RU2691423C1 - Способ освоения и эксплуатации скважин - Google Patents

Способ освоения и эксплуатации скважин Download PDF

Info

Publication number
RU2691423C1
RU2691423C1 RU2018106752A RU2018106752A RU2691423C1 RU 2691423 C1 RU2691423 C1 RU 2691423C1 RU 2018106752 A RU2018106752 A RU 2018106752A RU 2018106752 A RU2018106752 A RU 2018106752A RU 2691423 C1 RU2691423 C1 RU 2691423C1
Authority
RU
Russia
Prior art keywords
shank
well
anchor
centrifugal pump
pump
Prior art date
Application number
RU2018106752A
Other languages
English (en)
Inventor
Игорь Александрович Малыхин
Юрий Сергеевич Соловьев
Original Assignee
Игорь Александрович Малыхин
Юрий Сергеевич Соловьев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Александрович Малыхин, Юрий Сергеевич Соловьев filed Critical Игорь Александрович Малыхин
Priority to RU2018106752A priority Critical patent/RU2691423C1/ru
Application granted granted Critical
Publication of RU2691423C1 publication Critical patent/RU2691423C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к погружным насосным установкам для эксплуатации скважин с большим расстоянием от погружного насоса до интервала перфорации, в том числе с большим газовым фактором. Технический результат – повышение эффективности технологии добычи пластового флюида в горизонтальных скважинах. Между электроцентробежным насосом и входным модулем устанавливают секцию мультифазного насоса. Погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжают наружным герметизирующим кожухом. Кожух герметично соединен с входным модулем электроцентробежного насоса и выполнен с возможностью изолирования приема насоса от межтрубного пространства и гидравлического соединения его с полостью колонны труб хвостовика, герметично соединенного с нижней частью герметичного кожуха. В скважине, ниже глубины установки электроцентробежного насоса в герметичном кожухе, на якоре-трубодержателе, содержащем полированную втулку, устанавливают хвостовик из насосно-компрессорных труб. Длину хвостовика подбирают таким образом, чтобы расстояние от головы хвостовика с якорем-трубодержателем и полированной втулкой до технологически допустимой глубины установки электроцентробежного насоса составляло 10-50 м. Хвостовик может быть комбинированным и в горизонтальной части скважины выполнен из легкоразбуриваемых материалов, например стеклопластика или алюминия, с аварийно-разъединительным узлом между его частями, для разъединения в аварийных ситуациях и возможности разбуривания. К герметичному кожуху электроцентробежного насоса присоединен отдельный хвостовик из насосно-компрессорных труб длиной 10-50 м. Этот хвостовик в нижней части содержит ниппель для герметичного соединения с полированной втулкой якоря-трубодержателя. Корпус якоря-трубодержателя не имеет плотного прилегания к внутренней поверхности эксплуатационной колонны за исключением плашек и свободно пропускает скважинную жидкость и газ в зазоре между корпусом и стенками эксплуатационной колонны. Собранную компоновку спускают в скважину до глубины установки якоря-трубодержателя. Разгрузкой производят герметичную стыковку хвостовика с ниппелем в полированной втулке якоря-трубодержателя. Запускают скважину в работу с обеспечением поступления жидкости через хвостовик горизонтальной части скважины, хвостовик, присоединенный к якорю-трубодержателю, хвостовик с ниппелем, внутреннюю полость герметичного кожуха, входной модуль и мультифазный насос в электроцентробежный насос. 1 ил.

