RU2686876C1 - ТЕМ-рупор - Google Patents

ТЕМ-рупор Download PDF

Info

Publication number
RU2686876C1
RU2686876C1 RU2018128536A RU2018128536A RU2686876C1 RU 2686876 C1 RU2686876 C1 RU 2686876C1 RU 2018128536 A RU2018128536 A RU 2018128536A RU 2018128536 A RU2018128536 A RU 2018128536A RU 2686876 C1 RU2686876 C1 RU 2686876C1
Authority
RU
Russia
Prior art keywords
tem
horn
lens
antenna
power line
Prior art date
Application number
RU2018128536A
Other languages
English (en)
Inventor
Александр Григорьевич Верлан
Константин Александрович Канаев
Олег Вениаминович Попов
Павел Леонидович Смирнов
Олег Владимирович Царик
Original Assignee
федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации
Общество с ограниченной ответственностью "Специальный Технологический Центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации, Общество с ограниченной ответственностью "Специальный Технологический Центр" filed Critical федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации
Priority to RU2018128536A priority Critical patent/RU2686876C1/ru
Application granted granted Critical
Publication of RU2686876C1 publication Critical patent/RU2686876C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Изобретение относится к антенной технике, в частности к сверхширокополосным (СШП) антеннам, и может быть использовано в различных широкополосных радиотехнических системах для излучения мощных СШП электромагнитных импульсов. Антенна (ТЕМ-рупор) содержит две идентичные, зеркально изогнутые друг относительно друга проводящие пластины (ПП), линию питания, согласующий виток и линзу в виде диэлектрической пластины, установленной в плоскости симметрии ТЕМ-рупора перпендикулярно к ПП и повторяющая форму их изгиба. Технический результат - расширение диапазона рабочих частот и увеличение коэффициента усиления ТЕМ-рупора при уменьшении габаритных размеров в области раскрыва. Технический результат достигается благодаря согласованию с внешним пространством с использованием диэлектрической линзы специальной формы, а с линией питания - с помощью согласующего витка. 6 з.п. ф-лы, 8 ил.

