RU2691867C1 - Способ охлаждения лопатки ротора турбины низкого давления (ТНД) газотурбинного двигателя и лопатка ротора ТНД, охлаждаемая этим способом - Google Patents

Способ охлаждения лопатки ротора турбины низкого давления (ТНД) газотурбинного двигателя и лопатка ротора ТНД, охлаждаемая этим способом Download PDF

Info

Publication number
RU2691867C1
RU2691867C1 RU2018124610A RU2018124610A RU2691867C1 RU 2691867 C1 RU2691867 C1 RU 2691867C1 RU 2018124610 A RU2018124610 A RU 2018124610A RU 2018124610 A RU2018124610 A RU 2018124610A RU 2691867 C1 RU2691867 C1 RU 2691867C1
Authority
RU
Russia
Prior art keywords
blade
cavity
rods
heat
lattice
Prior art date
Application number
RU2018124610A
Other languages
English (en)
Inventor
Евгений Ювенальевич Марчуков
Виктор Викторович Куприк
Виктор Андреевич Андреев
Михаил Юрьевич Комаров
Николай Александрович Кононов
Евгений Константинович Рябов
Original Assignee
Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") filed Critical Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority to RU2018124610A priority Critical patent/RU2691867C1/ru
Application granted granted Critical
Publication of RU2691867C1 publication Critical patent/RU2691867C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Abstract

Группа изобретений относится к области авиадвигателестроения. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную высоту пера лопатки Полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНлопатки, наделена совокупностью стержней, наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки. Стержни выполнены за одно целое с оболочкой пера лопатки со смещением в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. В способ охлаждения лопатки рабочего колеса ротора ТНД лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД. В полость лопатки охлаждающий воздух поступает через канал в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины. Полость лопатки имеет проходную площадь ∑Fсечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fсечения канала тракта в периферийном торце лопатки на выходе из полости пера. Стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту удельного аэродинамического затенения повторяемой ячейки решетки К≤0,40. В диагональных рядах - пропорционально коэффициенту К≤0,35. Удельный коэффициент Котношения площади Fогражденности теплосъемной поверхностью стержня к единице его объема Vсоставляет К=≥0,86×10[м/м]. Изобретение направлено на повышение эффективности охлаждения лопаток ротора ТНД. 2 н.п. ф-лы, 1 илл.

