30 минут, при этом количество первичных кристаллов кремния не должно превышать более 5 масс. %;
в) получение сплава заданного химического состава выполняют путем смешивания расплава алюминия с температурой равной 700-860°С и жидкой лигатуры с кремнием и бором, обеспечивая количество кремния в расплаве не менее 80 масс. % от количества кремния в получаемом сплаве;
г) получение литых брусков (чушек) путем кристаллизации расплава при температуре превышающей температуру ликвидуса алюминиевого сплава не менее чем на 30°С.
В частном исполнении жидкую лигатуру с кремнием и бором, с содержанием кремния от 20 до 40 масс. %, получают смешиванием расплава алюминия с температурой не ниже 700°С и расплава кремния не ниже 1440°С, жидкую лигатуру с кремнием и бором, с содержанием кремния от 40 до 60%, получают смешиванием расплава алюминия с температурой не ниже 750°С и расплава кремния не ниже 1550°С.
Сущность изобретения
Обоснование заявляемых технологических параметров способа получения приведено ниже.
Если при смешивании температура расплава алюминия будет ниже 700°С, то при смешении жидкости кремния и алюминия при определенных концентрации кремния возможно появление твердой фазы - первично кристаллизующегося кремния, приводящего к ее нарастанию на стенки тигля.
Если при смешивании температура расплава алюминия будет выше 850°С, то при смешении жидкости кремния и алюминия конечная температура будет чрезмерно высокой, что будет приводить к повышенному износу и разрушению материала футеровки тигля, а также снижению производительности при литье за счет необходимости выполнения операции по охлаждения расплава.
Последовательное смешение по меньшей мере в 3 приема и выдержка в течение не менее 30 минут необходимы для равномерного выравнивания температуры между смешивающимися жидкостями и уменьшения градиента температуры по высоте тигля.
Для исключения появления первичных кристаллов кремния должны быть выполнены условие, при котором смешивание расплава алюминия с расплавом кремния должно обеспечивать конечную температуру смеси с перегревом выше ликвидуса по меньшей мере на 100°С.
Выше 850°С применения расплава алюминия не рекомендуется ввиду его повышенных потерь из-за окисления.
Добавка бора необходима для нейтрализации вредного влияния циркония и ванадия, которое заключается в следующем:
1) Ванадий и цирконий образуют с кремнием соответствующие силициды, в частности кристаллы частиц Si2Zr и Si2V, формирующихся в виде первичных кристаллов, преимущественно игольчатой формы, размер которых (при определенных условиях) может достигать до десятков микрон. Такая морфологии и размере частиц может приводить к снижению механических свойств, в частности относительного удлинения и усталостных характеристик. При контроле качества чушки частицы Si2Zr и Si2V чаше всего выявляются на изломах чушки.
2) Поскольку кристаллизация частиц Si2Zr м Si2V осуществляется при повышенной температуре, то при относительно низкой температуре литья данные частицы способны загрязнить фильтр, используемый для очистки расплава от неметаллических включений, снизив его эффективность. Для предотвращения такого загрязнения необходимо повышать температуру литья, что дополнительного увеличивает затраты на электроэнергию, а также дополнительно увеличивает угар из окисления алюминиевого расплава.
Бор в количестве 0,001-0,05 масс. % и в соотношении (V+Zr)/B > 2,3…4,2 необходим для полного связывания циркония и ванадия в соответствующие бориды, исключив формирование силицидов этих элементов.
Присутствие в расплаве первичных кристаллов кремния удлиняет процесс приготовления расплава ввиду необходимости их растворения, ухудшая производительность процесса.
Изобретение может быть использовано для получения литейных сплавов системы Al-Si с содержанием кремния от 5 до 22%, при этом сплав может содержать, по меньшей мере, один элемент из группы, включающей железо, магний, марганец, стронций и медь. Железо, магний, марганец, стронций и медь могут быть добавлены в расплав на любой стадии приготовления расплава.