Description

Изобретение относится к антенной технике, в частности к сверхширокополосным (СШП) антеннам, и может быть использовано в различных широкополосных радиотехнических системах для излучения мощных СШП электромагнитных импульсов.
Известна сверхширокополосная система (см. Патент РФ №2431224, МПК H01Q 21/24, опубл. 10.10.2011, бюл. №28). Она содержит три излучателя Вивальди, каждый из которых расположен под углом 120° к соседним излучателям и делитель сигнала. Аналог позволяет формировать в пространстве СШП сверхкороткий импульс круговой поляризации, принимать в широком секторе угловых направлений СШП сверхкороткие импульсы круговой поляризации.
К недостаткам аналога относится высокий уровень боковых лепестков диаграммы направленности (ДН) и большой уровень фазовых искажений.
Известна антенна Вивальди с печатной линзой на единой диэлектрической подложке (см. Патент РФ №2593910, МПК H01Q 1/38, опубл. 10.08.2016, бюл. 22). Антенна содержит диэлектрическую подложку с металлическим слоем, щель, выполненную в металлическом слое с расширяющимися стенками, линзу, установленную в раскрыве антенны и выполненную из рассеивателей, которые выполняют из электропроводящих пластин на диэлектрической подложке без контакта со стенками щели.
Аналог позволяет улучшить технико-эксплуатационные характеристики: упростить устройство, уменьшить продольные и поперечные (по высоте) габариты.
В качестве недостатков, ограничивающих применение аналога, следует отнести высокий уровень боковых лепестков ДН, отсутствие возможности излучения СШП сигналов большой мощности, недостаточная в ряде случаев широкополосность.
Наиболее близким к предлагаемому техническому решению является ТЕМ-рупор (см. В.А. Калошин, К.З. Нгуен, Х.Ш. Нгуен. Исследование характеристик ТЕМ-рупоров // Журнал радиоэлектроники: электронный журнал, №10, 2015, URL: http://jre.cplire.ru/koi/octl 5/2/text.hpml, рис. 2).
Антенна-прототип содержит два изогнутых проводящих лепестка и узел питания, представляющий собой отрезок плоского волновода, к которому подключен фидер снижения. При питании антенны двухпроводной линией ее проводники гальванически соединяются с пластинами плоского волновода, а, при питании коаксиальным фидером, его центральная жила крепится к одной пластине плоского волновода узла питания, а экран - к другой. Протопит является антенной бегущей волны, обеспечивает плавный переход от волнового сопротивления фидера к волновому сопротивлению свободного пространства. Основным его достоинством по сравнению с аналогами является возможность использования для излучения мощных сверхширокополосных электромагнитных импульсов (см. Кашев В.И. Антенные системы для излучения мощных сверхширокополосных электромагнитных импульсов // 3-я Всероссийская конференция «Радиолокация и связь». - ИРЭ РАН, 26-30 октября 2009 г., стр. 122-126).
Однако прототипу присущи недостатки, ограничивающие его применение:
фазовые искажения передаваемого сигнала, нарастающие от точки питания к раскрыву антенны, ограничивающие диапазон рабочих частот;
узкая область применения, так как симметричные 150-омные линии питания в ОВЧ-СВЧ-диапазонах волн не находят применение в виду больших потерь на излучение. Коаксиальные кабели с волновым сопротивлением 150 Ом в настоящее время практически не выпускают, а их верхняя граничная частота не превышает 3 ГГц.
Техническим результатом от использования заявляемого объекта является расширение диапазона рабочих частот ТЕМ-рупора и увеличение коэффициента усиления рупора в пределах рабочего диапазона частот.
Для достижения указанного технического результата в известном ТЕМ-рупоре, содержащем две идентичные, зеркально изогнутые друг относительно друга проводящие пластины (1111), подключенные к линии питания с волновым сопротивлением ρ, причем форма изгиба ГШ выбрана в соответствии с заданной функцией у(х), где х - текущая координата вдоль линии симметрии ТЕМ-рупора, отличающийся тем, что дополнительно введены согласующий виток и линза в виде диэлектрической пластины (ДП), установленная в плоскости симметрии ТЕМ-рупора перпендикулярно к ПП и повторяющая форму их изгиба.
При этом волновое сопротивление линии питания ρ выбрано равным 50 Ом.
Кроме того форма изгиба ПП выполнена в соответствии с заданной функцией
у(х)=С1ах - ах)+С2,
где х - координата, отсчитываемая вдоль линии симметрии ТЕМ-рупора от точки питания х0 до его раскрыва, С1 и С2 - константы, значения которых в мм определяется в соответствии с выбранным диапазоном рабочих. частот, α=0,007…0,008 [1/мм] - параметр, зависящий от частотного диапазона.
Ширина ПП со стороны точек подключения линии питания составляет (0,3…0,4)λmin, а в раскрыве ТЕМ-рупора (0,3…0,4)λmax, где λmin и λmах - соответственно минимальная и максимальная длины рабочих волн.
Расстояние между изогнутыми ПП в области подключения линии питания составляет (0,08…0,12)λmin.
Длину согласующего витка Р выбирают в интервале Р=(0,2…0,3)λmах.
Плоскости ДП линзы симметрично дополнены клинообразными выступами.
