RU2687861C2 - Газотурбинный двигатель - Google Patents

Газотурбинный двигатель Download PDF

Info

Publication number
RU2687861C2
RU2687861C2 RU2014131372A RU2014131372A RU2687861C2 RU 2687861 C2 RU2687861 C2 RU 2687861C2 RU 2014131372 A RU2014131372 A RU 2014131372A RU 2014131372 A RU2014131372 A RU 2014131372A RU 2687861 C2 RU2687861 C2 RU 2687861C2
Authority
RU
Russia
Prior art keywords
fan
engine
specified
nacelle
low
Prior art date
Application number
RU2014131372A
Other languages
English (en)
Other versions
RU2687861C9 (ru
RU2014131372A (ru
Inventor
Гариэль Л. СУСЬЮ
Брайан Д. МЕРРИ
Кристофер М. ДАЙ
Стивен Б. ДЖОНСОН
Фредерик М. ШВАРЦ
Original Assignee
Юнайтед Текнолоджиз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48698690&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2687861(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Юнайтед Текнолоджиз Корпорейшн filed Critical Юнайтед Текнолоджиз Корпорейшн
Publication of RU2014131372A publication Critical patent/RU2014131372A/ru
Publication of RU2687861C2 publication Critical patent/RU2687861C2/ru
Application granted granted Critical
Publication of RU2687861C9 publication Critical patent/RU2687861C9/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • B64D27/402Arrangements for mounting power plants in aircraft comprising box like supporting frames, e.g. pylons or arrangements for embracing the power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • B64D27/404Suspension arrangements specially adapted for supporting vertical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/075Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type controlling flow ratio between flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Retarders (AREA)

Abstract

Газотурбинный двигатель содержит редуктор, расположенный вдоль продольной оси двигателя, каскад, гондолу вентилятора, внутреннюю гондолу, вентилятор, вентиляторное сопло и внутренний контур. Каскад выполнен с возможностью приведения в действие редуктора и содержит турбину низкого давления с числом ступеней от трех до шести. Гондола вентилятора установлена вокруг внутренней гондолы и определяет тракт для воздушного потока наружного контура вентилятора, причем степень двухконтурности превышает шесть. Вентиляторное сопло выполнено с изменяемой площадью сечения и с возможностью перемещения в осевом направлении относительно гондолы вентилятора с целью изменения площади выходного сечения вентиляторного сопла и регулирования воздушного потока в наружном контуре вентилятора во время работы двигателя. Вентилятор выполнен с возможностью вращения со скоростью вентилятора вокруг продольной оси и приводится в действие турбиной низкого давления с помощью редуктора, причем скорость вентилятора меньше скорости турбины низкого давления. Внутренний контур окружен внутренней гондолой. Редуктор имеет передаточное отношение, которое больше или равно 2,3, причем минимальное соотношение давлений в вентиляторе составляет менее 1,45, а минимальная приведенная окружная скорость лопатки вентилятора составляет менее 1150 фут/сек (350,5 м/сек). Изобретение позволяет обеспечить более легкую конструкцию газотурбинного двигателя, а также снизить шум, производимый вентилятором. 12 з.п. ф-лы, 15 ил.

