RU2691630C1 - Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях - Google Patents

Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях Download PDF

Info

Publication number
RU2691630C1
RU2691630C1 RU2018114200A RU2018114200A RU2691630C1 RU 2691630 C1 RU2691630 C1 RU 2691630C1 RU 2018114200 A RU2018114200 A RU 2018114200A RU 2018114200 A RU2018114200 A RU 2018114200A RU 2691630 C1 RU2691630 C1 RU 2691630C1
Authority
RU
Russia
Prior art keywords
seismic
field
sources
deposits
hydrocarbon
Prior art date
Application number
RU2018114200A
Other languages
English (en)
Inventor
Василий Игоревич Богоявленский
Анатолий Кузьмич Арабский
Олег Борисович Арно
Анатолий Васильевич Меркулов
Владимир Валерьевич Миронов
Владимир Владимирович Балканов
Сергей Александрович Кирсанов
Игорь Васильевич Богоявленский
Original Assignee
Общество с ограниченной ответственностью "Газпром добыча Ямбург"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром добыча Ямбург" filed Critical Общество с ограниченной ответственностью "Газпром добыча Ямбург"
Priority to RU2018114200A priority Critical patent/RU2691630C1/ru
Application granted granted Critical
Publication of RU2691630C1 publication Critical patent/RU2691630C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3843Deployment of seismic devices, e.g. of streamers
    • G01V1/3852Deployment of seismic devices, e.g. of streamers to the seabed

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oceanography (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на акваториях Арктики и других морей. Предложен способ оперативного мониторинга образования техногенных залежей углеводородов в процессе эксплуатации акваториальных месторождений углеводородов в Арктике, включающий проведение трехмерной сейсморазведки на стадии разведки месторождения. По результатам ее данных осуществляют построение модели резервуара, прогнозируют ориентацию систем субвертикальных трещин и потенциальных слоев-коллекторов техногенных залежей углеводородов, которые могут образовываться в процессе эксплуатации месторождения. Исходя из этого и условия регистрации в первых вступлениях преломленных волн от сейсмического горизонта, расположенного ниже потенциальной техногенной залежи, рассчитывают удаление от источников упругих колебаний, расположение стационарных сейсмокос и минимально необходимое число сейсмоприемников в них. В процессе обустройства месторождения размещают стационарные сейсмокосы на дне акватории над месторождением в местах, определенных при проектировании, с заглублением ниже уровня дна на глубину не менее максимально возможного уровня экзарации ледовыми торосами и стамухами. В процессе эксплуатации месторождения с заданной периодичностью производят регистрацию сейсмотрасс с упругими колебаниями, возбуждаемыми искусственными источниками или группами источников. Эти источники размещают на буровых или эксплуатационных платформах, а также искусственных островах. При необходимости, с соответствующим обоснованием, источники упругих колебаний размещают и в специально пробуренных неглубоких скважинах, помещаемых, например, в контрольные точки геодезического полигона разрабатываемого месторождения. Контроль флюидозамещений в месторождении углеводородов и окружающей среде осуществляют по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс в условиях, близких к реальному времени. При этом определяют пространственную миграцию углеводородных флюидов и положение формирующихся техногенных залежей. В случае если месторождение разрабатывается одновременно с нескольких добычных установок (ледостойких платформ и блок-кондукторов), группы сейсмокос и источники упругих колебаний размещают около каждой добычной установки. При этом в процессе эксплуатации месторождения, в каждом цикле испытаний осуществляют поочередное возбуждение упругих колебаний на добычных установках и регистрируют упругие колебания, которые передают в единый центр комплексной обработки данных. Технический результат - повышение эффективности и безопасности разработки месторождения углеводородов на акваториях, а так же исключение потенциальных безвозвратных потерь добываемых углеводородов за счет заколонных перетоков и образования техногенных залежей. 1 з.п. ф-лы.