Перечисленная новая совокупность существенных признаков за счет того, что осуществляют согласование с внешним пространством с использованием линзы специальной формы, а с линией питания - с помощью согласующего витка, позволяет решить поставленную задачу: разработать ТЕМ-рупор, обеспечивающий согласование антенны с 50-омным фидером, расширить рабочий диапазон частот в нижней его части и повысить коэффициент усиления антенны в пределах рабочего диапазона при некотором уменьшении габаритных размеров раскрыва рупора.
Указанные преимущества и особенности предлагаемого ТЕМ-рупора поясняются чертежами, на которых:
фиг. 1 - вид классического ТЕМ-рупора;
фиг. 2 - внешний вид предлагаемой антенны;
фиг. 3 - внешний вид линзы;
фиг. 4 - упрощенный (в полуразобранном состоянии) вид ТЕМ-рупора;
фиг. 5 - структура упрощенного ТЕМ-рупора в продольном сечении;
фиг. 6 - обозначение габаритных размеров модели ТЕМ-рупора;
фиг. 7 - зависимость КСВ ТЕМ-рупора в полосе рабочих частот;
фиг. 8 - зависимость коэффициента усиления ТЕМ-рупора в полосе рабочих частот.
ТЕМ-рупор (см. фиг. 1-6) содержит две изогнутые проводящие пластины 1.1 и 1.2 и линию питания 2 в виде прямоугольного плоского волновода, с помощью которого центральная жила коаксиального кабеля снижения 10 электрически крепится к одной изогнутой проводящей пластине 1.1 ТЕМ-рупора, а экран коаксиального кабеля снижения 10 - к другой 1.2 (см. фиг. 5), линза 4 выполнена в виде диэлектрической пластины 5, размещенной между изогнутыми проводящими пластинами 1.1 и 1.2 ТЕМ-рупора перпендикулярно к ним, кромки которой прилегают к изогнутым проводящим пластинам 1.1 и 1.2 ТЕМ-рупора, а ось симметрии плоскости 5 линзы 4 совпадает с линией пересечения плоскостей симметрии ТЕМ-рупора, углы плоскости 5 линзы 4 на раскрыве ТЕМ-рупора дополнены узлами крепления 6.1 и 6.2, предназначенными для фиксации местоположения линзы 4 относительно изогнутых проводящих пластин 1.1 и 1.2 ТЕМ-рупора, пластина 5 линзы 4 с обеих сторон симметрично дополнена клинообразными выступами 7.1 и 7.2, начало которых совпадает с раскрывом ТЕМ-рупора, а острые кромки клинообразных выступов 7.1 и 7.2 ориентированы в направлении на линию питания 2, задние стенки которого электрически соединены с опорной панелью 3 для образования согласующего витка 8, а узел согласования с внешним пространством 9 образуют передние стенки линии питания 2, электрически связанные с соответствующими изогнутыми проводящими пластинами 1.1 и 1.2 и линза 4.
Размеры прямоугольного плоского волновода линии питания 2 определяют из I соотношения сторон 3:1, а именно d1=(0,3…0,4)λmin и d2=(0,1…0,13)λmin.
Форма изгиба проводящих пластин 1.1 и 1.2 описывается функцией
Figure 00000001
где х - координата, отсчитываемая от точки стыка плоского волновода с излучающими пластинами в направлении излучения вдоль линии, образованной пересечением плоскостей симметрии ТЕМ-рупора, С1 и С2 - константы, значения которых зависят от диапазона рабочих частот. Точка нулевого отсчета х удалена от точки питания х0 на (0…0,1)λmin. При х=0 значение у(х) должно быть 0,05 λmin (половина расстояния между ПП 1.1 и 1.2 в области точки питания). При х=хmах, хmах=(0,4…0,45)λmаx, значение у(х) составляет (0,22…0,28)λmax (половина излучающего раскрыва в плоскости Е). Оптимальное значение а~0,008 при х, выраженных в мм (а=0,008 [1/мм]). Изогнутые проводящие пластины 1.1 и 1.2 выполняют трапецеидальной формы. Ширина ПП 1.1 и 1.2 со стороны узла питания составляет (0,3…0,4)λmin, а со стороны раскрыва ТЕМ-рупора (0,3…0,4)λmax.
Размеры раскрыва ТЕМ-рупора составляют: D1=(0,3…0,4)λmax в плоскости H и D2=(0,45…0,55)λmах в плоскости Е. Расстояние между изогнутыми проводящими пластинами 1.1 и 1.2 в области линии питания 2 составляет (0,08…0,12)λmin.
Толщина пластины 5 линзы 4 K1 составляет (0,2…0,25)λmin. По обе стороны пластины 5 линзы 4 располагают клинообразные выступы 7.1 и 7.2, причем их острые кромки ориентированы в направлении линии питания 2. Основания выступов 7.1 и 7.2 совпадают с поверхностями пластины 5 линзы 4, а их толщина на раскрыве рупора равна толщине K1 пластины 5. Боковые стороны клиновидных выступов 7.1 и 7.2 описываются функцией
Figure 00000002
при х≥Δ. Линзу 4 изготавливают из диэлектрика с относительной диэлектрической проницаемостью 2…2,5. Длина согласующего витка8 Р, образованного задними стенками линии питания 2 и опорной панелью 3, составляет ~0,25λmax.
Поскольку симметричные линии питания в ОВЧ-СВЧ-диапазонах радиоволн не используют в виду больших потерь на излучение, одной из решаемых задач является переход к линиям питания закрытого типа: коаксиальным или волноводным. При этом коаксиальные фидеры являются более предпочтительными в связи с относительно большей полосой пропускания. Эта задача решена в два этапа:
в прототипе заменен плоский волновод линии питания 2 с волновым сопротивлением 150 Ом на плоский волновод с волновым сопротивлением 50 Ом;
выбрана оптимальная точка подключения х коаксиального кабеля снижения 10 к плоскому волноводу.
При разработке рупора использована программа ANSYS HFSS. В качестве ограничений было задано КСВ<2 во всем диапазоне рабочих частот, КУ>10 дБ и максимум диаграммы направленности в направлении излучения. Оптимизация выполнена за счет изменения геометрии и материалов линзы 4, а также геометрии самого рупора.
