RU2690966C1 - Спутниковая система, управляемая по межспутниковой радиолинии - Google Patents

Спутниковая система, управляемая по межспутниковой радиолинии Download PDF

Info

Publication number
RU2690966C1
RU2690966C1 RU2018125659A RU2018125659A RU2690966C1 RU 2690966 C1 RU2690966 C1 RU 2690966C1 RU 2018125659 A RU2018125659 A RU 2018125659A RU 2018125659 A RU2018125659 A RU 2018125659A RU 2690966 C1 RU2690966 C1 RU 2690966C1
Authority
RU
Russia
Prior art keywords
spacecraft
control
inter
satellite
satellite radio
Prior art date
Application number
RU2018125659A
Other languages
English (en)
Inventor
Игорь Николаевич Пантелеймонов
Original Assignee
Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") filed Critical Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Priority to RU2018125659A priority Critical patent/RU2690966C1/ru
Application granted granted Critical
Publication of RU2690966C1 publication Critical patent/RU2690966C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles

Abstract

Изобретение относится к архитектуре информационных спутниковых систем (СС). Каждый космический аппарат (КА) СС связан межспутниковыми радиолиниями (МРЛ) с четырьмя соседними КА и радиолинией с наземным комплексом управления. КА расположены на равновысоких орбитах в плоскостях, обеспечивающих изомаршрутность трасс. Каждый КА одновременно выполняет функции объекта управления и ретранслятора управляющих команд на другие КА. Для передачи данных используется протокол TCP/IP. Для контроля бортовой аппаратуры КА применяются программно-аппаратные средства автоматизированной системы управления SCADA. При этом каждый КА может осуществлять передачу информации к любому другому КА СС посредством МРЛ с полносвязанным графом топологии сети, обеспечивающим адаптивную маршрутиризацию в МРЛ. Технический результат состоит в повышении уровня качества управления СС, в т. ч. скорости передачи информации. 2 з.п. ф-лы, 6 ил.