Description

Изобретение относится к нефтегазовой промышленности, в частности к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на акваториях Арктики и других морей.
Известен способ сейсмического мониторинга разработки месторождений углеводородов на акваториях, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями, возбуждаемыми искусственными источниками или группами источников с перемещающегося судна и контроль флюидозамещений в месторождении углеводородов и окружающей среде по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс [См. Smit F., Ligtendag М., Wills P., Calvert R. Towards Affordable Permanent Seismic Reservoir Monitoring Using the Sparse OBC Concept. Exploration and production: the oil and gas review, 2006, p. 56-62.].
Существенным недостатком известного способа является то, что для реализации сейсмического мониторинга возникает необходимость периодического привлечения судна с источниками упругих колебаний, что делает работы дорогостоящими. Естественное желание осуществлять мониторинг как можно чаще находится в конфликте с бюджетом данных исследований. В связи с этим отсутствует возможность реагирования на происходящие процессы в коллекторах в условиях, близких к реальному времени. Кроме того, несмотря на современную навигацию, сохраняется небольшая погрешность в позиционировании судна с источниками упругих колебаний, обусловленная инерционностью движения судна, что привносит погрешность в результаты мониторинга. Кроме того, в условиях Арктики в процессе ледостава, ледохода и длительной зимы данный способ практически не применим, в результате чего ни о какой оперативности контроля не может быть и речи.
Наиболее близким к описываемому изобретению является способ сейсмического мониторинга разработки месторождений углеводородов на акваториях, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин, размещение на дне акватории над месторождением одной или нескольких стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями, возбуждаемыми искусственными источниками или группами источников с буровых или эксплуатационных платформ, а также искусственных островов или из специально пробуренных неглубоких скважин, контроль флюидозамещений в месторождении углеводородов и окружающей среде по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс в условиях, близких к реальному времени, определяют пространственную миграцию углеводородных флюидов и положение формирующихся техногенных залежей. [См. патент РФ №2540005 «Способ сейсмического мониторинга разработки месторождений углеводородов на акваториях»].
Существенным недостатком известного способа является то, что стационарные сейсмокосы, размещаемые на дне акватории над месторождением при небольших глубинах, характерных, в частности для Обской и Тазовской губ, будут периодически повреждаться торосами и стамухами при ледоходе и подвижке ледовых полей в зимний период. А так же, стационарные сейсмокосы для регистрации сейсмотрасс с упругими колебаниями для месторождений с большой площадью лицензионного участка требуют использования большого числа сейсмоприемников, что значительно повышает стоимость стационарной системы наблюдений. Кроме того, большое число сейсмоприемников выдает значительный объем избыточной информации, затрудняющей оперативный контроль за разработкой месторождения и приема необходимых управляющих решений в случае появления заколонных перетоков добываемых углеводородов и начала образования техногенных залежей, приводящих к значительному снижению потенциала их конечной добычи.
Технической задачей, на решение которой направлено описываемое изобретение, является повышение эффективности и безопасности разработки месторождения углеводородов на акваториях, а так же исключение потенциальных безвозвратных потерь добываемых углеводородов за счет заколонных перетоков и образования техногенных залежей, а так же минимизация стоимости стационарной системы наблюдения и контроля.
Поставленная техническая задача решается за счет того, что способ оперативного мониторинга образования техногенных залежей углеводородов в процессе эксплуатации экваториальных месторождений углеводородов в Арктике включает проведение трехмерной сейсморазведки на стадии разведки месторождения. По результатам полученных данных строят модель резервуара, прогнозируют ориентацию систем субвертикальных трещин и потенциальных слоев-коллекторов техногенных залежей углеводородов, которые могут образовываться в процессе эксплуатации месторождения. Исходя из этого и условия регистрации в первых вступлениях преломленных волн от сейсмического горизонта, расположенного ниже потенциальной техногенной залежи рассчитывают удаление от источников упругих колебаний, расположение стационарных сейсмокос и минимально необходимое число сейсмоприемников в них. В процессе обустройства месторождения размещают стационарные сейсмокосы на дне акватории над месторождением в местах, определенных при проектировании, с заглублением ниже уровня дна на глубину, превышающую максимально возможный уровень экзарации ледовыми торосами и стамухами. В процессе эксплуатации месторождения с заданной периодичностью производят регистрацию сейсмотрасс с упругими колебаниями, возбуждаемыми искусственными источниками или группами источников. Эти источники размещают на буровых или эксплуатационных платформах, а также искусственных островах. При необходимости, с соответствующим обоснованием, источники упругих колебаний размещают и в специально пробуренных неглубоких скважинах.
Контроль флюидозамещений в месторождении углеводородов и окружающей среде осуществляют по динамическим и кинематическим изменениям регистрируемых колебаний отраженных и преломленных волн при обработке сейсмотрасс в условиях, близких к реальному времени. При этом определяют пространственную миграцию углеводородных флюидов и положение формирующихся техногенных залежей.
В случае если месторождение разрабатывается одновременно с нескольких добычных установок (платформ и блок-кондукторов), группы сейсмокос и источники упругих колебаний размещают около каждой добычной установки. При этом в процессе эксплуатации месторождения, в каждом цикле испытаний осуществляют поочередное возбуждение упругих колебаний на добычных установках и их регистрацию всеми сейсмокосами, с последующей передачей записей в единый центр комплексной обработки данных.
Эффективность разработки нефтегазоконденсатных месторождений зависит от точности и детальности трехмерных построений геологической и гидрогеологической моделей среды, регулярно актуализируемых на базе данных, получаемых при стандартных и специальных газодинамических исследованиях скважин, геофизических (например, гравиметрических, сейсмометрических и др.) измерениях на территории месторождения. Надежность, достоверность и информативность результатов сейсмического мониторинга в значительной степени зависят от возможности проведения повторных возбуждений и регистрации упругих колебаний из одинаковых пунктов, соответственно, возбуждения и приема колебаний. Добиться этого можно только при установке стационарных сейсмокос на дне.