Description

Изобретение относится к области добычи углеводородов, а именно к погружным насосным установкам для эксплуатации скважин, в скважинах с большим расстоянием от погружного насоса до интервала перфорации, в горизонтальных скважинах и хвостовиках, в том числе с большим газовым фактором.
Известна установка для эксплуатации пластов в скважине, (аналог) (1), патент RU 90121 U1 Е21В 43/14, дата подачи заявки 29.12.2008, опубликовано 27.12.2009, включающая электропогружной насос с кожухом, сообщенным с хвостовиком и замыкающимся на входном узле насоса, двигатель которого оснащен датчиком, как минимум одним пакером, разделяющим скважину на зоны пластов. Хвостовик оснащен как минимум одним каналом, который сообщен соответствующей зоной скважины с установленным по необходимости штуцером, регулирующим производительность соответствующего пласта. Верхний пакер установлен над верхним пластом и оснащен сверху технологическим патрубком, оснащенным расположенным выше центрирующим расширением с внутренним герметизирующим узлом. Кожух снизу оснащен полым плунжером, выполненным с возможностью при взаимодействии герметичной фиксации в герметизирующем узле. При наличии нарушений в скважине выше центрирующего расширения, под ним на технологическом патрубке может быть установлена самоуплотняющаяся эластичная манжета, пропускающая в скважине только снизу вверх. Недостатком является невозможность использования в скважинах с большим газовым фактором, с пакером, перекрывающим выход газа на устье скважины. Известен способ добычи нефти из горизонтальных скважин, (аналог) (2), патент РФ №2034132 Е21В 43/00, дата подачи заявки 10.03.1992, опубликовано 30.04.1995. Изобретение относится к нефтедобывающей промышленности и может быть использовано для добычи нефти из горизонтальных нефтяных скважин, имеющих низкие динамические уровни. Для снижения аварийности глубинно-насосного оборудования ниже точки начала отклонения основного ствола горизонтальной скважины бурят вертикальный ствол, а глубинный насос размещают в вертикальном стволе. Пластовая жидкость после запуска насоса из горизонтального ствола скважины поступает на прием насоса сверху. Недостатками являются невозможность использования на глубинах, превышающих допустимые для электропогружного насоса, на зауженных в нижней части скважинах из-за габаритного диаметра кожуха насоса и на скважинах, имеющих нарушения выше пласта.
Известен способ применения электроцентробежного насоса в герметичном кожухе с мультифазным насосом и пакером, (прототип) (3), патент RU №2620667 C1 Е21В подачи заявки 15.12.2015, опубликовано: 29.05.2017. В скважине ниже негерметичного участка эксплуатационной колонны, либо над верхним интервалом перфорации устанавливают пакер, либо двухпакерную компоновку, между электроцентробежным насосом и входным модулем устанавливается секция мультифазного насоса, а погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжен наружным герметизирующим кожухом, который герметично соединен с входным модулем электроцентробежного насоса и выполнен с возможностью изолирования приема насоса от межтрубного пространства и гидравлического соединения его с полостью колонны труб с отсекающим пакером ниже насоса при помощи патрубка с уплотнительными элементами. К герметичному кожуху присоединяют хвостовик из насосно-компрессорных труб, собранную компоновку спускают в скважину до глубины установки верхнего пакера или двухпакерной компоновки, после чего разгрузкой производят герметичную стыковку хвостовика с пакером, запускают скважину в работу с обеспечением поступления жидкости из под пакера через хвостовик, внутреннюю полость герметизирующего кожуха, входной модуль и мультифазный насос в электроцентробежный насос. Недостатком способа является неэффективность использования для добычи пластового флюида в горизонтальных скважинах и в скважинах с большим расстоянием от погружного насоса до интервала перфорации. Технической задачей решаемой способом освоения и эксплуатации скважин является повышение эффективности технологии добычи пластового флюида в горизонтальных скважинах и хвостовиках, в скважинах с большим расстоянием от погружного насоса до интервала перфорации, в том числе в скважинах с большим газовым фактором. Технический результат, достигаемый изобретением, решается предлагаемым способом освоения и эксплуатации скважин, при котором предварительно в скважине ниже глубины установки электроцентробежного насоса в герметичном кожухе, на якоре-трубодержателе, содержащем