RU2688878C1 - Компенсационный акселерометр - Google Patents

Компенсационный акселерометр Download PDF

Info

Publication number
RU2688878C1
RU2688878C1 RU2018134722A RU2018134722A RU2688878C1 RU 2688878 C1 RU2688878 C1 RU 2688878C1 RU 2018134722 A RU2018134722 A RU 2018134722A RU 2018134722 A RU2018134722 A RU 2018134722A RU 2688878 C1 RU2688878 C1 RU 2688878C1
Authority
RU
Russia
Prior art keywords
output
input
inputs
circuit
level converter
Prior art date
Application number
RU2018134722A
Other languages
English (en)
Inventor
Николай Львович Коржук
Всеволод Николаевич Коржук
Вадим Дмитриевич Кулешов
Владимир Вениаминович Кулешов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ)
Priority to RU2018134722A priority Critical patent/RU2688878C1/ru
Application granted granted Critical
Publication of RU2688878C1 publication Critical patent/RU2688878C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Изобретение относится к измерительной технике. Сущность изобретения заключается в том, что компенсационный акселерометр дополнительно содержит последовательно по информационным входам, с выхода схемы исключающее "или" на вход преобразователя уровня, широкополосный фильтр второго порядка и элемент с зоной неоднозначности, и местная отрицательная обратная связь реализована с выхода элемента с зоной неоднозначности на вход широкополосного фильтра второго порядка через звено запаздывания, кроме того, преобразователь уровня соединен с входом магнитоэлектрического силового преобразователя, и выход реверсивного двоичного счетчика является цифровым выходом устройства. Технический результат – повышение точности измерения, расширение полосы пропускания. 1 ил.

