RU2688596C1 - Волоконно-оптический датчик угла поворота - Google Patents

Волоконно-оптический датчик угла поворота Download PDF

Info

Publication number
RU2688596C1
RU2688596C1 RU2018124149A RU2018124149A RU2688596C1 RU 2688596 C1 RU2688596 C1 RU 2688596C1 RU 2018124149 A RU2018124149 A RU 2018124149A RU 2018124149 A RU2018124149 A RU 2018124149A RU 2688596 C1 RU2688596 C1 RU 2688596C1
Authority
RU
Russia
Prior art keywords
optical
fiber
optical fiber
laser diode
sensor
Prior art date
Application number
RU2018124149A
Other languages
English (en)
Inventor
Сергей Александрович Матюнин
Максим Владимирович Степанов
Орхан Гаджибаба оглы Бабаев
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва"
Priority to RU2018124149A priority Critical patent/RU2688596C1/ru
Application granted granted Critical
Publication of RU2688596C1 publication Critical patent/RU2688596C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Abstract

Изобретение относится к средствам измерения угловых перемещений. Волоконно-оптический датчик угла поворота состоит из лазерного диода, микроконтроллера, оптического делителя мощности, двух фотодетекторов и двух отрезков оптического волокна. Отрезки оптического волокна свернуты в полукольца вокруг шарнира. Оптическое волокно соединяет лазерный диод с фотодетекторами через оптический делитель мощности. Оптический делитель мощности делит в равных отношениях сигнал лазерного диода на два отрезка оптического волокна. Концы отрезков оптического волокна неподвижно закреплены на подвижном и неподвижном элементах конструкции с возможностью при угловом повороте шарнира изменения радиусов первого и второго полуколец. Микроконтроллер подключен к лазерному диоду и управляет его мощностью излучения, так чтобы обеспечить постоянной величину суммы сигналов фотодетекторов. Технический результат заключается в уменьшении температурной погрешности датчика. 4 ил.