полированную втулку, установлен хвостовик из насосно-компрессорных труб. Длину хвостовика подбирают таким образом, чтобы расстояние от головы хвостовика с якорем-трубодержателем и полированной втулкой до технологически допустимой глубины установки электроцентробежного насоса составляло 10-50 м. К герметичному кожуху электроцентробежного насоса присоединен отдельный хвостовик из насосно-компрессорных труб длиной 10-50 м, который в нижней части содержит ниппель для герметичного соединения с полированной втулкой якоря-трубодержателя. Применение способа позволяет повысить эффективность технологии добычи пластового флюида в горизонтальных скважинах и хвостовиках, в скважинах с большим расстоянием от погружного насоса до интервала перфорации, за счет возможности установки хвостовика из насосно-компрессорных труб большой протяженности, так как основная нагрузка от веса хвостовика приходится на якорь-трубодержатель. Сущность изобретения заключается в том, что при использовании способа освоения и эксплуатации скважин, в скважинах с большим газовым фактором между электроцентробежным насосом и входным модулем установлена секция мультифазного насоса, а погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжен наружным герметизирующим кожухом, который герметично соединен с входным модулем электроцентробежного насоса и выполнен с возможностью изолирования приема насоса от межтрубного пространства и гидравлического соединения его с полостью колонны труб хвостовика, герметично соединенного с нижней частью герметичного кожуха. Согласно изобретения предварительно в скважине, ниже глубины установки электроцентробежного насоса в герметичном кожухе, на якоре-трубодержателе, содержащем полированную втулку, установлен хвостовик из насосно-компрессорных труб. Длину хвостовика подбирают таким образом, чтобы расстояние от головы хвостовика с якорем-трубодержателем и полированной втулкой до технологически допустимой глубины установки электроцентробежного насоса составляло 10-50 м. Хвостовик может быть комбинированным, и в горизонтальной части скважины выполнен из легкоразбуриваемых материалов, например стеклопластика или алюминия, с аварийно-разъединительным узлом между его частями для разъединения в аварийных ситуациях и возможности разбуривания. К герметичному кожуху электроцентробежного насоса присоединен отдельный хвостовик из насосно-компрессорных труб длиной 10-50 м, который в нижней части содержит ниппель для герметичного соединения с полированной втулкой якоря-трубодержателя. Корпус якоря-трубодержателя не имеет плотного прилегания к внутренней поверхности эксплуатационной колонны за исключением плашек и свободно пропускает скважинную жидкость и газ в зазоре между корпусом и стенками эксплуатационной колонны. Собранную компоновку спускают в скважину до глубины установки якоря-трубодержателя, после чего разгрузкой производят герметичную стыковку хвостовика с ниппелем в полированной втулке якоря-трубодержателя, запускают скважину в работу с обеспечением поступления жидкости через хвостовик горизонтальной части скважины, хвостовик, присоединенный к якорю-трубодержателю, хвостовик с ниппелем, внутреннюю полость герметичного кожуха, входной модуль и мультифазный насос в электроцентробежный насос. Предлагаемый способ освоения и эксплуатации скважин позволяет повысить эффективность технологии добычи пластового флюида в горизонтальных скважинах и хвостовиках, в скважинах с большим расстоянием от погружного насоса до интервала перфорации, за счет возможности установки хвостовика из насосно-компрессорных труб большой протяженности, так как основная нагрузка от веса хвостовика приходится на якорь-трубодержатель, в том числе в скважинах с большим газовым фактором, стабилизирует работу оборудования, устраняет скопление газа в межтрубном пространстве и возможность захвата его электроцентробежным насосом, приводящее к срыву рабочего режима электроцентробежного насоса, улучшает охлаждение погружного электродвигателя. Нерастворенный газ не сбрасывается в затрубное пространство, а за счет газлифтного эффекта в насосно-компрессорных трубах увеличивает напор и КПД электроцентробежного насоса.
На чертеже изображена компоновка, поясняющая способ освоения и эксплуатации скважин.
При использовании способа освоения и эксплуатации скважин работу производят следующим образом.