В предлагаемой антенне наибольший интерес представляют линия питания 2, линза 4 и элементы согласования 8 и 9. Линия питания 2 представляет собой отрезок регулярного плоского волновода, проводящие пластины которого с одного из торцов замкнуты по постоянному току через согласующий индуктивный виток 8. В средней части линии 2 имеется поперечный стык с коаксиальным кабелем снижения 10 (см. фиг. 5). Под плоским волноводом, в данном случае, понимается прямоугольный волновод с отсутствующими боковыми стенками. Отсутствие последних превращает односвязную направленную систему в двухсвязную.
Поскольку двухсвязные направляющие системы имеют нулевую критическую частоту, замена в узле питания прямоугольного волновода на плоский позволяет существенно понизить границу рабочего диапазона частот. Поясним протекающие здесь физические процессы.
Известно, что с понижением частоты входное сопротивление антенны приобретает емкостной характер, а энергия, запасаемая электрическим полем, начинает существенно превышать энергию магнитного поля. Нарушение баланса энергий приводит к уменьшению излучаемой мощности (падению коэффициента полезного действия). Введение согласующего витка 8 (шунтовой перемычки), запасающего преимущественно магнитную энергию, позволяет восстановить баланс реактивных энергий в области нижней границы рабочего диапазона рупора и сместить ее к более низким частотам. Длина Р согласующего витка 8 выбирается из условия: Р=0,25λmax.
Узел согласования с внешним пространством 9 образуется передними стенками линии питания 2, электрически связанными с соответствующими изогнутыми ПП 1.1 и 1.2 в совокупности с диэлектрической линзой 4. Известно, что в ТЕМ-рупорах фазовые искажения передаваемых сигналов нарастают от точки питания х0 к их раскрыву. Это приводит к росту уровня боковых лепестков и снижению коэффициента усиления.
В этих условиях целесообразно использование фазирующей линзы 4, позволяющей выравнивать фазовые скорости волн, распространяющихся вдоль ограничивающих пластин 1.1 и 1.2 и волн, распространяющихся по центру раскрыва. В общем виде узел согласования с внешним пространством 9 представляет собой отрезок нерегулярного плоского волновода, дополнительно содержащий диэлектрическую линзу 4.
Пусть предлагаемый ТЕМ-рупор сориентирована в декартовой системе координат таким образом, чтобы ось х совпала с линией пересечения плоскостей симметрии узла согласования с внешним пространством 9 и направлена в сторону передачи энергии, а ось у была коллинеарна оси коаксиального кабеля снижения 10 и также направлена в сторону излучаемой энергии. Тогда цилиндрическая поверхность верхнего проводника неоднородного плоского вибратора (пластина 1.1) из состава 9 описывается комбинацией линейной и экспоненциальной функций
Figure 00000003
В случае х=х0 выражение (3) преобразовывается в уравнение стыка линии питания 2 с узлом согласования 9. Если поверхность верхнего проводника плоского волновода линии питания 2 совпадает с поверхностью у=С12, то изломов в плоскости стыка 2 и 1.1 не будет. Это следует из того, что производная по координате х от функции (3) будет
Figure 00000004
и при х=х0,
Figure 00000005
Отсутствие изломов означает отсутствие неодаородностей, на которых могли бы образоваться волны высших типов, запасающие реактивную энергию. Малые запасы реактивной энергии обуславливают низкую добротность антенны, а, следовательно, возможность ее согласования с фидерным трактом 10 в широкой полосе частот.
Нижний проводник внешнего отрезка плоского неоднородного волновода узла 9 является зеркальным отражением верхнего относительно плоскости у=0, т.е. описывается так же выражением (3), но взятым с противоположным знаком.
Константы С1 и С2 в (3) определяются расстояниями между проводниками 1.1 и 1.2 внешнего отрезка нерегулярного плоского волновода 9 в плоскости стыка с регулярным волноводом (линий 2) и в апертуре антенны. Пусть в области стыка х=х0 и у=у0, а в апертуре х=ха и у=уа. Подставляя эти значения в (3) получим систему уравнений:
Figure 00000006
Решая систему уравнений (5) относительно С1 и С2, получим:
Figure 00000007
Figure 00000008
Поскольку размеры ТЕМ-рупора определяются его частотным диапазоном, произвольным параметром в выражении (3) является только а. Выполненное моделирование показало, что наибольшей широкополосностью при коэффициенте усиления не менее 10 дБ и коэффициенте стоячей волны (КСВ) не более 2, обладают антенны, у которых параметр а лежит в пределах 0,075≤а≤0,085 [1/мм].
В плоскости у=0 внешний отрезок нерегулярного плоского волновода 9 также должен быть расширяющимся для обеспечения максимальной широкополосности. Расширение образующих плоский волновод проводящих пластин 1.1 и 1.2 при их одновременном удалении друг от друга позволяет влиять на скорости изменения волнового сопротивления по мере продвижения вдоль оси х. Установлено, что оптимальные размеры поперечного сечения регулярного плоского волновода линии питания 2 лежат в пределах: ширина d1=(0,3…0.4)λmin, высота (расстояние между пластинами) d2~d1/2, а апертуры антенны D1=(0,3…0,4)λmax, расстояние между пластинами 1.1 и 1.2 D2=1,5D1. Следует отметить, что размеры прямоугольного раскрыва предложенной антенны заметно меньше (на 30%) аналогичной характеристики прототипа при сохранении прочих равных исходных данных.