Пример конкретного исполнения
Пример 1
С использованием расчетного метода проанализирован фазовый состав сплава системы Al-7% Si-0,3% Mg-0,09% Fe (масс. %) с переменным содержанием ванадия и бора. Проанализированные составы сплавов указаны в таблице 1.
* - кроме указанных элементов в химическом составе сплавов могут присутствовать другие неизбежные примеси.
Из представленных расчетов видно, что при избыточном содержании суммы элементов ванадия и циркония по отношению к бору структуре сплавов системы Al-Si в структуре могут присутствовать силициды ванадия и кремния (Si2V и Si2Zr). Кроме того, при избытке бора к сумме ванадия и циркония в структуре сплава будет присутствовать избыточный бор в виде борида алюминия (вероятнее всего AlB2 и менее вероятно AlB12).
Пример 2
В условия предприятия ИркАЗ получена опытная партия чушки сплава АК7пч (356.2) с использованием жидкой лигатуры. Соотношение циркония и ванадия выбиралось таким образом, чтобы полностью связать бор с цирконием и ванадием в соответствующие бориды, в частности (Zr+V)/B=3. Химический состав первичного алюминия представлен в таблице 2.
Последовательность плавки и литья была следующей:
1) Приготовление жидкой лигатуры;
2) Приготовление расплава;
3) Литье сплава
Лигатуру готовили следующим образом. В предварительно очищенный и разогретый вакуумно-разливочный ковш из электролизера залили первичный алюминий в количестве 2980 кг. Температура алюминиевого расплава перед смешением с жидким кремнием составляла 809°С. При смешении температура переливаемого кремния составляла 1500°С. Заливку кремния в количестве 1135 кг производили в 8 приемов с контролем веса по крановым весам. Исходя из этого, расчетное содержание кремния в лигатуре - 27,6%.
Температура жидкой лигатуры после смешения составила 940°С. Далее полученную лигатуру смешали с 8 тоннами первичного алюминия в миксере. Температура расплава в миксере, после заливки и перемешивания металла составила 749°С, для снижения температуры отдали 120 кг твердого сплава - температуру снизили до 710°С. Литье произвели по обычной технологии согласно Плану управления производства. Контроль качества контролировался металлографическим образом путем анализа соответствующих изломов чушки, изломов разрывных образцов и анализа и микроструктуры. Детальный анализ микроструктуры показал отсутствие первичных кристаллов силицидов ванадия и циркония.
Для подтверждения повышения качества полученного сплава проведен сравнительный анализ полученного сплава по предложенной технологи и сплава классической путем (без легирования бором) определения количество циклов до разрушения при циклическом нагружении. Для проведения испытаний использована схема изгиб с вращением на испытательной машине модели RR Moore. Испытание проводили при напряжении 80 МПа на трех точеных гладких цилиндрических образцах диаметром 7,5 мм в соответствии с ГОСТ 25.502. Результаты приведены в таблице 3.
Пример 3
Выбор и обоснование температуры расплава алюминия и расплава кремния проведен с использованием результатов таблицы 4.