При первой спуско-подъемной операции, в скважине, ниже глубины установки электроцентробежного насоса 16 с погружным электродвигателем 12 в герметичном кожухе 11 на 10-50 метров, в эксплуатационной колонне 18 установлен якорь-трубодержатель 7, содержащий полированную втулку 8, к которому присоединен переводник 6, комбинированный хвостовик из насосно-компрессорных труб 5 и 2, в горизонтальной части скважины 4 выполненный из легкоразбуриваемых материалов, например стеклопластика или алюминия, с аварийно-разъединительным узлом 3 между его частями 5 и 2 для разъединения в аварийных ситуациях и возможности разбуривания, на конце которого установлен фильтр 1. Затем вторым этапом на колонне труб 17 спускается в последовательности снизу вверх хвостовик из насосно-компрессорных труб 10, длиной 10-50 метров, с ниппелем 9, присоединенный к герметичному кожуху 11, герметичный кожух 11 с установленными в нем гидрозащитой 13 и погружным электродвигателем 12, входной модуль 14 с герметичным соединением с герметичным кожухом 11 и герметичным каналом линии питания погружного электродвигателя (на чертеже не показано), мультифазный насос 15, электроцентробежный насос 16. Собранная компоновка спускается в скважину до глубины установки якоря-трубодержателя 7, после чего разгрузкой производят герметичную стыковку хвостовика 10 с ниппелем 9 в полированной втулке 8 якоря-трубодержателя 7, запускают скважину в работу с обеспечением поступления жидкости через хвостовик 2 горизонтальной части скважины, хвостовик 5, присоединенный к якорю-трубодержателю 7, хвостовик 10 с ниппелем 9, внутреннюю полость герметичного кожуха 11, входной модуль 14 и мультифазный насос 15 в электроцентробежный насос 16. Новым является то, что предварительно в скважине, ниже глубины установки электроцентробежного насоса в герметичном кожухе, на якоре-трубодержателе, содержащем полированную втулку, установлен хвостовик из насосно-компрессорных труб. Длину хвостовика подбирают таким образом, чтобы расстояние от головы хвостовика с якорем-трубодержателем и полированной втулкой до технологически допустимой глубины установки электроцентробежного насоса составляло 10-50 м. Хвостовик может быть комбинированным, и в горизонтальной части скважины выполнен из легкоразбуриваемых материалов, например стеклопластика или алюминия, с аварийно-разъединительным узлом между его частями, для разъединения в аварийных ситуациях и возможности разбуривания. К герметичному кожуху электроцентробежного насоса присоединен отдельный хвостовик из насосно-компрессорных труб длиной 10-50 м, который в нижней части содержит ниппель для герметичного соединения с полированной втулкой якоря-трубодержателя. Корпус якоря-трубодержателя не имеет плотного прилегания к внутренней поверхности эксплуатационной колонны за исключением плашек и свободно пропускает скважинную жидкость и газ в зазоре между корпусом и стенками эксплуатационной колонны.
Применение способа позволяет повысить эффективность технологии добычи пластового флюида в горизонтальных скважинах и хвостовиках, в скважинах с большим расстоянием от погружного насоса до интервала перфорации, за счет возможности установки хвостовика из насосно-компрессорных труб большой протяженности, так как основная нагрузка от веса хвостовика приходится на якорь-трубодержатель, при этом длину хвостовика подбирают таким образом, чтобы разместить погружной насос на технологически допустимой глубине, в том числе в скважинах с большим газовым фактором.
Технологический и технический результаты при использовании способа освоения и эксплуатации скважин достигаются за счет повышения эффективности технологии добычи пластового флюида в горизонтальных скважинах и хвостовиках, в скважинах с большим расстоянием от погружного насоса до интервала перфорации, за счет возможности установки хвостовика из насосно-компрессорных труб большой протяженности, так как основная нагрузка от веса хвостовика приходится на якорь-трубодержатель, при этом длину хвостовика подбирают таким образом, чтобы разместить погружной насос на технологически допустимой глубине, в том числе в скважинах с большим газовым фактором.
Экономический эффект от использования изобретения может достигаться за счет увеличения наработки на отказ, продления срока службы насосной установки и уменьшения времени на проведение дополнительных видов работ.
Использованная литература.
1. Патент RU 90121 U1 Е21В 43/14, подача заявки 29.12.2008, опубликовано 27.12.2009.
2. Патент РФ №2034132 Е21В 43/00, подача заявки 10.03.1992, опубликовано 30.04.1995.
3. Патент RU №2620667 C1 Е21В, подача заявки 15.12.2015, опубликовано: 29.05.2017.