Description

Предлагаемое изобретение относится к области космонавтики, а именно к области управления полетом космическими аппаратами.
Общеизвестна и широко используется система подвижной персональной спутниковой связи (СППСС) «Iridium», в которой для обеспечения маршрутизации передачи информации от абонента к абоненту каждый космический аппарат связан с четырьмя соседними космическими аппаратами межспутниковыми радиолиниями, а также радиолинией «Земля - борт» с наземным комплексом управления. В свою очередь, в изобретении предлагается комплекс технических средств, который позволит с равной эффективностью обеспечить, как управление космическими аппаратами орбитальной группировкой, так и решение целевых задач решаемых орбитальной группировкой, то есть связь, дистанционное зондирование Земли и т.п.
Из уровня техники известна многоуровневая система спутниковой связи (см. RU 2575632 C2, опубл. 20.02.2016) (1), которая представляет собой группировку из трех спутников-ретрансляторов, равномерно разнесенных относительно друг друга по геостационарной орбите и орбитальной группировки космических аппаратов наблюдения и связи, состоящей из низковысотной группировки космических аппаратов наблюдения и средневысотной группировки космических аппаратов связи, наземный сегмент состоит из наземных комплексов приема-передачи целевой информации и управления низковысотной группировкой космических аппаратов наблюдения и средневысотной группировкой космических аппаратов связи, а также из наземных комплексов приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах.
Недостатком аналога (1) является применение тяжелых и дорогостоящих геостационарных спутников, которые также не являются оптимальными для передачи информации, так как геостационарные линии характеризуются большими задержками, чем межспутниковые.
Наиболее близким аналогом заявленного изобретения является способ управления космической системой связи (см. RU 2591006 С2, опубл. 10.07.2016) (2). Способ включает формирование межспутниковой радиолинии (МРЛ) между космическими аппаратами (КА), расположенными в одной орбитальной плоскости. По МЛР последовательно передают сигналы с одного выбранного КА, осуществляющего связь с наземным комплексом, на остальные КА. При этом одна из антенных решеток приемо-передающего модуля каждого КА направлена на смежный КА, расположенный спереди по ходу, а другая решетка - на КА, расположенный сзади по ходу его орбитального движения. Антенные решетки имеют сканирующие диаграммы направленности в плоскости орбиты системы. В каждом сеансе связи определяют и запоминают параметры ориентации приемопередающих модулей по тангажу и рысканию, при которых обеспечивается приемопередающая зона МРЛ. Эти параметры передают с выбранного КА на остальные КА.
Недостатком наиболее близкого аналога (2) является то, что он не позволяет передавать в одной радиолинии (линии передачи данных) разнородную информацию, например, трафик канала управления полетом и трафик информационных сообщений, что замедляет и усложняет управление полетом.
Техническим результатом заявленного изобретения является повышение и переход на новый уровень качества управления орбитальной группировкой и одновременно увеличение скорости передачи информации.
Заявленный технический результат достигается посредством создания спутниковой системы, управляемой по межспутниковой радиолинии, содержащей космические аппараты, каждый из которых связан межспутниковыми радиолиниями с четырьмя соседними космическими аппаратами и радиолинией борт-Земля с наземным комплексом управления, при этом космические аппараты системы расположены на изомаршрутных орбитальных плоскостях на одинаковой высоте орбиты, при этом каждый КА одновременно выполняет функцию ретранслятора информации управления и объекта управления, посредством передачи данных по радиолинии борт-Земля и межспутниковых радиолиний по протоколу TCP/IP, а также контроля бортовой аппаратуры космических аппаратов с использованием программно-аппаратных средств автоматизированной системы управления SCADA таким образом, что каждый космический аппарат может осуществлять передачу к любому космическому аппарату системы посредством межспутниковых радиолиний с полносвязанным графом топологии сети, обеспечивающим адаптивную маршрутиризацию в межспутниковых радиолиниях.
В частном варианте выполнения передачу информации канала управления обеспечивают фидерные и межспутниковые радиолинии с применением стека протоколов TCP/IP.
В частном варианте выполнения для сбора, обработки, передачи и отображения телеметрической информации, а так же для формирования и передачи команд управления применяется SCADA-система.
Предложенная спутниковая система, управляемая по межспутниковой радиолинии следующими схемами.
Фиг. 1 - топологическая схема организации связи при управлении полетом орбитальной группировки по межспутниковым радиолиниям в виде объемного графа.
Фиг. 2 - топологическая схема организации связи при управлении полетом орбитальной группировке по межспутниковым радиолиниям в виде плоского графа.
Фиг. 3 - сетевая архитектура сети управления полетом орбитальной группировки.
Фиг. 4 - логическая схема доступа оператора центра управления полетом к системе управления бортовой аппаратурой.
Фиг. 5 - функциональные схемы космического аппарата с, соответственно, традиционной системой управления.
Фиг.6 - функциональные схемы космического аппарата с системой управления по межспутниковым радиолиниям с применением стека протоколов передачи данных TCP/IP и контроля бортовой аппаратуры космических аппаратов с использованием программно-аппаратных средств автоматизированной системы управления SCADA.