Description

Перекрестная ссылка на родственные заявки
[0001] Настоящее раскрытие является частичным продолжением патентной заявки США №12/131876, поданной 2 июня 2008 г.
Уровень техники
[0002] Настоящее изобретение относится к газотурбинному двигателю и более конкретно - к монтажной конструкции для двигателя, предназначенной для крепления турбовентиляторного газотурбинного двигателя к пилону воздушного судна.
[0003] Газотурбинный двигатель может быть установлен в различных точках воздушного судна, в частности на пилоне, присоединенном к конструкции воздушного судна. Монтажная конструкция для двигателя обеспечивает передачу нагрузок между двигателем и конструкцией воздушного судна. Указанные нагрузки обычно включают вес двигателя, тягу, аэродинамические боковые нагрузки и вращающий момент относительно оси двигателя. Монтажная конструкция для двигателя должна также поглощать деформации, которым подвергается двигатель во время различных этапов полета и изменений размеров вследствие теплового расширения и уборки шасси.
[0004] Традиционная монтажная конструкция для двигателя содержит пилон, имеющий передний узел крепления и задний узел крепления с относительно длинными толкающими штангами, которые проходят вперед от заднего узла крепления к конструкции промежуточного картера двигателя. Такая монтажная конструкция традиционного типа является эффективной, однако ее недостаток заключается в относительно больших ударных нагрузках на картеры двигателей со стороны толкающих штанг, которые оказывают сопротивление тяге двигателя и соединяют тягу с пилоном. Эти нагрузки стремятся деформировать промежуточный картер и корпусы компрессоров низкого давления (КНД). Деформация может вызывать увеличение зазоров между неподвижными корпусами и концами вращающихся лопаток, что может оказывать негативное влияние на работу двигателя и увеличивать расход топлива. В качестве ближайшего аналога настоящего изобретения можно назвать газотурбинный двигатель, известный из патентного документа US 2009/0053058. Задача и технический результат настоящего изобретения заключаются в получении легкой и эффективно функционирующей конструкции двигателя.
Сущность изобретения
[0005] Газотурбинный двигатель согласно одному их примерных аспектов настоящего изобретения содержит редуктор, расположенный вдоль продольной оси двигателя, и каскад, также расположенный вдоль указанной продольной оси двигателя, который приводит в действие редуктор, при этом указанный каскад содержит турбину низкого давления с небольшим числом ступеней.
[0006] В другом неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя небольшое число ступеней может представлять собой от трех до шести (3-6) ступеней. Дополнительно или альтернативно, небольшое число ступеней может составлять три (3) ступени. Дополнительно или альтернативно, небольшое число ступеней может составлять пять (5) или шесть (6) ступеней.
[0007] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя указанный каскад может представлять собой каскад низкого давления.
[0008] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя двигатель может содержать внутреннюю гондолу, расположенную вокруг продольной оси двигателя, гондолу вентилятора, расположенную, по меньшей мере частично, вокруг внутренней гондолы так, что обеспечивается тракт наружного контура для воздушного потока в наружном контуре вентилятора, и вентиляторное сопло с изменяемой площадью сечения, выполненное с возможностью перемещения в осевом направлении относительно гондолы вентилятора, чтобы изменять площадь выходного сечения вентиляторного сопла и регулировать соотношение давлений воздушного потока в наружном контуре во время работы двигателя.
[0009] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя двигатель может содержать контроллер, предназначенный для управления вентиляторным соплом с изменяемой площадью сечения с целью изменения площади выходного сечения вентиляторного сопла и регулирования соотношения давлений воздушного потока в наружном контуре.
[0010] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя контроллер может обеспечивать уменьшение площади выходного сечения вентиляторного сопла в режиме крейсерского полета. Дополнительно или альтернативно, контроллер может обеспечивать управление площадью выходного сечения вентиляторного сопла с целью уменьшения аэродинамической неустойчивости вентилятора.
[0011] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя вентиляторное сопло с изменяемой площадью сечения может определять заднюю кромку гондолы вентилятора.
[0012] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя поток наружного контура может обеспечивать степень двухконтурности, превышающую приблизительно шесть (6). Дополнительно или альтернативно, поток наружного контура может обеспечивать степень двухконтурности, превышающую приблизительно десять (10). Дополнительно или альтернативно, поток наружного контура может обеспечивать степень двухконтурности, превышающую шесть (6). Дополнительно или альтернативно, поток наружного контура может обеспечивать степень двухконтурности, превышающую десять (10).
[0013] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя редуктор может иметь передаточное отношение, которое больше или равно приблизительно 2,3. Дополнительно или альтернативно, редуктор может иметь передаточное отношение, которое больше или равно приблизительно 2,5. Дополнительно или альтернативно, редуктор может иметь передаточное отношение, которое большее или равно 2,5.
[0014] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя турбина низкого давления может обеспечивать соотношение давлений, большее чем приблизительно пять (5).
[0015] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя турбина низкого давления может обеспечивать соотношение давлений, превышающее пять (5).
[0016] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя вентилятор может приводиться в действие редуктором.
[0017] Газотурбинный двигатель согласно другому примерному аспекту настоящего изобретения содержит внутреннюю гондолу, расположенную вокруг продольной оси двигателя, гондолу вентилятора, расположенную, по меньшей мере частично, вокруг внутренней гондолы так, чтобы определять в наружном контуре вентилятора тракт для воздушного потока наружного контура, редуктор, расположенный во внутренней гондоле, каскад, расположенный вдоль продольной оси двигателя во внутренней гондоле и предназначенный для приведения в действие редуктора, при этом указанный каскад содержит турбину низкого давления с небольшим числом ступеней и вентиляторное сопло с изменяемой площадью сечения, выполненное с возможностью перемещения в осевом направлении относительно гондолы вентилятора для изменения площади выходного сечения вентиляторного сопла и регулирования соотношения давлений воздушного потока в наружном контуре во время работы двигателя.
[0018] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя турбина низкого давления может обеспечивать соотношение давлений, превышающее пять (5). Согласно еще одному варианту изобретения двигатель дополнительно содержит: вентилятор, выполненный с возможностью вращения со скоростью вентилятора вокруг продольной оси и приводимый в действие турбиной низкого давления с помощью редуктора, причем скорость вентилятора меньше скорости турбины низкого давления; внутренний контур, окруженный внутренней гондолой, расположенной вокруг продольной оси двигателя; гондолу вентилятора, установленную, по меньшей мере частично, вокруг указанной внутренней гондолы и определяющую в наружном контуре вентилятора тракт для воздушного потока наружного контур, причем степень двухконтурности, определяемая как отношение потока, проходящего в наружном контуре вентилятора, к воздушному потоку через внутренний контур, превышает десять.