Description

Группа изобретений относится к области авиадвигателестроения, а именно, к способу охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя в составе газоперекачивающего агрегата.
Известен способ охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - лопаток рабочего колеса. Лопатки выполнены пространственной формы с выпукло-вогнутым профилем пера с охлаждаемой полостью. Полость лопатки снабжена стержневыми перемычками (Н.Н. Сиротин, А.С. Новиков, А.Г. Пайкин, А.Н. Сиротин. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва. Наука 2011. стр. 495-522).
Известен способ охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - лопаток рабочего колеса. Охлаждаемая лопатка содержит перо, расположенное в направлении потока между передней и задней кромками и ограниченное стенками. Между стенками в полости расположены поперечно направлению потока воздуха стрежневые элементы (RU 2538978 С2, опубл. 10.01.2015)
К недостаткам известных решений относятся повышенная конструктивная сложность турбины, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков лопатки турбины, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.
Задача группы изобретений состоит в повышении эффективности охлаждения лопатки рабочего колеса ротора ТНД стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов для транспортировки газа.
Поставленная задача решается тем, что в способе охлаждения лопатки рабочего колеса ротора турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) в составе газотурбинной установка (ГТУ) газоперекачивающего агрегата (ГПА) согласно изобретению лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД; в полость лопатки охлаждающий воздух поступает через канал тракта воздушного охлаждения лопатки в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины, при этом полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера ∑Fвх.к.л./∑Fвых.к.л.≥0,25, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью выполненных за одно целое с оболочкой пера лопатки стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов, при этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения потока и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемого из выражения
К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40,
где Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки; Hст. и Dст. - соответственно высота и диаметр стержня; Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки; Вш.п. - величина шага; а в диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемого из выражения
К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35,
где Fэ.с.д. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки; Fэ.ш.д. - площадь шага между осями смежных стержней в диагональном ряду решетки; при этом коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены указанные стержни, не менее Когр.ст.=∑Fст./Fфр.п.≥0,062, а удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×10323], причем относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.
Поставленная задача в части лопатки рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА, решается тем, что лопатка согласно изобретению содержит хвостовик и перо с выпукло-вогнутым профилем, при этом полость лопатки выполнена на полную высоту пера лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД, образованного на входе каналом тракта в хвостовике лопатки с возможностью перехода отработанного в полости лопатки воздуха не менее чем через два отверстия в периферийном торце пера на выход в проточную часть турбины, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью выполненных за одно целое с оболочкой пера лопатки стержней из прочного упругого высокотеплопроводного материала типа жаростойкой стали, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов и наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки, кроме того стержни расположены в поперечном ряду с шагом, превышающем диаметр стержня не менее чем в 2,5 раза; то же, с шагом между поперечными рядами, превышающем диаметр стержня не менее чем в три раза, а в диагональных рядах превышающем диаметр стержня решетки не менее чем в четыре раза, при этом в процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают способом по п. 1 формулы.
Технический результат, достигаемый приведенной совокупностью признаков группы изобретений, объединенных единых творческих замыслом, состоит в повышении эффективности охлаждения лопатки рабочего колеса ротора ТНД за счет выполнения в полости лопатки объемной решетки из высокотеплопроводных стрежней в наиболее теплонапряженной средней части длины пера лопатки, достигая тем самым расширения температурного диапазона эксплуатации лопаток и повышения эффективности охлаждения лопаток ТНД в процессе работы двигателя, и как следствие, повышение надежности и ресурса турбины и двигателя в целом.
Сущность группы изобретений поясняется чертежом, где изображена лопатка рабочего колеса ротора ТНД, продольный разрез.
Лопатка рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА содержит хвостовик 1 и перо 2 с выпукло-вогнутым профилем, образованным вогнутой и выпуклой стенками, сопряженными входной и выходной кромками 3 и 4. Внутренняя полость 5 лопатки выполнена на полную высоту пера 2 лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД. Тракт охлаждения лопатки образован на входе каналом 6 в хвостовике 1 с возможностью перехода отработанного в полости 5 лопатки воздуха на выход в проточную часть турбины не менее чем через два отверстия 7 в периферийном торце 8 пера.
Полость 5 пера 2 в средней части наделена совокупностью стержней 9. Стержни 9 выполнены за одно целое с оболочкой пера 2 лопатки. Совокупность стержней 9 выполнена создающей решетку с поперечными и продольными рядами со смещением стержней 9 в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. Стержни 9 выполнены из прочного упругого высокотеплопроводного материала типа жаростойкой стали. Стержни 9 наделены функцией высокотеплопроводной перемычки между спинкой и корытом пера 2 лопатки. Стержни 9 расположены в поперечном ряду с шагом, превышающем диаметр стержня не менее чем в 2,5 раза, с шагом между поперечными рядами, превышающем диаметр стержня не менее чем в три раза, а в диагональных рядах - не менее чем в четыре раза.
В способе охлаждения лопатки рабочего колеса ротора ТДН лопатку охлаждают воздухом, который подают через напорное кольцо (на чертежах не показано) тракта воздушного охлаждения ротора ТНД. В полость 5 лопатки охлаждающий воздух поступает через канал 6 тракта воздушного охлаждения лопатки в хвостовике 1 лопатки, заполняет полость 5 лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки с выходом нагретого воздуха не менее чем через два отверстия 7 в периферийном торце 8 пера 2 в проточную часть турбины. Полость 5 пера 2 лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце 8 лопатки на выходе из полости 5 пера
∑Fвх.к.л./∑Fвых.к.л.≥0,25.
Полость 5 пера 5 в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов.
Стержни 9 создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера 2 лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемого из выражения
К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40, где
Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки;
Hст. и Dст. - соответственно высота и диаметр стержня;
Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки;
Вш.п. - величина шага.
В диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемого из выражения
К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35, где
Fэ.с.д.. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки;
Fэ.ш.д. - условная площадь шага между осями смежных стержней в диагональном ряду решетки.
Коэффициент Когр.ст. суммарной (интегральной) площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней 9 составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены стержни 9, не менее
Когр.ст.=∑Fст./Fфр.п.≥0,062.
Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня 9 к единице его объема Vст. составляет
К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×10323].
Относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней 9 в полости 5 пера 2 лопатки составляет
j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.
В процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают описанным выше способом.
Охлаждают лопатку рабочего колеса ротора ТНД следующим образом.
Лопатку изготавливают литьем по выплавляемым моделям с формообразующими микрополостями под стрежни 9 в средней части полости 5 пера 2 лопатки. По внутренней полости лопатки выполняют пять поперечных и одиннадцать продольных рядов со смещением стержней в смежных поперечных рядах в шахматном порядке на полшага с образованием в решетке перекрестных диагональных рядов. Стержни располагают в поперечном ряду с шагом, превышающем диаметр стержня в 2,8 раза; с шагом между поперечными рядами, превышающем диаметр стержня в 3,4 раза, в диагональных рядах - в 4,2 раза. Стержни 9 выполняют функцию высокотеплопроводной перемычки между стенками пера 2 лопатки.
Во внутреннюю полость 5 лопатки охлаждающий воздух поступает из напорного кольца через канал 6 в хвостовике 1 лопатки, заполняет полость 5 лопатки. Охлаждающий воздух проходит через решетку стержней 9, увеличивая теплосъем с пера 2 лопатки в средней наиболее теплонапряженной части лопатки, и через отверстия 7 в периферийном торце 8 пера 2 нагретый теплосъемом воздух выходит в проточную часть турбины. При этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, принятым К1уд.з.=0,37, в диагональных рядах принятым К2уд.з.=0,31. Коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки составляет Когр.ст.=0,059. Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=0,81×10323]. Относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=0,86×10-1.
Таким образом, за счет выполнения в полости лопатки объемной решетки из высокотеплопроводных стрежней, монолитно соединяющих стенки пера в наиболее теплонапряженной средней части длины пера лопатки, достигают расширения температурного диапазона эксплуатации лопаток, повышения эффективности охлаждения лопаток ротора ТНД в процессе работы двигателя, а также повышение надежности и ресурса турбины и двигателя в целом, используемого в составе ГТУ ГПА и в том числе на компрессорных станциях нефтегазовой и энергетической промышленности.