Отдельные элементы топологической схемы на фиг. 1 обозначены следующим образом:
МСС - центр управления полетом (ЦУП);
CS 1 ÷ CS 2 - командно-измерительные системы КИС №1 ÷ КИС №3; Al ÷ А6 - низкоорбитальные космические аппараты орбитальной плоскости №1, имеющей условное обозначение А;
B1 ÷ В6 - низкоорбитальные космические аппараты орбитальной плоскости №2, имеющей условное обозначение В;
С1 ÷ С6 - низкоорбитальные космические аппараты орбитальной плоскости №1, имеющей условное обозначение С;
D1 ÷ D6 - низкоорбитальные космические аппараты орбитальной плоскости №1, имеющей условное обозначение D;
Е1 ÷ Е6 - низкоорбитальные космические аппараты орбитальной группировки №1, имеющей условное обозначение Е;
F1 ÷ F6 - низкоорбитальные космические аппараты орбитальной плоскости №1, имеющей условное обозначение F.
Отдельные элементы функциональных схем на фиг. 5, фиг. 6 обозначены следующим образом:
1 - фидерная радиолиния (ФРЛ);
2 - межспутниковая радиолиния (МРЛ);
3 - командная радиолиния (КРЛ);
4 - шлюзовая станция (ШС);
5 - бортовой радиотехнический комплекс (БРТК);
6 - бортовая командно-измерительная система (БА КИС);
7 - командно-измерительная станция (КИС);
8 - персональный компьютер (ПК);
9 - датчики;
10 - исполнительное устройство (ИУ);
11 - бортовая навигационная система (БНС);
12 - объединенная двигательная установка (ОДУ);
13 - система электропитания;
14 - система терморегулирования;
15 - система ориентации солнечных батарей;
16 - система ориентации и стабилизации;
17 - бортовая центральная вычислительная машина;
18 - бортовая телеметрическая система;
19 - маршрутизатор;
20 - модем;
21 - центр управления полетом (ЦУП).
22 - космический аппарат (КА).
Предложена спутниковая система, управляемая по межспутниковой радиолинии, в которой каждый космический аппарат связан с четырьмя соседними космическими аппаратами межспутниковыми радиолиниями, а также радиолинией «Земля - борт» с наземным комплексом управления; наземный комплекс управления и радиолинии обеспечивают передачу, по меньшей мере, двух типов данных (информацию полезной нагрузки и информацию каналу управления) по стеку протоколов передачи данных TCP/IP (Transmission Control Protocol / Internet Protocol) и контроль бортовой аппаратуры космических аппаратов с использованием программно-аппаратных средств автоматизированной системы управления SCADA (Supervisory Control And Data Acquisition). Космические аппараты системы расположены на изомаршрутных орбитальных плоскостях на одинаковой высоте орбиты, при этом каждый КА одновременно выполняет функцию ретранслятора информации канала управления и объекта управления.
Применение предложенной системы управления орбитальной группировкой позволит построить глобальную спутниковую сеть передачи данных, заданного назначения (абонентская связь, передача данных ДЗЗ и т.п.). Командно-измерительная система наземного комплекса управления, устанавливая связь с космическим аппаратом орбитальной группировки, находящимся в зоне радиовидимости благодаря связи каждого космического аппарата с четырьмя соседними космическими аппаратами, получает доступ к любому космическому аппарату орбитальной группировки в круглосуточном режиме. Доступность любого из космических аппаратов группировки, описанным выше образом, то есть по модели СППСС «Iridium», обеспечивает возможность управления с заданными целями. То есть, в отличие от классической системы управления объект управления - космический аппарат системы управления одновременно выступает и в роли ретранслятора (канала связи) для передачи команд управления от органа управления - центра управления полетом к другим объектам управления - другим космическим аппаратам группировки.
Применение стека протоколов TCP/IP открывает возможности использования всех современных отработанных в наземных сетях связи технологий передачи информации. Применив стек протоколов TCP/IP, как для построения радиолиний «Земля - борт» и межспутниковых радиолиний, так и для построения линий связи в наземном комплексе управления, позволяет передавать в одной радиолинии (линии передачи данных) разнородную информацию, например, трафик канала управления полетом (организуется первая VLAN) и трафик информационных сообщений (организуется вторая VLAN). Использование общей линии передачи космического аппарата позволит унифицировать шлюзовые станции и командно-измерительные системы наземного комплекса управления, применяя известные протоколы удаленного доступа для управления работой бортовой аппаратурой космического аппарата, например, HTTP и HTTPS для графического режима и т.п., повышается и переходит на новый уровень качество управления орбитальной группировкой. Например, применение межспутниковых радиолиний передачи информации для управления полетом космических аппаратов позволит управлять космическими аппаратами, находящимися вне зоны радиовидимости командно-измерительной системы. При этом, межспутниковые радиолинии передачи информации характеризуются значительно меньшими задержками по сравнению с передачей информации через геостационарные спутники ретрансляторы.