Description

Изобретение относится к измерительной технике и может быть применено в качестве элемента в системах стабилизации, навигации и в приборах медицинской диагностики.
Известно устройство для измерения ускорений (А.С. №1795374 А1. кл. G01Р 15/13, 15/08, 1993 г.), содержащее чувствительный элемент, датчик положения, усилитель и магнитоэлектрический силовой преобразователь. Компенсационная катушка, магнитоэлектрического силового преобразователя, подключена к выходу усилителя, причем к компенсационной катушке присоединена цепь из последовательно соединенных первого и второго резисторов, а первый резистор зашунтирован конденсатором.
Недостатком компенсационного акселерометра является погрешность, обусловленная включением конденсатора параллельно одному из резисторов.
Наиболее близким по технической сущности является устройство для измерения ускорений (Патент RU №2400761, кл. G01Р 15/13, опубл. 27.09.2010 г), содержащее чувствительный элемент и датчик положения, выход которого соединен с входом усилителя переменного тока, магнитоэлектрический силовой преобразователь, включенный и отрицательную обратную связь. Отрицательная обратная связь образована с выхода датчика положения на один из входов магнитоэлектрического силового преобразователя через последовательно соединенные по информационным входам усилитель переменного тока, первый логический элемент, схему исключающее "или", прецизионный релейный элемент, сглаживающий фильтр, широкополосный фильтр второго порядка
Figure 00000001
(где T1, ς1, ς2 - постоянная времени фильтра, относительные коэффициенты демпфирования, s - оператор преобразования Лапласа, причем ς21) и первый преобразователь напряжение-ток.
Интегратор, вход которого соединен с одним из выходов схемы исключающее "или", и второй преобразователь напряжение-ток, вход которого соединен с выходом интегратора, а выход с входом магнитоэлектрического силового преобразователя. Генератор опорного напряжения соединен как с датчиком положения, так и со схемой исключающее "или" через второй логический элемент, и выход со сглаживающего фильтра является аналоговым выходом устройства для измерения ускорений.
Недостатком устройства для измерения ускорений является малая полоса пропускания и невысокая точность, которая ограничена коэффициентом усиления по разомкнутому контуру.
Технической задачей настоящего изобретения является расширение полосы пропускания компенсационного акселерометра и повышение точности измерения.
Это достигается тем, что в компенсационный акселерометр, содержащий чувствительный элемент, датчик положения, выход которого соединен с одним из входов схемы исключающее "или" через усилитель и первый логический элемент, генератор опорного напряжения, выходы которого соединены как с входом датчика положения, так с одним из входов схемы исключающее "или", через второй логический элемент, магнитоэлектрический силовой преобразователь, включенный в отрицательную обратную связь, широкополосный фильтр второго порядка, преобразователь уровня соединенный с входом реверсивного двоичного счетчика через пару ждущих синхронных генераторов, схему синхронизации, выходы которой соединены с входами ждущих синхронных генераторов, введены последовательно по информационным входам, с выхода схемы исключающее "или" на вход преобразователя уровня, широкополосный фильтр второго порядка и элемент с зоной неоднозначности, и местная отрицательная обратная связь реализована с выхода элемента с зоной неоднозначности на вход широкополосного фильтра второго порядка через звено запаздывания, кроме того, преобразователь уровня соединен с входом магнитоэлектрического силового преобразователя, и выход реверсивного двоичного счетчика является цифровым выходом устройства.
Введение в компенсационный акселерометр элемента с зоной неоднозначности, широкополосного фильтра второго порядка, местной отрицательной обратной связи со звеном запаздывания позволило реализовать автоколебательный режим, астатизм, увеличить коэффициент передачи по разомкнутому контуру, а также повысить точность измерения и расширить полосу пропускания.
На фиг. изображена функциональная схема компенсационного акселерометра.
Компенсационный акселерометр содержит чувствительный элемент 1, угловое положение которого определяет датчик положения 2, обмотка возбуждения которого соединена с генератором опорного напряжения (ГОН) 3. Выход датчика положения 2 соединен с входом усилителя 4. Выход усилителя 4 соединен с входом первого логического элемента 5. Вход второго логического элемента 6 соединен с одним из выходов генератора опорного напряжения 3. Выходы первого и второго логических элементов 5 и 6 соединены с входами схемы исключающее "или" 7. Выход схемы исключающее "или" 7 соединен с входом широкополосного фильтра второго порядка 8, выход которого соединен с входом элемента с зоной неоднозначности 9. Выход элемента с зоной неоднозначности 9 соединен с одним из входов широкополосного фильтра второго порядка 8 через звено запаздывания 10. Один из выходов элемента с зоной неоднозначности 9 соединен с входом преобразователя уровня 11. Выход преобразователя уровня 11 соединен с входами пары ждущих синхронных генераторов (ЖСГ) 12 и 13. Выходы пары ЖСГ 12 и 13 соединены с входами реверсивного двоичного счетчика 14. Дополнительные входы преобразователя уровня 11 и пары ЖСГ 12 и 13 соединены с выходами схемы синхронизации 15. Один из выходов преобразователя уровня 11 соединен с входом магнитоэлектрического силового преобразователя 16. Магнитоэлектрический силовой преобразователь 16 соединен с чувствительным элементом 1. Выход реверсивного двоичного счетчика 14 является дискретным выходом компенсационного акселерометра.
Внутреннее содержание генератора, логических элементов, преобразователя уровня, схемы исключающее "или", усилителя, фильтров приведены в книге: П. Хоровиц, У. Хилл. Искусство схемотехники. М.: Мир, т1-3, 1993.
Работу предложенного компенсационного акселерометра можно пояснить следующим образом. Отклонение чувствительного элемента 1, под действием ускорения (W/g), фиксируется датчиком положения 2. Обмотка возбуждения датчика положения 2 соединена с генератором опорного напряжения (ГОН) 3. Выходной сигнал с датчика положения 2 имеет фазу 0° либо 180° относительно несущей частоты (ГОН) 3. Выходной сигнал с датчика положения 2 усиливается усилителем 4 со стабильным коэффициентом усиления. Выходное напряжение с выхода усилителя 4 поступает на вход первого логического элемента 5. Выходной сигнал с выхода первого логического элемента 5 представляется в виде сигнала прямоугольной формы с частотой (ГОН) 3. Для выделения фазы отклонения чувствительного элемента 1 предусмотрен второй логический элемент 6, на вход которого подается сигнал с (ГОН) 3. На выходе второго логического элемента 6 будет сигнал аналогичный по форме сигналу с первого логического элемента 5. Сигналы с логических элементов 5 и 6, сдвинутые по фазе, поступают на входы схемы исключающее "или" 7 (схема сложения по модулю "2"), осуществляющей операцию логического сложения. Если сигналы с логических элементов 5 и 6 имеют нулевой фазовый сдвиг отклонения чувствительного элемента 1, то на выходе схемы 7 имеем логический "0", если же сигналы с элементов 5 и 6 имеют фазовый сдвиг отличный от нуля, то на выходе схемы 7 будет логическая "1". Форма выходного сигнала с выхода схемы 7 аналогична форме сигналов с логических элементов 5 и 6. Выходной сигнал с выхода схемы 7 поступает на вход широкополосного фильтра второго порядка 8, который обеспечивает качество переходного процесса, и выход широкополосного фильтра второго порядка соединен с входом элемента с зоной неоднозначности 9. Расширение полосы пропускания и увеличение коэффициента передачи по разомкнутому контуру обеспечивается путем введения местной отрицательной обратной связи с выхода элемента с зоной неоднозначности 9, через звено запаздывания 10, на вход широкополосного фильтра второго порядка 8. Сигнал с элемента с зоной неоднозначности 9, в виде уровня, поступает на вход преобразователя уровня 11, а затем на входы пары ждущих синхронных генераторов 12 и 13, которые с помощью схемы синхронизации 15, выдают сигналы в виде импульса на каждое воздействие входящего сигнала (с выхода элемента с зоной неоднозначности 9). Реверсивный двоичный счетчик 14 производит подсчет единичных импульсов поступающих с выхода ждущего синхронного генератора 12 и вычитание импульсов поступающих с выхода ждущего синхронного генератора 13. Реверсивный двоичный счетчик 14 положительную информацию представляет в прямом коде, а отрицательную в дополнительном коде. Информация с реверсивного двоичного счетчика 13, равная разности числа "положительных" и "отрицательных" импульсов, является дискретным выходом компенсационного акселерометра. Сигнал с выхода преобразователя уровня 11 поступает на вход магнитоэлектрического силового преобразователя 16, который компенсирует угловое отклонение чувствительного элемента 1, в соответствии с фазой действующего ускорения W/g.
Введение в компенсационный акселерометр местной отрицательной обратной связи с выхода элемента зоной неоднозначности на вход широкополосного фильтра второго порядка, через звено запаздывания, позволило реализовать режим автоколебаний, увеличить коэффициент усиления по разомкнутому контуру, без потери устойчивости. Кроме того, введение в компенсационный акселерометр широкополосного фильтра второго порядка, элемента с зоной неоднозначности и местной отрицательной обратной связи позволило реализовать в астатизм, расширить полосу пропускания и повысить точность измерения.