Поскольку в верхней части частотного диапазона поперечное сечение плоского волновода намного превышает λ2, где λ - длина волны, в нем может существовать большое число волн высших типов. Каждый из них характеризуется своей диаграммой направленности, а их совместное действие приводит к появлению частот с аномально малым коэффициентом усиления. Для устранения этого эффекта в плоский волновод 9 вводится диэлектрическая линза 4, которая может рассматриваться как внутренний плоский волновод существенно меньших размеров, а, следовательно, и с существенно меньшим числом высшим типом волн. Введение в конструкцию антенны диэлектрической линзы 4 позволяет стабилизировать коэффициент усиления в большей части частотного диапазона.
Изготовлен макет ТЕМ-рупора в соответствии с заявленным изобретением (фиг. 2-6), предназначенный для работы в диапазоне частот 0,7-10 ГГц. Общая длина антенны L составляет 206 мм (см. фиг. 6). ТЕМ-рупор образован двумя изогнутыми проводящими пластинами 1.1 и 1.2 трапецеидальной формы. Ширина ПП со стороны точки возбуждения D1=9 мм, а со стороны излучающего раскрыва D2=120 мм. Длина ПП 183 мм. Со стороны раскрыва на ГШ дополнительно имеются выступы (узлы крепления 6.1 и 6.2) для обеспечения лучшей фиксации линза 4 относительно пластин 1.1 и 1.2. Форма изгиба ПП - экспоненциальная. Размеры излучающего раскрыва рупора составили: D1=120 мм, D2=183 мм. Расстояние между ПП 1.1 и 1.2 в точке питания х0 3 мм (размеры плоского волновода линии питания 2: d1=9 мм, d2=3 мм. Опорная панель 3 выполнена в форме параллелепипеда с размерами: П1=45 мм, П2=41 мм и П3=12 мм. С помощью линии питания 2 и опорной панели 3 сформирован согласующий виток 8, периметр Р которого составил 82 мм. На опорной панели 3 закреплен фланец с диаметром 36 мм. На него крепят несущую трубу с диаметром Ф=40 мм.
Форма линзы 4 определена методом последовательного перебора значительного числа вариантов ее изготовления на основе максимальной эффективности ТЕМ-рупора по заданным критериям. В качестве последних выступают максимальное значение в полосе частот 0,7…10 ГГц коэффициента усиления антенны, ширина рабочего диапазона частот.
Линзу 4 изготавливают из диэлектрика с диэлектрической проницаемостью 2…2,5. Размещается между изогнутыми проводящими пластинами 1.1 и 1.2 перпендикулярно к ним. Кромки линзы 4 прилегают к ПП 1.1 и 1.2, а плоскости симметрии линзы совпадают с плоскостью симметрии ТЕМ-рупора. Длина линзы 4 Л1=164,8 мм, а ее ширина с учетом узлов крепления 6.1 и 6.2 Л2=197,5 мм. Толщина диэлектрической пластины 5 линзы 4 составляет 8 мм. Пластина 5 линзы 4 с обеих сторон дополнена клинообразными выступы 7.1 и 7.2, начало которых совпадает с раскрывом ТЕМ-рупора, а их толщина в этом месте составляет 8 мм. Острые кромки клинообразных выступов 7.1 и 7.2 сориентированы в направлении линии питания 2, а их толщина линейно уменьшается с 8 мм до 0. Суммарная толщина линзы 4 (клиновидных выступов 7.1 и 7.2 и ДП 5) в раскрыве антенны К2=24 мм, а их длина К3=132 мм. Расстояние Δ между изогнутыми лепестками 1.1, 1.2 и клиновидными выступами 7.1 и 7.2 линзы 4 в горизонтальной плоскости составляет Δ=24 мм (см. фиг. 3). Остальные элементы макета носят второстепенный характер, используются для обеспечения жесткости конструкции и в представленных материалах не рассматриваются.
Выполнено сравнение основных характеристик рупора-прототипа, предполагаемого ТЕМ-рупора с линзой и без нее (см. фиг. 7 и 8). С этой целью использована программа ANSYS HFSS, в которой были заданы рассмотренная геометрия рупора, используемые материалы, диапазон частот 750 МГц - 10 ГГц, 50-омный коаксиальный порт. При этом для более объективного рассмотрения моделирование характеристик рупора-прототипа выполнено с учетом исполнения его плоского волновода линии питания 2 с волновым сопротивлением 50 Ом. На фиг. 7 представлена зависимость коэффициента стоячей волны (КСВ) от частоты в полосе 0,5…10 ГГц. Из его рассмотрения следует, что предложенный ТЕМ-рупор с линзой 4 и без нее обладает лучшим согласованием в нижней части диапазона частот (до 1,7 ГГц). Рабочий диапазон заявляемой антенны в нижней ее части при КСВ=2 расширился на 250 МГц. Наличие линзы 4 отрицательно сказалось в верхней части диапазона частот (выше 8,5 ГГц). В остальной рабочей полосе частот для всех трех вариантов КСВ ~ 1,5. Из вышесказанного можно сделать вывод, что введение диэлектрической линзы 4 в ТЕМ-рупор на характеристики согласования существенного влияния не оказало.
На фиг. 8 приведена зависимость коэффициента усиления (КУ) антенны в рассматриваемом диапазоне частот. Результаты моделирования свидетельствуют о том, что КУ предлагаемой ТЕМ-рупорной антенны в среднем на 2 дБ выше, чем у прототипа. Наличие линзы 4 существенно влияет на КУ. Ее отсутствие приводит к провалу КУ в полосе частот 3,5…7,5 ГГц, что составляет 44% рабочего диапазона.
Таким образом, предлагаемый ТЕМ-рупор позволил реализовать несимметричное питание антенны, увеличить КУ по сравнению с прототипом на 2 дБ, расширить рабочий диапазон частот в нижней его части на 250 МГц (КСВ=2) при уменьшении габаритных размеров в области раскрыва на 30%.