Для сбора телеметрической информации о состоянии бортового оборудования космического аппарата, мониторинга бортового оборудования бортовым компьютером, формирования отчетов о состоянии бортового оборудования и формирования при необходимости управляющих воздействий бортовым компьютером используют программно-аппаратные средства автоматизированной системы управления и мониторинга реального времени SCADA, то есть средств применение которых многократно отработано на множестве объектах управления самого разного назначения. То есть, SCADA используют для организации передачи телеметрической информации и отчетов о состоянии бортового оборудования на компьютер оператора центра управления полетом, отображения переданной информации в графическом виде на мониторе оператора центра управления полетом. Также, SCADA используют для передачи управляющих воздействий, сформированных в центре управления полетом автоматически компьютером или заданных в ручном режиме оператором.
Уровни иерархии управления автоматизированной системы управления SCADA: нижний уровень - это сами датчики и исполнительные устройства систем космических аппаратов; средний уровень - контроллеры систем космических аппаратов и бортовой цифровой вычислительной машины; верхний уровень - автоматизированные рабочие места оператора центра управления полетом. Уровни иерархии отображения автоматизированной системы управления SCADA: отображение всего состояния всей космической системы, включая наземную составляющую и орбитальную группировку; отображение всего состояния отдельного космического аппарата; отображение состояния отдельной системы космического аппарата.
В целом применение межспутниковых радиолиний, стека протоколов TCP/IP и автоматизированная системы управления SCADA в системе управления полетом КА и ОГ в целом позволит:
- сократить состав бортовой служебной аппаратуры, за счет исключения отдельной радиолинии канала управления и бортового радиотехнического комплекса командной радиолинии, при одновременном применении в качестве транспортной среды передачи данных - стека протоколов TCP/IP;
- сократить состав наземной инфраструктуры, за счет исключения командно-измерительной системы и применения для этих целей шлюзовой станции;
- сократить количество шлюзовых станций, так как применение межспутниковой радиолинии обеспечит передачу трафика в любую область Земного шара;
- сократить технический персонал центра управления полетом, в связи с тем, что отпадает необходимость заблаговременного составления списка команд и временной программы управления;
- повысить скорость принятия решений задач управления полетом космического аппарат, в связи с тем, что нет необходимости ожидать когда космический аппарат появится в зоне радиовидимости одной из командно-измерительных систем, можно получать информацию о состоянии со всех космических аппаратов орбитальной группировки в режиме квазиреального времени (с минимальными задержками в отличие от применения геостационарного спутника в качестве ретранслятора), аналогично уменьшается состав космической инфраструктуры;
- обеспечить высокую живучесть структуры организации связи, за счет того, что при выходе из строя какого-либо космического аппарата орбитальной группировки или какой-либо шлюзовой станции, их можно обойти по межспутниковой радиолинии применяя для построения маршрута адаптивные протоколы маршрутизации;
- обеспечить высокую надежность системы управления, за счет использования операционной системы жестко реального времени в бортовой центральной вычислительной машине космического аппарата, управляемой SCADA приложениями, отработанными для задач контроля наземных критически важных объектов;
- обеспечить высокую эргономичность системы управления, за счет графического отображения состояния орбитальной группировки и космических аппаратов, а также за счет выдачи команд управления простым нажатием клавиш.
В результате, предложена система управления орбитальной группировкой, в которой
- на борту космического аппарата не требуется наличия отдельного бортового радиотехнического комплекса командной радиолинии и телеметрической радиолиний, для передачи информации канала управления используют фидерные и межспутниковые радиолинии;
- командно-измерительная станция, совмещенная со шлюзовой станцией, обеспечивает доступ в режиме квазиреального времени к любому космическому аппарату группировки, за счет отказа от необходимости использования отдельных каналов связи для командной и телеметрической радиолиний;
- не требуется трудоемкая предварительная процедура составления списка разовых и временных команд управления, управление космическими аппаратами осуществляется нажатием кнопки в графическом интерфейсе SCADA приложения;
- становится возможным управлять большими орбитальными группировками без значительно увеличения количества командно-измерительных систем и штата обслуживающего персонала центра управления полетом и командно-измерительной системы;
- обеспечена возможность построения любых маршрутов передачи данных (создания гибкой сети передачи данных) с помощью адаптивных протоколов маршрутизации, которые обеспечиваются за счет применения стека протоколов TCP/IP, причем возможно построение:
маршрутов кратчайших для трафика реального времени,
маршрутов характеризующихся оптимальной пропускной способностью с учетом загрузки бортового ретрансляционного комплекса - для широкополосного трафика,
маршрутов в обход неисправных космических аппаратов или космических аппаратов, находящихся в зонах с высокой загрузкой трафиком или в особых зонах (например, в зонах неосвещенной части орбиты или зонах стихийных бедствий).
Таким образом, предложена спутниковая система, управляемая по межспутниковой радиолинии, оборудование которой обеспечит качественное управление космическими аппаратами с использованием широко известных и используемых технических средств.