[0019] В следующем неограничительном варианте осуществления любого из вышеуказанных вариантов осуществления газотурбинного двигателя турбина низкого давления может обеспечивать соотношение давлений, превышающее пять (5), поток наружного контура обеспечивает степень двухконтурности, превышающую десять (10), а редуктор имеет передаточное отношение, которое больше или равно 2,5.
Краткое описание чертежей
[0020] Различные признаки и преимущества настоящего изобретения будут очевидными для специалистов в данной области техники из приведенного ниже подробного описания раскрытого в настоящем документе варианта осуществления. Чертежи, которые сопровождают это подробное описание, можно кратко охарактеризовать следующим образом:
[0021] фиг. 1А - общий схематический вид газотурбинного двигателя в разрезе вдоль продольной оси двигателя;
[0022] фиг. 1В - общий вид газотурбинного двигателя в разрезе вдоль продольной оси двигателя, при этом в нижней половине показана неподвижная конструкция корпуса двигателя;
[0023] фиг. 1С - вид сбоку системы крепления, показывающей задний узел крепления, присоединенный при помощи корпуса опоры двигателя к промежуточной силовой раме между первым и вторым подшипниками, опирающимися на нее;
[0024] фиг. 1D - вид спереди в аксонометрии монтажной системы, показывающий задний узел крепления, присоединенный при помощи корпуса опоры двигателя к промежуточной силовой раме между первым и вторым подшипниками, опирающимися на нее;
[0025] фиг. 2А - вид сверху монтажной системы двигателя;
[0026] фиг. 2В - вид сбоку монтажной системы двигателя в гондольной системе;
[0027] фиг. 2С - вид спереди в аксонометрии монтажной системы двигателя в гондольной системе;
[0028] фиг. 3 - вид сбоку монтажной системы двигателя в другом переднем узле крепления;
[0029] фиг. 4А - вид сзади в аксонометрии заднего узла крепления;
[0030] фиг. 4В - вид сзади заднего узла крепления с фиг. 4А;
[0031] фиг. 4С - вид спереди заднего узла крепления с фиг. 4А;
[0032] фиг. 4D - вид сбоку заднего узла крепления с фиг. 4А;
[0033] фиг. 4Е - вид сверху заднего узла крепления с фиг. 4А;
[0034] фиг. 5А - вид сбоку заднего узла крепления с фиг. 4А в первом положении; и
[0035] фиг. 5В - вид сбоку заднего узла крепления с фиг. 4А во втором положении.
Подробное раскрытие изобретения
[0036] На фиг. 1А показан общий схематический вид в местном разрезе газового турбовентиляторного двигателя 10, подвешенного к пилону 12 двигателя в гондоле N двигателя, что является типичным для воздушного судна, рассчитанного на полеты с дозвуковой скоростью.
[0037] Турбовентиляторный двигатель 10 содержит внутренний контур двигателя, расположенный во внутренней гондоле С, где находится каскад 14 низкого давления и каскад 24 высокого давления. Каскад 14 низкого давления содержит компрессор 16 низкого давления и турбину 18 низкого давления. Каскад 14 низкого давления приводит в действие вентиляторную секцию 20, соединенную с каскадом 14 низкого давления непосредственно или при помощи редуктора 25.
[0038] Каскад 24 высокого давления содержит компрессор 26 высокого давления и турбину 26 высокого давления. Камера 30 сгорания установлена между компрессором 26 высокого давления и турбиной 26 высокого давления. Каскады 14, 24 низкого и высокого давления вращаются вокруг оси А вращения двигателя.
[0039] Двигатель 10 в одном неограничительном варианте осуществления представляет собой авиационный редукторный двигатель с высокой степенью двухконтурности. В одном раскрытом неограничительном варианте осуществления степень двухконтурности двигателя 10 составляет больше чем приблизительно шесть (6), например больше чем приблизительно десять (10), редуктор 25 представляет собой эпициклическую зубчатую передачу, в частности планетарную зубчатую передачу или иную зубчатую передачу с передаточным отношением, превышающим приблизительно 2,3, а турбина 18 низкого давления обеспечивает соотношение давлений, превышающее приблизительно 5. В одном раскрытом варианте осуществления степень двухконтурности двигателя 10 превышает десять (10:1), диаметр турбовентилятора значительно превышает диаметр компрессора 16 низкого давления, а турбина 18 низкого давления обеспечивает соотношение давлений, превышающее 5:1. Редуктор 25 может представлять собой эпициклическую зубчатую передачу, в частности планетарную зубчатую передачу или иную зубчатую передачу с передаточным отношением, превышающим приблизительно 2,5:1. Однако следует понимать, что вышеуказанные параметры приведены только в качестве примера для одного варианта осуществления редукторного двигателя и что настоящее изобретение может быть использовано для других типов газотурбинных двигателей, в том числе для безредукторных турбовентиляторных двигателей.
[0040] Воздушный поток входит в гондолу F вентилятора, которая, по меньшей мере частично, окружает внутреннюю гондолу С. Вентиляторная секция 20 направляет воздушный поток во внутренней гондоле С к компрессору 16 низкого давления. Воздушный поток внутреннего контура, сжатый компрессором 16 низкого давления и компрессором 26 высокого давления, смешивается с топливом в камере 30 сгорания, где он воспламеняется и сгорает. Образующиеся под высоким давлением газообразные продукты сгорания расширяются в турбине 26 высокого давления и турбине 18 низкого давления. Турбины 28, 18 соединяются с возможностью вращения с компрессорами 26, 16 соответственно, чтобы приводить в действие компрессоры 26, 16 в ответ на расширение газообразных продуктов сгорания. Кроме того, турбина 18 низкого давления приводит в действие вентиляторную секцию 20 при помощи редуктора 25. Отработанные газы Е внутреннего контура двигателя выходят из внутренней гондолы С через сопло 43 внутреннего контура, образованное между внутренней гондолой С и конусом 33 реактивного сопла.
[0041] Как показано на фиг. 1В, турбина 18 низкого давления содержит небольшое число ступеней, которое в показанном неограничительном варианте осуществления представляет собой три ступени 18А, 18В и 18С турбины. Редуктор 25 эффективно обеспечивает значительное уменьшение числа ступеней турбины 18 низкого давления. Указанные три ступени 18А, 18В и 18С турбины позволяют получать легкую и эффективно функционирующую конструкцию двигателя. При этом следует понимать, что небольшое число ступеней предусматривает, например, от трех до шести (3-6) ступеней. Соотношение давлений турбины 18 низкого давления представляет собой соотношение давления, измеренного перед входом в турбину 18 низкого давления, к давлению на выходе турбины 18 низкого давления перед реактивным соплом.