Description

Изобретение относится к измерительной технике, а именно к средствам измерения угловых перемещений, и может быть использовано в различных областях, например в промышленной автоматике, в робототехнике, в частности для измерения угловых перемещений фаланг пальцев захватов антропоморфного робота и др.
Известен оптоволоконный датчик, основанный на деформации свободно установленного отрезка волокна (патент США US 5818982 А, Fiber optic sensor based upon buckling of a freely suspended length of fiber, МПК G02B 6/00, опубл. 06.10.1998 г.). Данный датчик основан на нелинейной деформации оптических волокон и оптических потерях при их изгибе. Для реализации датчика могут применяться одно - и многомодовые оптические волокна.
Недостатком данной конструкции датчика является неоднозначность результатов измерения, возникающая из-за изменения модового состава оптического излучения, происходящего вследствие деформации оптического волокна при его изгибе и низкая температурная стабильность датчика.
Известен оптический датчик положения и/или формы (заявка на патент США US 20110109898, Optical position and/or shape sensing, МПК G01N 21/84, опубл. 12.05.2011 г.), принцип действия которого основан на определении изменений длины оптических путей в каждой из жил многожильного кабеля, возникающих в результате изгиба участка кабеля. При этом угол изгиба волокна пропорционален удлинению периферийных волокон. Конечный угол изгиба многожильного кабеля представляет собой сумму всех предыдущих углов изгиба кабеля. В случае использования волокон с решетками Брэгга разность фаз, измеряемая относительно исходного состояния кабеля, аккумулируется. Суммарный угол изгиба на участке кабеля определяется коэффициентом пропорциональности, длиной участка кабеля, удлинением периферийных волокон. Блок-схема устройства измерения положения и формы многожильным оптоволоконным кабелем, включает в себя следующие элементы: устройство отображения формы изгиба (монитор); сеть лазерного мониторинга; системный контроллер и процессор для обработки данных; сеть сбора данных; опрашивающая сеть; контроллер поляризации; поляризационные светоделители; оптические разветвители; фотодетекторы; оптические интерферометры; оптические циркуляторы; выводные разветвители; оптоволоконный кабель, определяющий форму изгиба; волоконная катушка задержки; фарадеевское вращающее зеркало.
Недостатком данного датчика движения тела является недостаточная точность и стабильность результата измерения, большие габаритно-массовые показатели кабеля, не позволяющие использовать его в качестве датчика углового положения фаланг пальцев захватов, высокая стоимость кабеля с регулярной укладкой оптоволокна и высокая стоимость элементов и устройств обработки информации, например оптического интерферометра и др.
Известен оптоволоконный лист и датчик движения тела (патент США US 9420964, Optical fiber sheet and body motion sensor, МПК A61B 5/113, G01D 5/353, A61B 5/00, опубл. 23.08.2016 г.), содержащий волоконно-оптический лист, источник оптического излучения, компьютер. В качестве чувствительного элемента используется градиентное кварцевое оптоволокно, уложенное определенным образом на плоский листовой материал с клеевым слоем, формирующее волоконно-оптический измерительный лист. В кварцевом оптическом волокне возникают микроизгибные потери под действием нагрузки. Амплитудно-модулированный сигнал поступает в преобразователь оптического сигнала в электрический и обрабатывается программным обеспечением, установленным на ПК. Движение тела (изгиб волоконно-оптического листа) обнаруживается путем измерения изменения количества передаваемого оптического сигнала и определения избыточных потерь в полученном сигнале.
Данный датчик позволяет определить только суммарную деформацию/изгиб волоконно-оптического листа и не позволяет определить место деформации/изгиба волоконно-оптического листа. Датчик позволяет измерять только микроизгибы, что не позволяет использовать его в качестве датчика углового положения фаланг пальцев захватов.
Известен волоконно-оптический датчик изгиба и положения с изогнутыми светоизлучающими поверхностями (патент США US 5633494, Fiber optic bending and positioning sensor with selected curved light emission surfaces, МПК G01D 5/353, G02B 6/28, опубл. 27.05.1997 г.), принцип действия которого заключается в использовании в качестве чувствительного элемента участка оптоволокна, оптическая оболочка которого имеет определенную структуру. Чувствительный участок формируется в виде зубцов, глубина которых доходит до сердцевины оптоволокна, при этом целостность сердцевины не нарушается. Снаружи оптическая оболочка может быть закрыта защитной буферной оболочкой. При изгибе чувствительного участка волокна происходит нарушение закона полного внутреннего отражения и возникают потери регистрируемого оптического сигнала, пропорциональные изгибающему воздействию. Приведенное в патенте конструктивное исполнение включает чувствительное волокно с микроструктурированной оптической оболочкой в виде зубцов, защищенное буферной оболочкой, задатчики перемещения, платформы для установки волокна. При этом зависимость пропускания оптического волокна от угла изгиба имеет практически линейный характер.
Недостатком данного волоконно-оптического датчика изгиба и положения является недостаточная надежность конструкции вследствие нарушения целостности оптической оболочки и низкая температурная стабильность.
Известна оптическая линейная измерительная система и метод измерения (US 009470559 В2, Optical linear measurement system and method, 18.10.2016).
Оптическая линейная измерительная система и метод, определяющие движение подвижного объекта на основе измерения интенсивности оптического сигнала, распространяющегося в первом оптическом волокне, соединенным с подвижным объектом. При изменении линейного положения подвижного объекта изменяется радиус катушки первого оптического волокна. По мере изменения радиуса катушки интенсивность оптического сигнала изменения. Второе статическое стекловолокно используется для компенсации влияния температуры на результат измерения.