Claims (1)

  1. Компенсационный акселерометр, содержащий чувствительный элемент, датчик положения, выход которого соединен с одним из входов схемы исключающее "или" через усилитель и первый логический элемент, генератор опорного напряжения, выходы которого соединены как с входом датчика положения, так с одним из входов схемы исключающее "или", через второй логический элемент, магнитоэлектрический силовой преобразователь, включенный в отрицательную обратную связь, широкополосный фильтр второго порядка, преобразователь уровня соединенный с входом реверсивного двоичного счетчика через пару ждущих синхронных генераторов, схему синхронизации, выходы которой соединены с входами ждущих синхронных генераторов, отличающийся тем, что в него введены последовательно по информационным входам, с выхода схемы исключающее "или" на вход преобразователя уровня, широкополосный фильтр второго порядка и элемент с зоной неоднозначности, и местная отрицательная обратная связь реализована с выхода элемента с зоной неоднозначности на вход широкополосного фильтра второго порядка через звено запаздывания, кроме того, преобразователь уровня соединен с входом магнитоэлектрического силового преобразователя, и выход реверсивного двоичного счетчика является цифровым выходом устройства.
RU2018134722A 2018-10-01 2018-10-01 Компенсационный акселерометр RU2688878C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018134722A RU2688878C1 (ru) 2018-10-01 2018-10-01 Компенсационный акселерометр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018134722A RU2688878C1 (ru) 2018-10-01 2018-10-01 Компенсационный акселерометр