[0042] Реактивная тяга представляет собой функцию плотности, скорости и площади сечения. Один или более из этих параметров можно регулировать, чтобы изменять величину и направление тяги, создаваемой потоком В наружного контура. Вентиляторное сопло с изменяемой площадью сечения (VAFN, от англ. Variable Area Fan Nozzle,) обеспечивает эффективное изменение площади выходного сечения вентиляторного сопла для селективного регулирования соотношения давлений потока В наружного контура в ответ на управляющие команды контроллера С. Турбовентиляторные двигатели с низким соотношением давлений желательны с точки зрения обеспечения их высокого полетного КПД. Однако вентиляторы с низким соотношением давлений могут быть подвержены проблемам со стабильностью/флаттером вентилятора при низкой мощности и низких скоростях полета. VAFN позволяет двигателю переходить на более предпочтительную линию рабочих режимов вентилятора при низкой мощности, исключая область нестабильности и все-таки обеспечивая при этом относительно небольшую площадь сечения сопла, необходимую для получения экономичной линии рабочих режимов вентилятора во время крейсерского полета.
[0043] Значительная величина тяги обеспечивается потоком В наружного контура вследствие высокой степени двухконтурности. Вентиляторная секция 20 двигателя 10 рассчитана на определенный режим полета - обычно крейсерский полет со скоростью приблизительно 0,8 Маха на высоте приблизительно 35000 футов. Этот режим полета при 0,8 Маха и 35000 футах с оптимальным потреблением топлива двигателем, также известный как крейсерский полет с минимальным удельным расходом топлива по тяге (TSFC, от англ. Thrust Specific Fuel Consumption), представляет собой промышленный стандартный параметр, определяемый как количество сжигаемого топлива, выраженное в фунтах массы, разделенное на величину тяги, выраженное в фунтах силы, развиваемой двигателем в этой минимальной точке. «Минимальная соотношение давлений в вентиляторе» представляет собой отношение давлений только на лопатке вентилятора без системы 36 выходных направляющих лопаток вентилятора (FEGV, от англ. Fan Exit Guide Vane). Минимальное соотношение давлений в вентиляторе согласно одному раскрываемому в данном описании неограничительному варианту осуществления составляет менее чем приблизительно 1,45. «Минимальная приведенная окружная скорость лопатки вентилятора» представляет собой фактическую окружную скорость лопатки вентилятора в фут/сек, разделенную на промышленную стандартную температурную поправку [(Токружающей среды °R)/518,7)0.5]. «Минимальная приведенная окружная скорость лопатки вентилятора» согласно одному неограничительному варианту осуществления, раскрытому в данном описании, составляет менее чем приблизительно 1150 фут/сек.
[0044] Поскольку лопатки вентилятора в вентиляторной секции 20 эффективно рассчитаны на определенный фиксированный угол установки для экономичного крейсерского режима, VAFN позволяет эффективно изменять площадь выходного сечения вентиляторного сопла, чтобы регулировать воздушный поток наружного контура таким образом, чтобы поддерживать угол атаки или набегания на лопатки вентилятора близким к расчетному углу атаки для эффективной работы двигателя в других режимах полета, в частности при посадке и взлете, и, таким образом, для обеспечения оптимальной работы двигателя при всех режимах полета с точки зрения функционирования и других эксплуатационных параметров, в частности уровня шума.
[0045] Неподвижная конструкция 44 двигателя обычно содержит определенные узлы, в том числе корпус, часто называемый каркасом двигателя. Неподвижная конструкция 44 двигателя обычно содержит корпус 46 вентилятора, промежуточный картер (ПК) 48, корпус 50 компрессора высокого давления, корпус 52А камеры сгорания, корпус 52В турбины высокого давления, опорный корпус 52С, корпус 54 турбины низкого давления и затурбинный корпус 56 (фиг. 1В). Альтернативно корпус 52А камеры сгорания, корпус 52В турбины высокого давления и опорный корпус 52С могут быть объединены в общий корпус. При этом следует понимать, что эта конфигурация приведена в качестве примера и может быть использовано любое число корпусов.
[0046] Вентиляторная секция 20 содержит ротор 32 вентилятора с множеством расположенных по окружности и проходящих радиально в наружном направлении вентиляторных лопаток 34. Вентиляторные лопатки 34 окружены корпусом 46 вентилятора. Конструкция корпуса внутреннего контура двигателя прикреплена к корпусу 46 вентилятора в ПК 48, который содержит множество расположенных по окружности и проходящих радиально опорных стоек 40, которые радиально соединяют конструкцию корпуса внутреннего контура двигателя и корпус 20 вентилятора.
[0047] Неподвижная конструкция 44 двигателя поддерживает также систему подшипников, на которых вращаются турбины 28, 18, компрессоры 26, 16 и ротор 32 вентилятора. Двойной подшипник (№1) 60 вентилятора, который поддерживает с возможностью вращения ротор 32 вентилятора, обычно расположен в осевом направлении внутри корпуса 46 вентилятора. Двойной подшипник (№1) 60 вентилятора установлен с предварительным натягом, чтобы воспринимать осевую нагрузку вентилятора в направлении вперед и назад (в случае помпажа двигателя). Подшипник (№2) 62 КНД, который с возможностью вращения поддерживает каскад 14 низкого давления, обычно расположен аксиально в промежуточном картере (ПК) 48. Подшипник (№2) 62 КНД воспринимает осевую нагрузку. Двойной подшипник (№3) 64 вентилятора, который поддерживает с возможностью вращения каскад 24 высокого давления, также воспринимает осевую нагрузку. Подшипник (№3) 64 вентилятора также обычно расположен аксиально в ПК 48 непосредственно перед корпусом 50 компрессора высокого давления. Подшипник (№4) 66, поддерживающий с возможностью вращения задний сегмент каскада 14 низкого давления, воспринимает только радиальные нагрузки. Подшипник (№4) 66 обычно расположен аксиально в корпусе 52С опоры, в его задней части. Подшипник (№5) 68 поддерживает с возможностью вращения задний сегмент каскада 14 низкого давления и воспринимает только радиальные нагрузки. Подшипник (№5) 68 обычно расположен аксиально в опорном корпусе 52С, непосредственно после подшипника (№4) 66. При этом следует понимать, что такая конфигурация представлена в качестве примера и может быть использовано любое число подшипников.
[0048] Подшипник (№4) 66 и подшипник (№5) 68 установлены в промежуточной силовой раме (ПСР) 70, позиционируя радиально проходящие конструктивные опорные стойки 72, которые имеют предварительное натяжение (фиг. 1С-1D). ПСР 70 обеспечивает заднюю конструктивную опору в опорном корпусе 52С для подшипника (№4) 66 и подшипника (№5) 68, которые поддерживают с возможностью вращения каскады 14, 24.
[0049] Двигатель со сдвоенным ротором, раскрытый, в частности, в показанном варианте осуществления, обычно содержит переднюю раму и заднюю раму, которые поддерживают подшипники главного ротора. Промежуточный картер (ПК) 48 также содержит радиально проходящие опорные стойки 40, которые обычно центрированы в радиальном направлении относительно подшипника (№2) 62 КНД (фиг. 1В). При этом следует понимать, что настоящее изобретение будет полезным для различных двигателей с различными конструкциями корпуса и рамы.
[0050] Турбовентиляторный газотурбинный двигатель 10 крепится к конструкции воздушного судна, в частности к крылу воздушного судна, при помощи монтажной системы, присоединяемой к пилону 12. Монтажная система содержит передний узел 82 крепления и задний узел 84 крепления (фиг. 2А). Передний узел 82 крепления прикреплен к ПК 48, а задний узел 84 крепления прикреплен к ПСР 70 на опорном корпусе 52С. Передний узел 82 крепления и задний узел 84 крепления установлены в плоскости, содержащей ось А турбовентиляторного газотурбинного двигателя 10. Это позволяет исключить применение толкающих штанг в промежуточном картере, что освобождает ценное пространство под внутренней гондолой и минимизирует деформацию ПК 48.