Claims (9)

1. ТЕМ-рупор, содержащий две идентичные, зеркально изогнутые друг относительно друга проводящие пластины (ПП), подключенные к линии питания с волновым сопротивлением ρ, причем форма изгиба ПП выбрана в соответствии с заданной функцией у(х), где х - текущая координата вдоль линии симметрии ТЕМ-рупора, отличающийся тем, что дополнительно введены согласующий виток и линза в виде диэлектрической пластины (ДП), установленная в плоскости симметрии ТЕМ-рупора перпендикулярно к ПП и повторяющая форму их изгиба.
2. ТЕМ-рупор по п. 1, отличающийся тем, что волновое сопротивление линии питания ρ выбрано равным 50 Ом.
3. ТЕМ-рупор по п. 1, отличающийся тем, что форма изгиба ПП выполнена в соответствии с заданной функцией
у(х)=С1(eax - ах)+С2,
где х - координата, отсчитываемая вдоль линии симметрии ТЕМ-рупора от точки питания х0 до его раскрыва, С1 и С2 - константы, значения которых в мм определяется в соответствии с выбранным диапазоном рабочих частот, a=0,007…0,008 [1/мм] - параметр, зависящий от частотного диапазона.
4. ТЕМ-рупор по п. 1, отличающийся тем, что ширина ПП со стороны точек подключения линии питания составляет (0,3…0,4)λmin, а в раскрыве ТЕМ-рупора (0,3…0,4)λmax, где λmin и λmax - соответственно минимальная и максимальная длины рабочих волн.
5. ТЕМ-рупор по п. 1, отличающийся тем, что расстояние между изогнутыми ПП в области подключения линии питания составляет (0,08…0,12)λmin.
6. ТЕМ-рупор по п. 1, отличающийся тем, что длину согласующего витка Р выбирают в интервале Р=(0,2…0,3)λmax.
7. ТЕМ-рупор по п. 1, отличающийся тем, что плоскости ДП линзы симметрично дополнены клинообразными выступами.
RU2018128536A 2018-08-02 2018-08-02 ТЕМ-рупор RU2686876C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018128536A RU2686876C1 (ru) 2018-08-02 2018-08-02 ТЕМ-рупор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018128536A RU2686876C1 (ru) 2018-08-02 2018-08-02 ТЕМ-рупор