Publications (1)

Publication Number Publication Date
RU2688878C1 true RU2688878C1 (ru) 2019-05-22

Family

ID=66636948

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018134722A RU2688878C1 (ru) 2018-10-01 2018-10-01 Компенсационный акселерометр

Country Status (1)

Country Link
RU (1) RU2688878C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6073490A (en) * 1994-06-27 2000-06-13 Sergy Feodosievich Konovalov Servo accelerometer
RU2400761C1 (ru) * 2009-06-22 2010-09-27 Государственное образовательное учреждение высшего профессионального образования Тульский государственный университет (ТулГУ) Устройство для измерения ускорений
WO2010119046A2 (en) * 2009-04-14 2010-10-21 Atlantic Inertial Systems Limited Accelerometer control systems
RU2405160C1 (ru) * 2009-06-30 2010-11-27 Государственное образовательное учреждение высшего профессионального образования Тульский государственный университет (ТулГУ) Устройство для измерения ускорений
RU2631019C1 (ru) * 2016-11-28 2017-09-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) Компенсационный акселерометр

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6073490A (en) * 1994-06-27 2000-06-13 Sergy Feodosievich Konovalov Servo accelerometer
WO2010119046A2 (en) * 2009-04-14 2010-10-21 Atlantic Inertial Systems Limited Accelerometer control systems
RU2400761C1 (ru) * 2009-06-22 2010-09-27 Государственное образовательное учреждение высшего профессионального образования Тульский государственный университет (ТулГУ) Устройство для измерения ускорений
RU2405160C1 (ru) * 2009-06-30 2010-11-27 Государственное образовательное учреждение высшего профессионального образования Тульский государственный университет (ТулГУ) Устройство для измерения ускорений
RU2631019C1 (ru) * 2016-11-28 2017-09-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) Компенсационный акселерометр

Similar Documents

Publication Publication Date Title
RU2513667C1 (ru) Компенсационный акселерометр
RU2449293C1 (ru) Компенсационный акселерометр
RU2400761C1 (ru) Устройство для измерения ускорений
RU2397498C1 (ru) Компенсационный акселерометр
RU2405160C1 (ru) Устройство для измерения ускорений
RU2363957C1 (ru) Компенсационный акселерометр
RU2631019C1 (ru) Компенсационный акселерометр
RU2724241C1 (ru) Компенсационный акселерометр
RU2688878C1 (ru) Компенсационный акселерометр
RU2676217C1 (ru) Компенсационный акселерометр
RU2478211C1 (ru) Компенсационный акселерометр
RU2688880C1 (ru) Акселерометр
RU2411522C1 (ru) Компенсационный акселерометр
RU2754203C1 (ru) Устройство для измерения ускорений
RU2539826C2 (ru) Компенсационный акселерометр
RU2700339C1 (ru) Компенсационный акселерометр
RU2308038C1 (ru) Устройство для измерения ускорений
RU2541720C1 (ru) Компенсационный акселерометр
RU2165625C1 (ru) Устройство для измерения ускорений
RU2614205C1 (ru) Компенсационный акселерометр
RU2756937C1 (ru) Компенсационный акселерометр
RU2676177C1 (ru) Компенсационный акселерометр
RU2397497C1 (ru) Устройство для измерения ускорений
RU2649246C1 (ru) Компенсационный акселерометр
RU2325662C1 (ru) Устройство для измерения ускорений

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201002