[0051] Как показано на фиг. 2А-2С, монтажная система воспринимает тяговое усилие двигателя в хвостовой части двигателя 10. Термин «воспринимает», используемый в настоящем документе, означает поглощение нагрузки и отвод нагрузки на другую часть газотурбинного двигателя 10.
[0052] Передний узел 82 крепления воспринимает вертикальные нагрузки и боковые нагрузки. Передний узел 82 крепления в одном неограничительном варианте осуществления содержит скобу, которая прикрепляется к ПК 48 в двух точках. Передний узел 82 крепления обычно представляет собой пластинчатый элемент, который ориентирован перпендикулярно плоскости, содержащей ось А двигателя. Зажимы ориентированы в переднем узле 82 крепления таким образом, чтобы они входили в зацепление с промежуточным картером (ПК) 48 обычно параллельно оси А двигателя. В этом показанном неограничительном варианте осуществления передний узел 82 крепления присоединен к ПК 40. В другом неограничительном варианте осуществления передний узел 82 крепления присоединен к части внутреннего контура двигателя, в частности к корпусу 50 компрессора высокого давления газотурбинного двигателя 10 (см. фиг. 3). Специалист в данной области техники, использующий данное изобретение, сможет выбрать подходящее место для установки переднего узла 82 крепления.
[0053] Как показано на фиг. 4А, задний узел 84 крепления обычно содержит первый А-образный элемент 88А, второй А-образный элемент 88В, платформу 90 заднего узла крепления, подвеску 92 и соединительное звено 94. Платформа 90 заднего узла крепления присоединяется непосредственно к конструкции воздушного судна, в частности к пилону 12. Первый А-образный элемент 88А и второй А-образный элемент 88В установлены между опорным корпусом 52С в корпусных втулках 96, которые взаимодействуют с ПСР 70 (фиг. 4В-4С), платформой 90 заднего узла крепления и подвеской 92. При этом следует понимать, что первый А-образный элемент 88А и второй А-образный элемент 88В могут быть альтернативно прикреплены к другим частям двигателя 10, в частности к корпусу турбины высокого давления или к другим корпусам. Следует также понимать, что с любым корпусом двигателя могут быть использованы другие конструкции рам.
[0054] Как показано на фиг. 4D, первый А-образный элемент 88А и второй А-образный элемент 88В представляют собой жесткие, обычно треугольные устройства, каждое из которых содержит первое соединительное плечо 89а, второе соединительное плечо 89b и третье соединительное плечо 89с. Первое соединительное плечо 89а расположено между корпусной втулкой 96 и платформой 90 заднего узла крепления. Второе соединительное плечо 89b расположено между корпусными втулками 96 и подвеской 92. Третье соединительное плечо 89с расположено между подвеской 92 и платформой 90 заднего узла крепления. Первый А-образный элемент 88А и второй А-образный элемент 88В воспринимают главным образом вертикальную весовую нагрузку двигателя 10 и передают тяговые усилия от двигателя к платформе 90 заднего узла крепления.
[0055] Первый А-образный элемент 88А и второй А-образный элемент 88В заднего узла 84 крепления заставляют результирующий вектор тяги на корпусе двигателя действовать вдоль оси А двигателя, что минимизирует потери в зазорах между кромками лопаток и корпусом вследствие нагрузки, создаваемой двигателем на задний узел 84 крепления. Это минимизирует требования к зазорам между кромками лопаток и, таким образом, улучшает работу двигателя.
[0056] Подвеска 92 содержит звено 98, которое служит опорой для центрального шарнира 100, первого скользящего шарнира 102А и второго скользящего шарнира 102В (фиг. 4Е). При этом следует понимать, что здесь могут быть дополнительно использованы различные втулки, амортизаторы и т.п. Центральный шарнир 100 присоединен непосредственно к конструкции воздушного судна, в частности к пилону 12. Первый скользящий шарнир 102А присоединен к первому А-образному элементу 88А, а второй скользящий шарнир 102В прикреплен к первому А-образному элементу 88А. Первый и второй скользящий шарнир 102А, 102В обеспечивают скользящее движение первого и второго А-образных элементов 88А, 88В (показано стрелкой S на фиг. 5А и 5В), чтобы подвеска 92 могла воспринимать только вертикальную нагрузку. Таким образом, подвеска 92 позволяет равномерно передавать все тяговые усилия двигателя на пилон 12 двигателя через платформу 90 заднего узла крепления благодаря скользящему движению и выравниванию тягового усилия в результате сдвоенной конструкции толкающей штанги. Звено 98 подвески действует в качестве уравнительного звена для вертикальной нагрузки благодаря первому скользящему шарниру 102А и второму скользящему шарниру 102В. Поскольку звено 98 подвески поворачивается вокруг центрального шарнира 100, тяговые усилия равномерно распределяются в осевом направлении. Подвеска 92 испытывает только вертикальные нагрузки и поэтому в меньшей степени подвержена разрушению, чем традиционные конструкции, испытывающие нагрузки от тягового усилия.
[0057] Соединительное звено 94 содержит шарнир 104А, прикрепленный к корпусу 52С опоры, и шарнир 104В, прикрепленный к платформе 90 заднего узла крепления (фиг. 4В-4С). Соединительное звено 94 воспринимает крутящий момент.
[0058] Задний узел 84 крепления передает нагрузки, создаваемые двигателем, непосредственно на опорный корпус 52С и ПСР 70. Тяговые усилия, вертикальные, боковые и крутящие нагрузки передаются непосредственно от ПСР 70, что уменьшает число конструктивных элементов по сравнению с существующими на практике конструкциями.
[0059] Монтажная система является компактной и ограничивается пространством внутренней гондолы в отличие от конструкций крепления к выходному патрубку турбины, которые занимают пространство за пределами внутренней гондолы, что может потребовать дополнительных или относительно более крупных аэродинамических обтекателей или приводить к увеличению аэродинамического сопротивления и потребления топлива. Монтажная система позволяет исключить применение в ПК необходимых ранее толкающих штанг, что освобождает ценное пространство во внутренней гондоле С рядом с ПК 48 и корпусом 50 компрессора высокого давления.
[0060] При этом следует понимать, что термины относительного позиционирования, в частности «передний», «задний» «верхний», «нижний» «над», «под» и т.п., относятся к нормальному рабочему положению воздушного судна и не должны рассматриваться как ограничения иного рода.
[0061] Приведенное выше описание относится к конкретному примеру осуществления и не содержит в себе каких-либо ограничений. В свете вышеуказанных положений в настоящее изобретение может быть внесено множество модификаций и изменений. Раскрыты некоторые варианты осуществления настоящего изобретения, однако для специалистов в данной области техники очевидна возможность внесения определенных видоизменений в пределах объема данного изобретения. Поэтому следует понимать, что в пределах объема прилагаемой формулы изобретения настоящее изобретение может быть реализовано иным путем, чем это конкретно описано. По этой причине следует изучить приведенную ниже формулу изобретения, чтобы определить действительный объем и содержание данного изобретения.