Claims (1)

  1. Способ освоения и эксплуатации скважин, при котором в скважинах с большим газовым фактором между электроцентробежным насосом и входным модулем установлена секция мультифазного насоса, а погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжен наружным герметизирующим кожухом, который герметично соединен с входным модулем электроцентробежного насоса и выполнен с возможностью изолирования приема насоса от межтрубного пространства и гидравлического соединения его с полостью колонны труб хвостовика, герметично соединенного с нижней частью герметичного кожуха, отличающийся тем, что предварительно в скважине, ниже глубины установки электроцентробежного насоса в герметичном кожухе, на якоре-трубодержателе, содержащем полированную втулку, установлен хвостовик из насосно-компрессорных труб, при этом длину хвостовика подбирают таким образом, чтобы расстояние от головы хвостовика с якорем-трубодержателем и полированной втулкой до технологически допустимой глубины установки электроцентробежного насоса составляло 10-50 м, причем хвостовик выполнен комбинированным и в горизонтальной части скважины выполнен из легкоразбуриваемых материалов, например стеклопластика или алюминия, с аварийно-разъединительным узлом между его частями для разъединения в аварийных ситуациях и возможности разбуривания, а к герметичному кожуху электроцентробежного насоса герметично присоединен отдельный хвостовик из насосно-компрессорных труб длиной 10-50 м, который в нижней части содержит ниппель для герметичного соединения с полированной втулкой якоря-трубодержателя, при этом корпус якоря-трубодержателя не имеет плотного прилегания к внутренней поверхности эксплуатационной колонны за исключением плашек и свободно пропускает скважинную жидкость и газ в зазоре между корпусом и стенками эксплуатационной колонны, собранную компоновку спускают в скважину до глубины установки якоря-трубодержателя, после чего разгрузкой производят герметичную стыковку хвостовика с ниппелем в полированной втулке якоря-трубодержателя, запускают скважину в работу с обеспечением поступления жидкости через хвостовик горизонтальной части скважины, хвостовик, присоединенный к якорю-трубодержателю, хвостовик с ниппелем, внутреннюю полость герметичного кожуха, входной модуль и мультифазный насос в электроцентробежный насос.
RU2018106752A 2018-02-22 2018-02-22 Способ освоения и эксплуатации скважин RU2691423C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018106752A RU2691423C1 (ru) 2018-02-22 2018-02-22 Способ освоения и эксплуатации скважин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018106752A RU2691423C1 (ru) 2018-02-22 2018-02-22 Способ освоения и эксплуатации скважин

Publications (1)

Publication Number Publication Date
RU2691423C1 true RU2691423C1 (ru) 2019-06-13

Family

ID=66947817

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018106752A RU2691423C1 (ru) 2018-02-22 2018-02-22 Способ освоения и эксплуатации скважин

Country Status (1)

Country Link
RU (1) RU2691423C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU200340U1 (ru) * 2020-03-17 2020-10-19 Игорь Александрович Малыхин Компоновка погружного электродвигателя в герметичном кожухе с капиллярной трубкой для закачки реагентов
RU2744551C1 (ru) * 2020-08-04 2021-03-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Способ эксплуатации электроцентробежного насоса скважины