Такое оборудование было установлено и успешно применяется за рубежом на ряде месторождений. В 2003 г. на месторождении Valhall, разрабатываемом с 1982 г., были установлены 120 км стационарных сейсмокос LoFS, после чего до 2012 г.было выполнено 15 повторных съемок с возбуждением упругих колебаний с приходящего судна с пневмоисточниками. Сравнительная обработка старых и новых данных 3D позволила: выявить специфику замещения флюидов в залежи, оптимизировать процесс разработки, поднять уровень добычи в 2004 г. более чем на 20% и продлить жизнь месторождения до 2050 г. Такие исследования проводятся на ряде месторождений суши (Lak во Франции), Северного и Баренцева морей (норвежские Sleipner, Gullfaks и др.) [См. Smit F., Ligtendag М., Wills P., Calvert R. Towards Affordable Permanent Seismic Reservoir Monitoring Using the Sparse OBС Concept. Exploration and production: the oil and gas review, 2006, p.56-62.; Eiken J., Ringrose P., Hermanrud C. at all. Lessons learned from 14 years of CCS Operations; Sleipner, In Salah and Snohvit. 10th International Conference on Greenhouse Gas Technologies, 19-23 Sept. 2010, Amsterdam, www.sciencedirect.com].
Одна из серьезных проблем разработки месторождений заключается в том, что при бурении скважин и в процессе добычи углеводородов возможны перетоки флюидов по открытому стволу скважины или затрубному пространству между коллекторами различных структурных этажей. Последнее происходит, в частности, за счет некачественного цементажа заколонного пространства. Большое количество таких техногенных залежей и выходов газа на поверхность выявлено при разработке месторождений севера Западной Сибири, включая Ямбургское, Уренгойское и Заполярное нефтегазоконденсатные месторождения. [См. Райкевич СИ. Обеспечение надежности и высокой продуктивности газовых скважин. - М.: ООО "ИРЦ Газпром", 2007, 247 с]. Здесь за счет негерметичности цементирования заколонного пространства происходят перетоки углеводородов, приводящие к безвозвратной потере части продукта, ускоренному падению пластовых давлений и снижению коэффициентов извлечения газа и газового конденсата, формированию техногенных залежей ниже подошвы многолетнемерзлых пород в первоначально водоносных песчаниках (танамская и другие свиты) и выходу на поверхность в виде газовых грифонов. Особенно это сказывается при разработке глубоких залежей ачимовских и юрских отложений с аномально высокими пластовыми давлениями (АВПД). Тестирование качества цементажа проводится акустическим каротажем вдоль ствола скважины, анализом термоаномалий и шумометрии заколонных процессов. Однако такое тестирование требует остановки процесса добычи и не может служить методом оперативного контроля в условиях реального времени.
Указанные явления представляют особую опасность при освоении оффшорных месторождений. Углеводородные флюиды могут образовывать техногенные залежи с АВПД, прорываться через покрышки в донных отложениях и приводить к аварийным и катастрофическим выбросам, как это произошло в 2012 г.на месторождении Elgin в Северном море (оператор Total). Дополнительная опасность возникает на акваториях Арктики, где палеомерзлые породы могут играть роль временных покрышек для залежей газа и газогидрата.
Полноценный сейсмический мониторинг позволяет выявлять образующиеся техногенные залежи и, таким образом, проследить пути миграции углеводородов и места их аккумуляции в виде техногенных залежей [см. патент РФ №2540005]. Однако стоимость необходимого для его реализации оборудования и избыточность получаемой информации, требующей значительного времени на обработку для последующего выделения необходимой информации значительно усложняют и удорожают техническую реализацию его применения в условиях морского газодобывающего промысла. Но сейсмический мониторинг при использовании описываемого способа позволяет решать указанные задачи, автоматически исключая избыточную информацию, что непосредственно ведет и к существенному повышению скорости ее обработки. Более того, значительное снижение числа стационарно установленных сейсмокос и сейсмоприемников существенно снижает стоимость устанавливаемого оборудования.
Описываемый способ оперативного мониторинга образования техногенных залежей углеводородов в процессе эксплуатации экваториальных месторождений углеводородов в Арктике включает проведение трехмерной сейсморазведки на стадии разведки месторождения. По ее данным осуществляют построение модели резервуара, прогнозируют ориентацию систем субвертикальных трещин и потенциальных слоев-коллекторов техногенных залежей углеводородов, которые могут образовываться в процессе эксплуатации месторождения. Исходя из этого и условия регистрации в первых вступлениях преломленных волн от сейсмического горизонта, расположенного ниже потенциальной техногенной залежи, рассчитывают удаление от источников упругих колебаний стационарных сейсмокос и минимально необходимое число сейсмоприемников в них. В процессе обустройства месторождения размещают стационарные сейсмокосы на дне акватории над месторождением в местах, определенных при проектировании, с заглублением ниже уровня дна на глубину не менее максимально возможного уровня экзарации ледовыми торосами и стамухами. В процессе эксплуатации месторождения с заданной периодичностью производят регистрацию сейсмотрасс с упругими колебаниями, возбуждаемыми искусственными источниками или группами источников. Эти источники размещают на буровых или эксплуатационных платформах, а также искусственных островах. При необходимости, с соответствующим обоснованием, источники упругих колебаний размещают и в специально пробуренных неглубоких скважинах, помещаемых, например, в контрольные точки геодезического полигона разрабатываемого месторождения.
Контроль флюидозамещений в месторождении углеводородов и окружающей среде осуществляют по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс в условиях, близких к реальному времени. При этом определяют пространственную миграцию углеводородных флюидов и положение формирующихся техногенных залежей.
В случае если месторождение разрабатывается одновременно с нескольких добычных установок (ледостойких платформ и блок-кондукторов), группы сейсмокос и источники упругих колебаний размещают около каждой добычной установки. При этом в процессе эксплуатации месторождения, в каждом цикле испытаний осуществляют поочередное возбуждение упругих колебаний на добычных установках и регистрируют упругие колебания, которые передают в единый центр комплексной обработки данных.
Заявляемое изобретение планируется использовать на газовых промыслах в акваториях Обской и Тазовской губ, которые будет обустраивать и вести добычу ООО «Газпром добыча Ямбург».
Применение данного способа позволит оперативно выявлять момент начала образования техногенных залежей и принять соответствующие управляющие решения по их ликвидации при минимальной стоимости стационарно устанавливаемого оборудования.