Claims (3)

1. Спутниковая система, управляемая по межспутниковой радиолинии, содержащая космические аппараты, каждый из которых связан межспутниковыми радиолиниями с четырьмя соседними космическими аппаратами и радиолинией борт-Земля с наземным комплексом управления, отличающаяся тем, что космические аппараты системы расположены в изомаршрутных орбитальных плоскостях на одинаковой высоте орбиты, при этом каждый КА одновременно выполняет функции объекта управления и ретранслятора информации канала управления посредством передачи данных по радиолинии борт-Земля и межспутниковым радиолиниям по протоколу TCP/IP, а также функции контроля бортовой аппаратуры космических аппаратов с использованием программно-аппаратных средств автоматизированной системы управления SCADA таким образом, что каждый космический аппарат может осуществлять передачу информации к любому космическому аппарату системы посредством межспутниковых радиолиний с полносвязанным графом топологии сети, обеспечивающим адаптивную маршрутиризацию в межспутниковых радиолиниях.
2. Спутниковая система по п.1, отличающаяся тем, что передачу информации канала управления обеспечивают фидерные и межспутниковые радиолинии с применением стека протоколов TCP/IP.
3. Спутниковая система по п.1, отличающаяся тем, что для сбора, обработки, передачи и отображения телеметрической информации, а также для формирования и передачи команд управления применяется система управления SCADA.
RU2018125659A 2018-07-12 2018-07-12 Спутниковая система, управляемая по межспутниковой радиолинии RU2690966C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018125659A RU2690966C1 (ru) 2018-07-12 2018-07-12 Спутниковая система, управляемая по межспутниковой радиолинии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018125659A RU2690966C1 (ru) 2018-07-12 2018-07-12 Спутниковая система, управляемая по межспутниковой радиолинии

Publications (1)

Publication Number Publication Date
RU2690966C1 true RU2690966C1 (ru) 2019-06-07

Family

ID=67037973

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018125659A RU2690966C1 (ru) 2018-07-12 2018-07-12 Спутниковая система, управляемая по межспутниковой радиолинии

Country Status (1)

Country Link
RU (1) RU2690966C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754947C1 (ru) * 2021-02-11 2021-09-08 Игорь Николаевич Пантелеймонов Система персональной подвижной спутниковой связи на основе сети низкоорбитальных спутников-ретрансляторов, обеспечивающая предоставление доступа в сеть Internet с носимого персонального абонентского терминала
RU2795117C1 (ru) * 2022-04-05 2023-04-28 Федеральное Государственное Бюджетное Учреждение "Ордена Трудового Красного Знамени Российский Научно-Исследовательский Институт Радио Имени М.И. Кривошеева" Способ и система защиты информации при организации информационного обмена с космическими аппаратами