Claims (6)

1. Способ охлаждения лопатки рабочего колеса ротора турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) в составе газотурбинной установка (ГТУ) газоперекачивающего агрегата (ГПА), характеризующийся тем, что лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД; в полость лопатки охлаждающий воздух поступает через канал тракта воздушного охлаждения лопатки в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины, при этом полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера ∑Fвх.к.л./∑Fвых.к.л.≥0,25, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью выполненных за одно целое с оболочкой пера лопатки стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящим к образованию в решетке перекрестных диагональных рядов, при этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения потока и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемому из выражения
К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40,
где Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки; Hст. и Dст. - соответственно высота и диаметр стержня; Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки; Вш.п. - величина шага; а в диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемому из выражения
К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35,
где Fэ.с.д. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки; Fэ.ш.д. - площадь шага между осями смежных стержней в диагональном ряду решетки; при этом коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены указанные стержни, не менее Когр.ст.=∑Fст./Fфр.п.≥0,062, а удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×10323], причем относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.
2. Лопатка рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА, характеризующаяся тем, что содержит хвостовик и перо с выпукло-вогнутым профилем, при этом полость лопатки выполнена на полную высоту пера лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД, образованного на входе каналом тракта в хвостовике лопатки с возможностью перехода отработанного в полости лопатки воздуха не менее чем через два отверстия в периферийном торце пера на выход в проточную часть турбины, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью выполненных за одно целое с оболочкой пера лопатки стержней из прочного упругого высокотеплопроводного материала типа жаростойкой стали, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящим к образованию в решетке перекрестных диагональных рядов и наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки, кроме того, стержни расположены в поперечном ряду с шагом, превышающим диаметр стержня не менее чем в 2,5 раза; то же с шагом между поперечными рядами, превышающим диаметр стержня не менее чем в три раза, а в диагональных рядах превышающим диаметр стержня решетки не менее чем в четыре раза, при этом в процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают способом по п. 1.
RU2018124610A 2018-07-05 2018-07-05 Способ охлаждения лопатки ротора турбины низкого давления (ТНД) газотурбинного двигателя и лопатка ротора ТНД, охлаждаемая этим способом RU2691867C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018124610A RU2691867C1 (ru) 2018-07-05 2018-07-05 Способ охлаждения лопатки ротора турбины низкого давления (ТНД) газотурбинного двигателя и лопатка ротора ТНД, охлаждаемая этим способом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018124610A RU2691867C1 (ru) 2018-07-05 2018-07-05 Способ охлаждения лопатки ротора турбины низкого давления (ТНД) газотурбинного двигателя и лопатка ротора ТНД, охлаждаемая этим способом