Claims (2)

1. Способ оперативного сейсмического мониторинга образования техногенных залежей углеводородов в процессе эксплуатации экваториальных месторождений углеводородов в Арктике, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин, размещение на дне акватории над месторождением одной или нескольких стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями, возбуждаемыми искусственными источниками или группами источников с буровых или эксплуатационных платформ, а также искусственных островов или из специально пробуренных неглубоких скважин, контроль флюидозамещений в месторождении углеводородов и окружающей среде по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс в условиях, близких к реальному времени, определение пространственной миграции углеводородных флюидов и положения формирующихся техногенных залежей, отличающийся тем, что сейсмокосы размещают с заглублением ниже уровня дна на глубину, превышающую максимально возможный уровень экзарации ледовыми торосами и стамухами, а их удаление от источников упругих колебаний задают из условия регистрации в первых вступлениях преломленных волн от сейсмического горизонта, расположенного ниже потенциальной техногенной залежи.
2. Способ по п. 1, отличающийся тем, что на месторождении, одновременно разрабатываемом с нескольких добычных установок (платформ и блок-кондукторов), группы сейсмокос и источники упругих колебаний размещают около каждой добычной установки, при этом поочередно возбуждают и регистрируют упругие колебания, которые передают в единый центр комплексной обработки данных.
RU2018114200A 2018-04-17 2018-04-17 Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях RU2691630C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018114200A RU2691630C1 (ru) 2018-04-17 2018-04-17 Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018114200A RU2691630C1 (ru) 2018-04-17 2018-04-17 Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях

Publications (1)