* - точность определения температуры +/ - 10°С
Claims (11)
1. Способ плавки и литья литейного алюминиевого сплава, содержащего от 5 до 22 мас. % кремния, и по меньшей мере один металл, выбранный из группы, содержащей железо, магний, марганец, стронций и медь, включающий:
- получение жидкой лигатуры, содержащей кремний в количестве 20-75 мас. %;
- получение расплава алюминиевого сплава путем смешивания расплава алюминия, расплава лигатуры, содержащей кремний и твердые компоненты, содержащие кремний и, по меньшей мере, один элемент из группы, включающей железо, магний, марганец, стронций и медь;
- кристаллизацию расплава алюминиевого сплава,
отличающийся тем, что
а) приготовление жидкой лигатуры выполняют путем смешивания расплава алюминия с температурой не выше 860°С, содержащего бор от 0,0001 до 0,03 мас. %, и расплава кремния с температурой не ниже 1440°С, при этом смешивание осуществляют по меньшей мере в 3 приема с последовательным увеличением концентрации кремния в расплаве лигатуры;
б) проводят выдержку расплава лигатуры с кремнием и бором в течение не менее 30 минут, при этом количество первичных кристаллов кремния не должно превышать более 5 мас. %;
в) получение расплава алюминиевого сплава заданного химического состава осуществляют путем смешивания расплава алюминия с температурой, равной 700-860°С, и жидкой лигатуры с кремнием и бором, обеспечивая количество кремния в расплаве не менее 80 мас. % от количества кремния в получаемом сплаве;
г) кристаллизацию расплава осуществляют при температуре, превышающей температуру ликвидуса алюминиевого сплава не менее чем на 30°С, с получение литых брусков или чушек.
2. Способ по п. 1, отличающийся тем, что жидкую лигатуру с кремнием и бором, с содержанием кремния от 20 до 40 мас.%, получают смешиванием расплава алюминия с температурой не ниже 700°С и расплава кремния с температурой не ниже 1440°С.
3. Способ по п. 1 или 2, отличающийся тем, что жидкую лигатуру с кремнием и бором, с содержанием кремния от 40 до 60 мас.%, получают смешиванием расплава алюминия с температурой не ниже 750°С и расплава кремния с температурой не ниже 1550°С.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018118712A RU2692542C1 (ru) | 2018-05-21 | 2018-05-21 | Способ плавки и литья литейного алюминиевого сплава |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018118712A RU2692542C1 (ru) | 2018-05-21 | 2018-05-21 | Способ плавки и литья литейного алюминиевого сплава |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2692542C1 true RU2692542C1 (ru) | 2019-06-25 |
Family
ID=67038196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018118712A RU2692542C1 (ru) | 2018-05-21 | 2018-05-21 | Способ плавки и литья литейного алюминиевого сплава |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2692542C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2823557C2 (ru) * | 2021-12-27 | 2024-07-24 | Ляньюньган Космоспарк Материал Сайенс Ко., Лтд. | Деталь из высокопрочного композитного модифицированного алюминиевого сплава и способ ее получения |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2041967C1 (ru) * | 1993-02-11 | 1995-08-20 | Братский алюминиевый завод | Способ получения заэвтектических алюминиево-кремниевых сплавов |
RU2266971C1 (ru) * | 2004-05-25 | 2005-12-27 | Общество с ограниченной ответственностью "Инженерно-технологический центр" | Способ получения алюминиево-кремниевых сплавов |
RU2432411C1 (ru) * | 2010-02-11 | 2011-10-27 | Общество с ограниченной ответственностью Торговый дом "Байкальский алюминий" (ООО ТД "Байкальский алюминий") | Способ получения алюминиево-кремниевого сплава |