Недостатком данной конструкции датчика является неоднозначность результатов измерения, возникающая из-за изменения модового состава оптического излучения, происходящего вследствие деформации оптического волокна при его изгибе и низкая температурная стабильность.
Наиболее близким к настоящему изобретению по технической сути является датчик положения (патент ЕР 1867958 А2, Position Sensor, 19.12.2007 г.). Принцип работы датчика основан на определения положения шарнира, механически соединенного с отрезком оптического волокна, который в свою очередь оптически соединяет между собой лазерный светодиод и фотодетектор. Отрезок оптического волокна, свернутый в виде полукольца, в процессе поворота шарнира изменяет радиус и, как следствие, уровень оптической мощности, которая фиксируется фотодетектором и измеряется микроконтроллером.
Недостатком данной конструкции датчика положения является его низкая стабильность, связанная с влиянием изменения температуры на характеристики фотодетектора, лазерного диода и оптического волокна.
Так, увеличение температуры приводит к уменьшению выходной мощности РИзл лазерного диода (фиг. 1) с температурным коэффициентом около минус 2,5%/град.
Для фотодетектора (фотодиода) при увеличении температуры на 10°С величина темнового тока увеличивается примерно в 2 раза, а шунтирующее сопротивление удваивается при увеличении температуры на 6°С.
Кроме того, датчик обладает существенной нелинейность передаточной функции (фиг. 2).
Технический результат достигается за счет того, что в волоконно-оптический датчик угла поворота вводится дополнительно оптический делитель мощности, второй отрезок оптического волокна и второй фотодетектор. Оптический делитель мощности установлен с возможностью деления в равных отношениях сигнала лазерного диода на два отрезка оптического волокна., причем второй отрезок оптического волокна свернут в виде полукольца и его концы неподвижно закреплены на подвижном и неподвижном элементах конструкции с возможностью при угловом повороте шарнира изменения радиусов первого и второго полуколец, при этом микроконтроллер подключен к лазерному диоду и управляет его мощностью излучения так, что бы обеспечить постоянной величину суммы сигналов фото детекторов.
Техническая сущность предложенного технического решения поясняется чертежами, где:
- на Фиг. 1 представлены выходные характеристики лазерного диода при различных температурах;
- на Фиг. 2 представлена позиционная (передаточная) характеристика датчика угла поворота: кривая 1 - выходной оптический сигнал первого полукольца, кривая 2 - выходной оптический сигнал второго полукольца, кривая 3 - результирующий выходной сигнал предлагаемого волоконно-оптического датчика угла поворота;
- на Фиг. 3 представлена структурная схема предлагаемого волоконно-оптического датчика угла поворота;
-на Фиг. 4 представлена позиционная (передаточная) характеристика предлагаемого волоконно-оптического датчика угла поворота: кривая 1 -зависимость U1(ϕ,t)+U2(ϕ,t) кривая 2 - позиционная характеристика волоконно-оптического датчика угла поворота U(ϕ).
Таким образом, предлагаемый волоконно-оптический датчик угла поворота содержит микроконтроллер 1, подключенный к нему лазерный диод 2, оптический делитель мощности 3, фотодетекторы 6, 7, выходы которых подключены к микроконтроллеру, а также два отрезка оптического волокна 4 и 5, свернутых в полукольца и оптически соединяющих оптический делитель мощности 3 с фотодетекторами 6, 7 (фиг. 3). Концы отрезков оптического волокна 4, 5 неподвижно закреплены на подвижном и неподвижном элементах конструкции таким образом, чтобы при угловом повороте шарнира радиус одного полукольца увеличивался/уменьшался, а радиус другого полукольца уменьшался/увеличивался.
Выходной сигнал (позиционная характеристика) такого волоконно-оптического датчика угла поворота определяется, согласно следующему выражению:
Figure 00000001
где U(ϕ) - зависимость выходного сигнала волоконно-оптического датчика от угла поворота ϕ;
U1(ϕ, t)=Y1(ϕ, t)⋅k, U2(ϕ, t)=Y2(ϕ, t)⋅k, Y1(ϕ, t), Y2 (ϕ, t) - электрические сигналы на выходах и оптические сигналы Y1(ϕ, t), Y2(ϕ, t) входах фотодетекторов 6, 7;
k - коэффициенты преобразования оптических сигналов в электрический фотодетекторами 6, 7.
При этом, для исключения влияния изменения сигналов U1(ϕ, t) и U2(ϕ, t) на эффективность температурной стабилизации характеристик фотодетекторов 6, 7, лазерного диода 2, оптического делителя 3 и отрезков оптического волокна 4, 5 микроконтроллер 1 управляет током накачки лазерного диода 2 так, что бы обеспечить постоянство суммы сигналов фотодетекторов 6, 7 при изменении, как угла поворота шарнира, так и температуры элементов 2-7 датчика:
U1(ϕ, t)+U2(ϕ, t)=Const.
Литература
1. Патент США US 5818982 А, Fiber optic sensor based upon buckling of a freely suspended length of fiber, МПК G02B 6/00, опубл. 06.10.1998 г.
2. Заявка на патент США US 20110109898, Optical position and/or shape sensing, МПК G01N 21/84, опубл. 12.05.2011 г.
3. Патент США US 9420964, Optical fiber sheet and body motion sensor, МПК A61B 5/113, G01D 5/353, A61B 5/00, опубл. 23.08.2016 г.
4. Патент США US 5633494, Fiber optic bending and positioning sensor with selected curved light emission surfaces, МПК G01D 5/353, G02B 6/28, опубл. 27.05.1997 г.
5. Патент US 009470559 B2, Optical linear measurement system and method, 18.10.2016 г.
6. Патент ЕР 1867958 A2, Position Sensor, 19.12.2007 г.
7. Д. Бейли, Э. Райт. Волоконная оптика: теория и практика/Пер. с англ. - М.: КУДИЦ-ОБРАЗ, 2006. - 320 с.
8. W. W. Chow, S. W. Koch. Semiconductor Laser, Fundamentals. Springer, 1998.