Publication Number Publication Date
RU2691630C1 true RU2691630C1 (ru) 2019-06-17

Family

ID=66947586

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018114200A RU2691630C1 (ru) 2018-04-17 2018-04-17 Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях

Country Status (1)

Country Link
RU (1) RU2691630C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761052C1 (ru) * 2021-03-29 2021-12-02 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ сейсмического мониторинга процесса освоения нефтегазоконденсатных месторождений севера рф

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123467A1 (en) * 2006-05-05 2008-05-29 Erlend Ronnekleiv Seismic streamer array
RU2388022C1 (ru) * 2008-09-10 2010-04-27 ООО "Комплексные Инновационные Технологии" Способ проведения подводно-подледной геофизической разведки и технологический комплекс для его осуществления
RU2539745C1 (ru) * 2013-08-28 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН Способ сейсмического мониторинга в процесса разработки месторождений углеводородов на акваториях
RU2540005C1 (ru) * 2013-10-29 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН Способ сейсмического мониторинга разработки месторождений углеводородов на акваториях
US20150101420A1 (en) * 2009-03-09 2015-04-16 Ion Geophysical Corporation Marine Seismic Surveying with Towed Components Below Water's Surface
RU2562747C1 (ru) * 2014-02-19 2015-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг РФ) Способ проведения подводно-подледной сейсмоакустической разведки с использованием ледокольного судна и комплекса для его осуществления

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123467A1 (en) * 2006-05-05 2008-05-29 Erlend Ronnekleiv Seismic streamer array
RU2388022C1 (ru) * 2008-09-10 2010-04-27 ООО "Комплексные Инновационные Технологии" Способ проведения подводно-подледной геофизической разведки и технологический комплекс для его осуществления
US20150101420A1 (en) * 2009-03-09 2015-04-16 Ion Geophysical Corporation Marine Seismic Surveying with Towed Components Below Water's Surface
RU2539745C1 (ru) * 2013-08-28 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН Способ сейсмического мониторинга в процесса разработки месторождений углеводородов на акваториях
RU2540005C1 (ru) * 2013-10-29 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН Способ сейсмического мониторинга разработки месторождений углеводородов на акваториях
RU2562747C1 (ru) * 2014-02-19 2015-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг РФ) Способ проведения подводно-подледной сейсмоакустической разведки с использованием ледокольного судна и комплекса для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761052C1 (ru) * 2021-03-29 2021-12-02 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ сейсмического мониторинга процесса освоения нефтегазоконденсатных месторождений севера рф

Similar Documents

Publication Publication Date Title
Yale Fault and stress magnitude controls on variations in the orientation of in situ stress
WO2020080973A1 (ru) Способ и система комбинированного сопровождения процесса бурения скважины
RU2602735C2 (ru) Способ сейсмического мониторинга процесса освоения месторождения углеводородов на акваториях
Barton et al. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field
CN110424955B (zh) 一种复杂断块内部挖潜方法
RU2539745C1 (ru) Способ сейсмического мониторинга в процесса разработки месторождений углеводородов на акваториях
CN110984951B (zh) 页岩油开发井网部署方法
Kassymkanova et al. Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances
RU2691630C1 (ru) Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях
EP3039236B1 (en) Determining phase behavior of a reservoir fluid
Hoffman et al. The CarbonNet appraisal well for the Pelican CO2 offshore storage site
Bull et al. Constraining leakage pathways through the overburden above sub-seafloor CO2 storage reservoirs
Nadir Thistle Field Development
RU2540005C1 (ru) Способ сейсмического мониторинга разработки месторождений углеводородов на акваториях
Bull et al. Constraining the physical properties of Chimney/pipe structures within sedimentary basins
Baldwin Tupungato Oil Field, Mendoza, Argentina
Luthi Fractured reservoir analysis using modern geophysical well techniques: application to basement reservoirs in Vietnam
Westaway Seismicity at Newdigate, Surrey, during 2018-2019: A candidate mechanism indicating causation by nearby oil production
US9459195B2 (en) Estimating porosity or permeability in a region of interest
Phipps et al. The Babbage Field, Block 48/2a, UK North Sea
QIAO et al. Fault belt reservoir controls in Yubei area, Tarim Basin
Witt et al. Managing the start-up of a fractured oil reservoir: development of the Clair field, West of Shetland
Van der Helm et al. Fulmar: The development of a large North Sea field
RU2803710C1 (ru) Способ геофизической разведки нефти и газа на водоемах, покрытых льдом
Foster et al. Port Campbell reviewed: methane and champagne