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126416A (en) * 1998-01-13 2000-10-03 Camco International, Inc. Adjustable shroud for a submergible pumping system and pumping system incorporating same
RU90121U1 (ru) * 2008-12-29 2009-12-27 Николай Иванович Парийчук Установка для эксплуатации пластов в скважине
RU2394978C1 (ru) * 2009-06-23 2010-07-20 Олег Марсович Гарипов Способ освоения и эксплуатации скважин
RU132836U1 (ru) * 2013-03-28 2013-09-27 Закрытое Акционерное Общество "Новомет-Пермь" Погружная насосная установка
RU2620667C1 (ru) * 2015-12-15 2017-05-29 Игорь Александрович Малыхин Способ применения электроцентробежного насоса с мультифазным насосом и пакером

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126416A (en) * 1998-01-13 2000-10-03 Camco International, Inc. Adjustable shroud for a submergible pumping system and pumping system incorporating same
RU90121U1 (ru) * 2008-12-29 2009-12-27 Николай Иванович Парийчук Установка для эксплуатации пластов в скважине
RU2394978C1 (ru) * 2009-06-23 2010-07-20 Олег Марсович Гарипов Способ освоения и эксплуатации скважин
RU132836U1 (ru) * 2013-03-28 2013-09-27 Закрытое Акционерное Общество "Новомет-Пермь" Погружная насосная установка
RU2620667C1 (ru) * 2015-12-15 2017-05-29 Игорь Александрович Малыхин Способ применения электроцентробежного насоса с мультифазным насосом и пакером

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU200340U1 (ru) * 2020-03-17 2020-10-19 Игорь Александрович Малыхин Компоновка погружного электродвигателя в герметичном кожухе с капиллярной трубкой для закачки реагентов
RU2744551C1 (ru) * 2020-08-04 2021-03-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Способ эксплуатации электроцентробежного насоса скважины

Similar Documents

Publication Publication Date Title
US7736133B2 (en) Capsule for two downhole pump modules
US8997870B2 (en) Method and apparatus for separating downhole hydrocarbons from water
US6615926B2 (en) Annular flow restrictor for electrical submersible pump
US8474520B2 (en) Wellbore drilled and equipped for in-well rigless intervention ESP
US20050230121A1 (en) ESP/gas lift back-up
RU2335625C1 (ru) Установка для эксплуатации скважины
US8613311B2 (en) Apparatus and methods for well completion design to avoid erosion and high friction loss for power cable deployed electric submersible pump systems
RU2691423C1 (ru) Способ освоения и эксплуатации скважин
US20090145612A1 (en) High Velocity String for Well Pump and Method for Producing Well Fluid
WO2017111661A1 (ru) Малогабаритный погружной насосный агрегат
CN110234836B (zh) 带罩电潜泵
RU2515630C1 (ru) Способ одновременно-раздельной эксплуатации многопластовой скважины двумя погружными насосами и оборудование для его реализации
RU2485292C2 (ru) Устройство для одновременно-раздельной эксплуатации скважины с двумя пластами
RU2405925C1 (ru) Скважинная насосная установка для одновременной раздельной эксплуатации двух пластов
RU2454531C1 (ru) Пакерная установка (варианты) и устройство промывки насоса для нее (варианты)
RU2381352C1 (ru) Скважинная насосная установка для одновременной раздельной эксплуатации двух пластов
RU177609U1 (ru) Вертикальная насосная установка
RU2522837C1 (ru) Устройство для одновременно-раздельной добычи скважинного флюида и закачки жидкости
RU2532501C1 (ru) Пакер многофункциональный
RU2569526C1 (ru) Установка для одновременно-раздельной эксплуатации скважин
RU2726704C1 (ru) Гибкие трубы с двойными стенками с внутрискважинным приводимым в действие потоком насосом
RU169737U1 (ru) Комплексная погружная бесштанговая электронасосная установка для закачки воды в продуктивный пласт
US10989025B2 (en) Prevention of gas accumulation above ESP intake
RU2630835C1 (ru) Установка для одновременной добычи нефти из двух пластов
RU165135U1 (ru) Погружная насосная установка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210223