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810297A (en) * 1996-04-29 1998-09-22 Basuthakur; Sibnath Satellite cluster attitude/orbit determination and control system and method
US5979830A (en) * 1996-11-15 1999-11-09 Oerlikon Contraves Ag Method and arrangement for keeping a geostationary satellite cluster on a dedicated position by employing an optical intersatellite link
US6219617B1 (en) * 1998-02-16 2001-04-17 Contraves Space Ag Method for determining the orbital positions of satellites in LEO networks
RU2299837C1 (ru) * 2006-01-18 2007-05-27 Закрытое акционерное общество "НПО Космического Приборостроения" Способ построения низкоорбитальной спутниковой сетевой навигационной системы
RU2591006C2 (ru) * 2014-09-04 2016-07-10 Открытое акционерное общество "Спутниковая система "Гонец" Способ управления космической системой связи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810297A (en) * 1996-04-29 1998-09-22 Basuthakur; Sibnath Satellite cluster attitude/orbit determination and control system and method
US5979830A (en) * 1996-11-15 1999-11-09 Oerlikon Contraves Ag Method and arrangement for keeping a geostationary satellite cluster on a dedicated position by employing an optical intersatellite link
US6219617B1 (en) * 1998-02-16 2001-04-17 Contraves Space Ag Method for determining the orbital positions of satellites in LEO networks
RU2299837C1 (ru) * 2006-01-18 2007-05-27 Закрытое акционерное общество "НПО Космического Приборостроения" Способ построения низкоорбитальной спутниковой сетевой навигационной системы
RU2591006C2 (ru) * 2014-09-04 2016-07-10 Открытое акционерное общество "Спутниковая система "Гонец" Способ управления космической системой связи

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754947C1 (ru) * 2021-02-11 2021-09-08 Игорь Николаевич Пантелеймонов Система персональной подвижной спутниковой связи на основе сети низкоорбитальных спутников-ретрансляторов, обеспечивающая предоставление доступа в сеть Internet с носимого персонального абонентского терминала
RU2795117C1 (ru) * 2022-04-05 2023-04-28 Федеральное Государственное Бюджетное Учреждение "Ордена Трудового Красного Знамени Российский Научно-Исследовательский Институт Радио Имени М.И. Кривошеева" Способ и система защиты информации при организации информационного обмена с космическими аппаратами
RU2799503C1 (ru) * 2022-05-18 2023-07-05 Федеральное Государственное Бюджетное Учреждение "Ордена Трудового Красного Знамени Российский Научно-Исследовательский Институт Радио Имени М.И. Кривошеева" Способ маршрутизации потоков информации, критичной к задержкам, в сети спутниковой связи на негеостационарных космических аппаратах, связанных межспутниковыми линиями связи в одной орбитальной плоскости и расположенных на круговых орбитах

Similar Documents

Publication Publication Date Title
Israel et al. Laser Communications Relay Demonstration (LCRD) update and the path towards optical relay operations
US11838097B2 (en) Low latency satellite communication relay network
US9973267B2 (en) Satellite constellation
Bhasin et al. Developing architectures and technologies for an evolvable NASA space communication infrastructure
CN110291727A (zh) 超低延迟电信系统
CN103684576B (zh) 一种基于小卫星集群自组网的数据高速通信方法
RU2690966C1 (ru) Спутниковая система, управляемая по межспутниковой радиолинии
Alhilal et al. A roadmap toward a unified space communication architecture
Cahoy et al. Initial results from ACCESS: an autonomous cubesat constellation scheduling system for earth observation
Jia et al. The analysis and simulation of communication network in Iridium system based on OPNET
CN107566026A (zh) 多层次星座组网的卫星信息网络
C Ekpo et al. Reconfigurable cooperative intelligent control design for space missions
CN103490960A (zh) 基于有线等效网络的空间信息网架构
Edwards et al. A day in the life of the laser communications relay demonstration project
Edwards et al. A geosynchronous orbit optical communications relay architecture
US9998206B2 (en) Ring constellations for decreased data latency and increased download rates
Wyatt et al. New capabilities for deep space robotic exploration enabled by disruption tolerant networking
Liebrecht et al. The decade of light: innovations in space communications and navigation technologies
JP2023013851A (ja) 移動体群制御システム及び方法、通信装置
Bhasin et al. Evolutionary space communications architectures for human/robotic exploration and science missions
Alhilal et al. Future Architecture of the Interplanetary Internet
Perea-Tamayo et al. Design and Evaluation of a Low-Cost CubeSat Communication Relay Constellation
RU2713293C1 (ru) Система управления полетом космического аппарата с применением в качестве ретрансляторов низкоорбитальных спутников, связанных между собой межспутниковыми линиями связи
Koosha et al. SpaceLink-ISS Connectivity End-to-End Demonstration (SLICED)
RU2622514C1 (ru) Способ информационного обеспечения запусков космических аппаратов ракетами космического назначения и наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений, предусматривающий использование способа