Claims (22)

1. Газотурбинный двигатель содержащий:
редуктор, расположенный вдоль продольной оси двигателя;
каскад, расположенный вдоль указанной продольной оси двигателя, выполненный с возможностью приведения в действие указанного редуктора, при этом указанный каскад содержит турбину низкого давления с числом ступеней от трех до шести;
внутреннюю гондолу, расположенную вокруг указанной продольной оси двигателя;
гондолу (F) вентилятора, установленную, по меньшей мере частично, вокруг указанной внутренней гондолы и определяющую в наружном контуре вентилятора тракт для воздушного потока (В) наружного контура, причем степень двухконтурности, определяемая как отношение потока (В), проходящего в наружном контуре вентилятора, к воздушному потоку через внутренний контур, превышает шесть;
вентиляторное сопло с изменяемой площадью сечения, выполненное с возможностью перемещения в осевом направлении относительно указанной гондолы вентилятора с целью изменения площади выходного сечения вентиляторного сопла и регулирования воздушного потока в наружном контуре вентилятора во время работы двигателя;
вентилятор (20), выполненный с возможностью вращения со скоростью вентилятора вокруг продольной оси и приводимый в действие турбиной (18) низкого давления с помощью редуктора (25), причем скорость вентилятора меньше скорости турбины (18) низкого давления;
внутренний контур, окруженный внутренней гондолой (С), расположенной вокруг продольной оси двигателя;
при этом указанный редуктор имеет передаточное отношение, которое больше или равно 2,3, минимальное соотношение давлений в вентиляторе составляет менее 1,45, а минимальная приведенная окружная скорость лопатки вентилятора составляет менее 1150 фут/сек (350,5 м/сек).
2. Двигатель по п. 1, в котором указанное число ступеней составляет три (3) ступени.
3. Двигатель по п. 1, в котором указанное число ступеней составляет пять (5) ступеней.
4. Двигатель по п. 1, в котором указанное число ступеней составляет шесть (6) ступеней.
5. Двигатель по п. 1, в котором указанный каскад представляет собой каскад низкого давления.
6. Двигатель по п. 1, в котором указанная степень двухконтурности превышает десять.
7. Двигатель по любому из пп. 1-6, дополнительно содержащий:
контроллер, выполненный с возможностью управления указанным вентиляторным соплом с изменяемой площадью сечения с целью изменения площади выходного сечения вентиляторного сопла и регулирования воздушного потока в наружном контуре.
8. Двигатель по п. 7, в котором указанный контроллер выполнен с возможностью уменьшения указанной площади выходного сечения вентиляторного сопла в режиме крейсерского полета.
9. Двигатель по п. 7, в котором указанный контроллер выполнен с возможностью управления указанной площадью выходного сечения вентиляторного сопла с целью уменьшения аэродинамической неустойчивости вентилятора.
10. Двигатель по п. 7, в котором указанное вентиляторное сопло с изменяемой площадью сечения образует заднюю кромку указанной гондолы вентилятора.
11. Двигатель по п. 1, в котором указанный редуктор имеет передаточное отношение, которое больше или равно 2,5.
12. Двигатель по п. 1, в котором указанная турбина низкого давления обеспечивает степень понижения давлений в турбине низкого давления, превышающую пять (5).
13. Двигатель по п. 1, в котором указанный каскад приводит в действие вентилятор с помощью указанного редуктора.
RU2014131372A 2011-12-30 2012-12-31 Газотурбинный двигатель RU2687861C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/340,834 US8695920B2 (en) 2008-06-02 2011-12-30 Gas turbine engine with low stage count low pressure turbine
US13/340,834 2011-12-30
PCT/US2012/072271 WO2013102191A1 (en) 2011-12-30 2012-12-31 Gas turbine engine with low stage count low pressure turbine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2019113285A Division RU2747543C1 (ru) 2011-12-30 2012-12-31 Газотурбинный двигатель (варианты)