CN103981386A (zh) * | 2014-04-30 | 2014-08-13 | 苏州有色金属研究院有限公司 | 亚共晶和共晶铝硅合金变质及细化的方法 |
CN106191490A (zh) * | 2016-07-04 | 2016-12-07 | 东南大学 | 一种铸造铝硅合金用铝镧硼锶中间合金及其制备方法 |
-
2018
- 2018-05-21 RU RU2018118712A patent/RU2692542C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2041967C1 (ru) * | 1993-02-11 | 1995-08-20 | Братский алюминиевый завод | Способ получения заэвтектических алюминиево-кремниевых сплавов |
RU2266971C1 (ru) * | 2004-05-25 | 2005-12-27 | Общество с ограниченной ответственностью "Инженерно-технологический центр" | Способ получения алюминиево-кремниевых сплавов |
RU2432411C1 (ru) * | 2010-02-11 | 2011-10-27 | Общество с ограниченной ответственностью Торговый дом "Байкальский алюминий" (ООО ТД "Байкальский алюминий") | Способ получения алюминиево-кремниевого сплава |
CN103981386A (zh) * | 2014-04-30 | 2014-08-13 | 苏州有色金属研究院有限公司 | 亚共晶和共晶铝硅合金变质及细化的方法 |
CN106191490A (zh) * | 2016-07-04 | 2016-12-07 | 东南大学 | 一种铸造铝硅合金用铝镧硼锶中间合金及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2823557C2 (ru) * | 2021-12-27 | 2024-07-24 | Ляньюньган Космоспарк Материал Сайенс Ко., Лтд. | Деталь из высокопрочного композитного модифицированного алюминиевого сплава и способ ее получения |
RU2826211C2 (ru) * | 2021-12-30 | 2024-09-05 | Шанхай Йохунь Тек Корп. | Изделия из высокопластичного композиционного материала на основе модифицированного алюминиевого сплава и способ их приготовления |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy | |
Chen et al. | Effects of combinative addition of lanthanum and boron on grain refinement of Al–Si casting alloys | |
JP5852585B2 (ja) | 発火抵抗性と機械的特性に優れているマグネシウム合金及びその製造方法 | |
CN110157935B (zh) | 铸造铝硅合金用Al-V-B细化剂、其制备方法及应用 | |
US10329651B2 (en) | Method of refining metal alloys | |
CN104073699A (zh) | 一种Al-Si-Cu-Mg系铸造铝合金及其制备方法 | |
Bo et al. | Effect of Sb on microstructure and mechanical properties of Mg2Si/Al-Si composites | |
Liao et al. | Eutectic solidification in near-eutectic Al-Si casting alloys | |
Liao et al. | Effect of RE addition on solidification process and high-temperature strength of Al− 12% Si− 4% Cu− 1.6% Mn heat-resistant alloy | |
JP2012126982A (ja) | 耐熱マグネシウム合金の製造方法、耐熱マグネシウム合金鋳物およびその製造方法 | |
Zhang et al. | Effect of ultrasonic treatment on formation of iron-containing intermetallic compounds in Al-Si alloys | |
Patel et al. | Microstructural and mechanical properties of eutectic Al–Si alloy with grain refined and modified using gravity-die and sand casting | |
RU2692542C1 (ru) | Способ плавки и литья литейного алюминиевого сплава | |
WO2019101316A1 (en) | Al-si-mg-zr-sr alloy with particle-free grain refinement and improved heat conductivity | |
RU2432411C1 (ru) | Способ получения алюминиево-кремниевого сплава | |
CN108588524B (zh) | 一种金属型重力铸造镁合金材料及其制备方法 | |
Vončina et al. | The role of Zr and T6 heat treatment on microstructure evolution and hardness of AlSi9Cu3 (Fe) diecasting alloy | |
Wu et al. | Effect of La addition on microstructure and mechanical properties of hypoeutectic Al-7Si aluminum alloy | |
RU2538850C2 (ru) | Способ модифицирования алюминия и алюминиево-кремниевых сплавов (силуминов) углеродом | |
KR101591629B1 (ko) | 마그네슘의 용융점 이하에서 Al-Mg계 합금을 제조하는 방법 | |
CN109022918B (zh) | 一种含硅的高韧性ZZnAl4Y压铸锌合金及其制备方法 | |
Ahmad et al. | Effect of high Cerium and Lanthanum on Impact toughness of Al-11Si-Cu eutectic cast alloy | |
Zhang et al. | A new technology to improve the elongation of A356 alloy | |
Wang et al. | An Al-1.5 B-3P alloy designed for complex modification of a eutectic Al-Si alloy based on an Al-BP phase diagram | |
Zaviar et al. | Effect of grain refiner (0 to 1 wt.% Al-5Ti-B) addition on the microstructural and hardness characteristics of Al 336 alloy |