Claims (1)

  1. Волоконно-оптический датчик угла поворота, состоящий из лазерного диода и микроконтроллера, подключенного к нему фотодетектора, отрезка оптического волокна, свернутого в полукольцо вокруг шарнира и оптически соединяющего лазерный диод с фотодетектором, причем концы полукольца неподвижно закреплены на подвижном и неподвижном элементах конструкции шарнира, а полукольцо расположено с возможностью изменения радиуса при угловом повороте, отличающийся тем, что в волоконно-оптический датчик угла поворота введены оптический делитель мощности, второй отрезок оптического волокна и второй фотодетектор, причем оптический делитель мощности установлен с возможностью деления в равных отношениях сигнала лазерного диода на два отрезка оптического волокна, а второй отрезок оптического волокна свернут в виде полукольца и его концы неподвижно закреплены на подвижном и неподвижном элементах конструкции с возможностью при угловом повороте шарнира изменения радиусов первого и второго полуколец, при этом микроконтроллер подключен к лазерному диоду и управляет его мощностью излучения так, чтобы обеспечить постоянной величину суммы сигналов фотодетекторов.
RU2018124149A 2018-07-02 2018-07-02 Волоконно-оптический датчик угла поворота RU2688596C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018124149A RU2688596C1 (ru) 2018-07-02 2018-07-02 Волоконно-оптический датчик угла поворота

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018124149A RU2688596C1 (ru) 2018-07-02 2018-07-02 Волоконно-оптический датчик угла поворота

Publications (1)

Publication Number Publication Date
RU2688596C1 true RU2688596C1 (ru) 2019-05-21

Family

ID=66636641

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018124149A RU2688596C1 (ru) 2018-07-02 2018-07-02 Волоконно-оптический датчик угла поворота

Country Status (1)

Country Link
RU (1) RU2688596C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633494A (en) * 1991-07-31 1997-05-27 Danisch; Lee Fiber optic bending and positioning sensor with selected curved light emission surfaces
US5818982A (en) * 1996-04-01 1998-10-06 Voss; Karl Friedrich Fiber optic sensor based upon buckling of a freely suspended length of fiber
EP1867958A2 (en) * 2006-06-13 2007-12-19 Nokia Corporation Position Sensor
US20160076918A1 (en) * 2014-09-15 2016-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical linear measurement system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633494A (en) * 1991-07-31 1997-05-27 Danisch; Lee Fiber optic bending and positioning sensor with selected curved light emission surfaces
US5818982A (en) * 1996-04-01 1998-10-06 Voss; Karl Friedrich Fiber optic sensor based upon buckling of a freely suspended length of fiber
EP1867958A2 (en) * 2006-06-13 2007-12-19 Nokia Corporation Position Sensor
US20160076918A1 (en) * 2014-09-15 2016-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical linear measurement system and method

Similar Documents

Publication Publication Date Title
JP5150445B2 (ja) 光ファイバセンサ装置および温度とひずみの計測方法と光ファイバセンサ
US10620018B2 (en) Method for measuring the displacement profile of buildings and sensor therefor
JP2000111319A (ja) 光ファイバセンサ
Arifin et al. Long-range displacement sensor based on SMS fiber structure and OTDR
Ismail et al. Novel 3D-printed biaxial tilt sensor based on fiber Bragg grating sensing approach
US11346689B2 (en) Optical measuring system with an interrogator and a polymer-based single-mode fibre-optic sensor system
RU163742U1 (ru) Волоконно-оптический датчик и комплект для измерения деформаций защитной оболочки ядерного реактора
Feng et al. Distributed transverse-force sensing along a single-mode fiber using polarization-analyzing OFDR
Di et al. Electric current measurement using fiber-optic curvature sensor
KR101498381B1 (ko) 광섬유 브래그 격자 센서를 이용한 파이프 구조의 3차원 형상 모니터링 시스템
RU2688596C1 (ru) Волоконно-оптический датчик угла поворота
RU2695955C1 (ru) Волоконно-оптический датчик угла поворота
Liao et al. A sensitivity-enhanced micro-cavity extrinsic Fabry-Perot interferometric fiber-optic curvature sensor
Enciu et al. Strain measurements using fiber Bragg grating sensors in structural health monitoring
Nishiyama et al. Optical intensity-based measurement of multipoint hetero-core fiber sensors by the method of time-differentiation in optical loss
Evtushenko et al. Quasi-interferometric scheme improved by fiber Bragg grating written on macrostructure defect in silica multimode optical fiber operating in a few-mode regime
Varyshchuk et al. Using a multimode polymer optical fiber as a high sensitivy strain sensor
CN105136041B (zh) 一种基于fbg传感器的局部位移测量装置
CN105115440B (zh) 一种基于光纤光栅传感器的局部位移测量方法
Aulakh et al. Fiber Bragg grating interrogator using edge filtering technique with microbend loss error mitigation
Lazarev et al. Fiber Bragg gratings strain measuring system and a sensor calibration setup based on mechanical nanomotion transducer
EP2921817A1 (en) Real-time shape measuring method and system
US11788909B2 (en) Measuring device and measuring method using tape core wire
US20230384172A1 (en) Distributed temperature sensing system with fiber bragg gratings
RU75043U1 (ru) Волоконно-оптический измеритель скорости

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200128

Effective date: 20200128

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200703

NF4A Reinstatement of patent

Effective date: 20210804