Publications (1)

Publication Number Publication Date
RU2691867C1 true RU2691867C1 (ru) 2019-06-18

Family

ID=66947803

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018124610A RU2691867C1 (ru) 2018-07-05 2018-07-05 Способ охлаждения лопатки ротора турбины низкого давления (ТНД) газотурбинного двигателя и лопатка ротора ТНД, охлаждаемая этим способом

Country Status (1)

Country Link
RU (1) RU2691867C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628880A (en) * 1969-12-01 1971-12-21 Gen Electric Vane assembly and temperature control arrangement
GB2112467A (en) * 1981-12-28 1983-07-20 United Technologies Corp Coolable airfoil for a rotary machine
GB2159585A (en) * 1984-05-24 1985-12-04 Gen Electric Turbine blade
RU2101513C1 (ru) * 1993-06-15 1998-01-10 Акционерное общество открытого типа "Ленинградский Металлический завод" Охлаждаемая лопатка газовой турбины
RU2122123C1 (ru) * 1994-12-27 1998-11-20 Открытое акционерное общество Самарский научно-технический комплекс им.Н.Д.Кузнецова Охлаждаемая сопловая лопатка с вихревой матрицей
RU2538978C2 (ru) * 2009-01-30 2015-01-10 Альстом Текнолоджи Лтд. Охлаждаемая лопатка газовой турбины

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628880A (en) * 1969-12-01 1971-12-21 Gen Electric Vane assembly and temperature control arrangement
GB2112467A (en) * 1981-12-28 1983-07-20 United Technologies Corp Coolable airfoil for a rotary machine
GB2159585A (en) * 1984-05-24 1985-12-04 Gen Electric Turbine blade
RU2101513C1 (ru) * 1993-06-15 1998-01-10 Акционерное общество открытого типа "Ленинградский Металлический завод" Охлаждаемая лопатка газовой турбины
RU2122123C1 (ru) * 1994-12-27 1998-11-20 Открытое акционерное общество Самарский научно-технический комплекс им.Н.Д.Кузнецова Охлаждаемая сопловая лопатка с вихревой матрицей
RU2538978C2 (ru) * 2009-01-30 2015-01-10 Альстом Текнолоджи Лтд. Охлаждаемая лопатка газовой турбины

Similar Documents

Publication Publication Date Title
US8858159B2 (en) Gas turbine engine component having wavy cooling channels with pedestals
EP2713012B1 (en) Gas turbine engine component
US8807943B1 (en) Turbine blade with trailing edge cooling circuit
US7938624B2 (en) Cooling arrangement for a component of a gas turbine engine
US7785072B1 (en) Large chord turbine vane with serpentine flow cooling circuit
US10920597B2 (en) Turbine blade cooling system with channel transition
US9206697B2 (en) Aerofoil cooling
CA2480985C (en) Triple circuit turbine blade
US9518468B2 (en) Cooled component for the turbine of a gas turbine engine
EP2823151B1 (en) Airfoil with improved internal cooling channel pedestals
EP2025869B1 (en) Gas turbine blade with internal cooling structure
EP2835501B1 (en) Aerofoil component and corresponding gas turbine engine
EP1431514A2 (en) Venturi outlet turbine airfoil
EP1010859A2 (en) Turbine airfoil and methods for airfoil cooling
EP3034792A1 (en) Aerofoil blade or vane
US8585365B1 (en) Turbine blade with triple pass serpentine cooling
US20100226791A1 (en) Blade cooling structure of gas turbine
US7670112B2 (en) Turbine blade with cooling and with improved service life
GB2460936A (en) Turbine airfoil cooling
US20120269649A1 (en) Turbine blade with improved trailing edge cooling
US6599092B1 (en) Methods and apparatus for cooling gas turbine nozzles
JP6435188B2 (ja) タービン翼における構造的構成および冷却回路
WO2013181132A1 (en) Airfoil cooling circuit and corresponding airfoil
RU2691867C1 (ru) Способ охлаждения лопатки ротора турбины низкого давления (ТНД) газотурбинного двигателя и лопатка ротора ТНД, охлаждаемая этим способом
CN113874600B (zh) 具有蛇形通道的涡轮叶片