Publications (3)

Publication Number Publication Date
RU2014131372A RU2014131372A (ru) 2016-02-20
RU2687861C2 true RU2687861C2 (ru) 2019-05-16
RU2687861C9 RU2687861C9 (ru) 2019-08-01

Family

ID=48698690

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2019113285A RU2747543C1 (ru) 2011-12-30 2012-12-31 Газотурбинный двигатель (варианты)
RU2014131372A RU2687861C9 (ru) 2011-12-30 2012-12-31 Газотурбинный двигатель

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2019113285A RU2747543C1 (ru) 2011-12-30 2012-12-31 Газотурбинный двигатель (варианты)

Country Status (8)

Country Link
US (1) US8695920B2 (ru)
EP (2) EP2776318A4 (ru)
JP (1) JP2014526639A (ru)
CN (1) CN103958348B (ru)
BR (1) BR112014007288B1 (ru)
CA (1) CA2849013C (ru)
RU (2) RU2747543C1 (ru)
WO (1) WO2013102191A1 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192298A1 (en) * 2007-07-27 2015-07-09 United Technologies Corporation Gas turbine engine with improved fuel efficiency
US20140174056A1 (en) 2008-06-02 2014-06-26 United Technologies Corporation Gas turbine engine with low stage count low pressure turbine
US9222417B2 (en) 2012-01-31 2015-12-29 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US20150345426A1 (en) 2012-01-31 2015-12-03 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20130192258A1 (en) * 2012-01-31 2013-08-01 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US8753065B2 (en) 2012-09-27 2014-06-17 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US11585293B2 (en) 2012-10-01 2023-02-21 Raytheon Technologies Corporation Low weight large fan gas turbine engine
US10100745B2 (en) 2012-10-08 2018-10-16 United Technologies Corporation Geared turbine engine with relatively lightweight propulsor module
EP2938862B1 (en) * 2012-12-29 2018-09-12 United Technologies Corporation Multi-purpose mounting
EP2946102A4 (en) * 2013-01-21 2016-01-20 United Technologies Corp RELATION BETWEEN PRIMARY EXHAUST CURRENT AND FAN SPEEDS IN A GEAR GAS TURBINE ENGINE
US8678743B1 (en) * 2013-02-04 2014-03-25 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US9248921B2 (en) * 2013-07-11 2016-02-02 Spirit Aerosystems, Inc. Method for mounting a pylon to an aircraft
EP3036416B1 (en) 2013-08-20 2021-08-25 Raytheon Technologies Corporation High thrust geared gas turbine engine
US10801411B2 (en) * 2013-09-11 2020-10-13 Raytheon Technologies Corporation Ceramic liner for a turbine exhaust case
FR3010700B1 (fr) * 2013-09-18 2017-11-03 Snecma Dispositif de suspension d'un carter, turbomachine et ensemble propulsif
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US9333603B1 (en) 2015-01-28 2016-05-10 United Technologies Corporation Method of assembling gas turbine engine section
CN105197247B (zh) * 2015-09-16 2018-03-02 中国航空工业集团公司沈阳发动机设计研究所 一种夹持式航空发动机主安装节机构
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US20170184026A1 (en) * 2015-12-28 2017-06-29 General Electric Company System and method of soakback mitigation through passive cooling
GB201820918D0 (en) * 2018-12-21 2019-02-06 Rolls Royce Plc Turbine engine
US11420755B2 (en) * 2019-08-08 2022-08-23 General Electric Company Shape memory alloy isolator for a gas turbine engine
US11549373B2 (en) 2020-12-16 2023-01-10 Raytheon Technologies Corporation Reduced deflection turbine rotor
US11585274B2 (en) * 2020-12-28 2023-02-21 General Electric Company Turbine rear frame link assemblies for turbofan engines
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system
GB2610568A (en) 2021-09-08 2023-03-15 Rolls Royce Plc An improved gas turbine engine
GB2610565A (en) * 2021-09-08 2023-03-15 Rolls Royce Plc An improved gas turbine engine
GB2610571A (en) 2021-09-08 2023-03-15 Rolls Royce Plc An improved gas turbine engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827712A (en) * 1986-12-23 1989-05-09 Rolls-Royce Plc Turbofan gas turbine engine
RU2315887C2 (ru) * 2005-12-23 2008-01-27 Открытое акционерное общество "Авиадвигатель" Турбореактивный двигатель сверхвысокой степени двухконтурности
US20090053058A1 (en) * 2007-08-23 2009-02-26 Kohlenberg Gregory A Gas turbine engine with axial movable fan variable area nozzle
US20090245997A1 (en) * 2006-10-12 2009-10-01 Wayne Hurwitz Method and device to avoid turbo instability in a gas turbine engine
US20090314881A1 (en) * 2008-06-02 2009-12-24 Suciu Gabriel L Engine mount system for a turbofan gas turbine engine

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363419A (en) 1965-04-27 1968-01-16 Rolls Royce Gas turbine ducted fan engine
SE402147B (sv) 1975-12-05 1978-06-19 United Turbine Ab & Co Gasturbinanleggning med tre i samma gaspassage anordnade koaxiella turbinrotorer
US4966338A (en) 1987-08-05 1990-10-30 General Electric Company Aircraft pylon
GB8822798D0 (en) 1988-09-28 1988-11-02 Short Brothers Ltd Ducted fan turbine engine
GB9116986D0 (en) 1991-08-07 1991-10-09 Rolls Royce Plc Gas turbine engine nacelle assembly
US5174525A (en) 1991-09-26 1992-12-29 General Electric Company Structure for eliminating lift load bending in engine core of turbofan
GB9125011D0 (en) 1991-11-25 1992-01-22 Rolls Royce Plc A mounting arrangement for a gas turbine engine
US5275357A (en) 1992-01-16 1994-01-04 General Electric Company Aircraft engine mount
US5320307A (en) 1992-03-25 1994-06-14 General Electric Company Aircraft engine thrust mount
GB2265418B (en) 1992-03-26 1995-03-08 Rolls Royce Plc Gas turbine engine casing
GB2266080A (en) 1992-04-16 1993-10-20 Rolls Royce Plc Mounting arrangement for a gas turbine engine.
US5277382A (en) 1992-10-13 1994-01-11 General Electric Company Aircraft engine forward mount
GB2275308B (en) 1993-02-20 1997-02-26 Rolls Royce Plc A mounting for coupling a turbofan gas turbine engine to an aircraft structure
GB9313905D0 (en) 1993-07-06 1993-08-25 Rolls Royce Plc Shaft power transfer in gas turbine engines
US5452575A (en) 1993-09-07 1995-09-26 General Electric Company Aircraft gas turbine engine thrust mount
US5443229A (en) 1993-12-13 1995-08-22 General Electric Company Aircraft gas turbine engine sideways mount
GB2303884B (en) 1995-04-13 1999-07-14 Rolls Royce Plc A mounting for coupling a turbofan gas turbine engine to an aircraft structure
GB2312251B (en) 1996-04-18 1999-10-27 Rolls Royce Plc Ducted fan gas turbine engine mounting
US5810287A (en) 1996-05-24 1998-09-22 The Boeing Company Aircraft support pylon
FR2755942B1 (fr) 1996-11-21 1998-12-24 Snecma Suspension avant redondante pour turbomachine
FR2755944B1 (fr) 1996-11-21 1998-12-24 Snecma Suspension avant redondante pour turbomachine
FR2755943B1 (fr) 1996-11-21 1998-12-24 Snecma Suspension avant redondante pour turbomachine
FR2759734B1 (fr) * 1997-02-20 1999-04-09 Snecma Turbomachine a systeme de compression optimise
US5927644A (en) 1997-10-08 1999-07-27 General Electric Company Double failsafe engine mount
US5921500A (en) 1997-10-08 1999-07-13 General Electric Company Integrated failsafe engine mount
US6126110A (en) 1997-12-22 2000-10-03 Mcdonnell Douglas Corporation Horizontally opposed trunnion forward engine mount system supported beneath a wing pylon
US6138949A (en) 1998-10-30 2000-10-31 Sikorsky Aircraft Corporation Main rotor pylon support structure
US6189830B1 (en) 1999-02-26 2001-02-20 The Boeing Company Tuned engine mounting system for jet aircraft
GB9927425D0 (en) 1999-11-20 2000-01-19 Rolls Royce Plc A gas turbine engine mounting arrangement
GB2375513B (en) 2001-05-19 2005-03-23 Rolls Royce Plc A mounting arrangement for a gas turbine engine
US6517027B1 (en) 2001-12-03 2003-02-11 Pratt & Whitney Canada Corp. Flexible/fixed support for engine cowl
US6652222B1 (en) 2002-09-03 2003-11-25 Pratt & Whitney Canada Corp. Fan case design with metal foam between Kevlar
GB2394991B (en) 2002-11-06 2006-02-15 Rolls Royce Plc Mounting arrangement
US6899518B2 (en) 2002-12-23 2005-05-31 Pratt & Whitney Canada Corp. Turbine shroud segment apparatus for reusing cooling air
FR2856656B1 (fr) 2003-06-30 2006-12-01 Snecma Moteurs Suspension arriere de moteur d'avion avec bielles de reprise de poussee et palonnier en forme de boomerang
US6843449B1 (en) 2004-02-09 2005-01-18 General Electric Company Fail-safe aircraft engine mounting system
US7055330B2 (en) 2004-02-25 2006-06-06 United Technologies Corp Apparatus for driving an accessory gearbox in a gas turbine engine
FR2868041B1 (fr) 2004-03-25 2006-05-26 Snecma Moteurs Sa Suspension d'un moteur d'avion
US7134286B2 (en) 2004-08-24 2006-11-14 Pratt & Whitney Canada Corp. Gas turbine floating collar arrangement
US7334392B2 (en) * 2004-10-29 2008-02-26 General Electric Company Counter-rotating gas turbine engine and method of assembling same
US7409819B2 (en) 2004-10-29 2008-08-12 General Electric Company Gas turbine engine and method of assembling same
US7500365B2 (en) 2005-05-05 2009-03-10 United Technologies Corporation Accessory gearbox
US8220245B1 (en) 2005-08-03 2012-07-17 Candent Technologies, Inc. Multi spool gas turbine system
FR2894934B1 (fr) 2005-12-15 2009-11-13 Airbus France Attache arriere d'un moteur d'aeronef avec manille en attente et ressort pour un tel axe en attente
US7721549B2 (en) * 2007-02-08 2010-05-25 United Technologies Corporation Fan variable area nozzle for a gas turbine engine fan nacelle with cam drive ring actuation system
US7942079B2 (en) 2007-02-16 2011-05-17 Hamilton Sundstrand Corporation Multi-speed gearbox for low spool driven auxiliary component
US8127529B2 (en) * 2007-03-29 2012-03-06 United Technologies Corporation Variable area fan nozzle and thrust reverser
FR2915175B1 (fr) 2007-04-20 2009-07-17 Airbus France Sa Mat d'accrochage de moteur pour aeronef disposant d'une poutre d'attache moteur arriere deportee du caisson
FR2915176B1 (fr) 2007-04-20 2009-07-10 Airbus France Sa Mat d'accrochage de moteur pour aeronef disposant d'une attache moteur arriere pourvue d'un ecrou a barillet
FR2917712B1 (fr) 2007-06-20 2009-09-25 Airbus France Sas Mat d'accrochage de moteur pour aeronef disposant d'une poutre d'attache moteur arriere formant palonnier.
US7950237B2 (en) 2007-06-25 2011-05-31 United Technologies Corporation Managing spool bearing load using variable area flow nozzle
US7882691B2 (en) 2007-07-05 2011-02-08 Hamilton Sundstrand Corporation High to low pressure spool summing gearbox for accessory power extraction and electric start
FR2918644B1 (fr) 2007-07-09 2009-10-23 Airbus France Sas Mat d'accrochage de moteur pour aeronef disposant d'un palonnier articule en quatre points.
FR2920138B1 (fr) 2007-08-24 2010-03-12 Airbus France Dispositif d'accrochage de moteur d'aeronef comportant un dispositif de reprise des efforts de poussee a encombrement reduit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827712A (en) * 1986-12-23 1989-05-09 Rolls-Royce Plc Turbofan gas turbine engine
RU2315887C2 (ru) * 2005-12-23 2008-01-27 Открытое акционерное общество "Авиадвигатель" Турбореактивный двигатель сверхвысокой степени двухконтурности
US20090245997A1 (en) * 2006-10-12 2009-10-01 Wayne Hurwitz Method and device to avoid turbo instability in a gas turbine engine
US20090053058A1 (en) * 2007-08-23 2009-02-26 Kohlenberg Gregory A Gas turbine engine with axial movable fan variable area nozzle
US20090314881A1 (en) * 2008-06-02 2009-12-24 Suciu Gabriel L Engine mount system for a turbofan gas turbine engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Конструкция и проектирование авиационных газотурбинных двигателей, под ред. Д.В.Хронина, Москва, "Машиностроение", 1989, стр. 12-16, табл. 1.1 и 1.2, стр. 129-131 и 135-140. *

Also Published As

Publication number Publication date
CN103958348A (zh) 2014-07-30
BR112014007288B1 (pt) 2022-05-03
US8695920B2 (en) 2014-04-15
EP2776318A4 (en) 2014-11-26
EP3674220A1 (en) 2020-07-01
CA2849013C (en) 2014-11-18
RU2687861C9 (ru) 2019-08-01
WO2013102191A1 (en) 2013-07-04
CN103958348B (zh) 2019-03-08
US20120198815A1 (en) 2012-08-09
RU2747543C1 (ru) 2021-05-06
CA2849013A1 (en) 2013-07-04
BR112014007288A2 (pt) 2017-04-18
EP2776318A1 (en) 2014-09-17
RU2014131372A (ru) 2016-02-20
JP2014526639A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
RU2687861C2 (ru) Газотурбинный двигатель
US11286883B2 (en) Gas turbine engine with low stage count low pressure turbine and engine mounting arrangement
US8448895B2 (en) Gas turbine engine compressor arrangement
US8800914B2 (en) Gas turbine engine with low stage count low pressure turbine
US8684303B2 (en) Gas turbine engine compressor arrangement
US8511605B2 (en) Gas turbine engine with low stage count low pressure turbine
CA2800001C (en) Gas turbine engine compressor arrangement
CA2800464C (en) Gas turbine engine with low stage count low pressure turbine

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: CORRECTION TO CHAPTER -FG4A- IN JOURNAL 14-2019 FOR INID CODE(S) (72)

TH4A Reissue of patent specification