Publications (1)

Publication Number Publication Date
RU2686876C1 true RU2686876C1 (ru) 2019-05-06

Family

ID=66430637

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018128536A RU2686876C1 (ru) 2018-08-02 2018-08-02 ТЕМ-рупор

Country Status (1)

Country Link
RU (1) RU2686876C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767991A (zh) * 2019-09-29 2020-02-07 西北核技术研究院 一种透镜型超宽谱电磁脉冲辐射天线和天线阵列
WO2021030758A1 (en) 2019-08-14 2021-02-18 Compass Technology Group Llc Flat lens antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2281662A (en) * 1993-09-07 1995-03-08 Alcatel Espace Antenna
US7088300B2 (en) * 2001-08-24 2006-08-08 Roke Manor Research Limited Vivaldi antenna
RU2298268C1 (ru) * 2005-09-23 2007-04-27 Евгений Анатольевич Никитин Антенна
RU2345453C1 (ru) * 2007-05-11 2009-01-27 ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Министерства Обороны Российской Федерации Широкополосная трехдиапазонная рупорно-микрополосковая антенна
RU2593910C2 (ru) * 2014-07-11 2016-08-10 Закрытое акционерное общество "ИРКОС" Антенна вивальди с печатной линзой на единой диэлектрической подложке
RU169524U1 (ru) * 2016-07-18 2017-03-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Широкополосная тем-рупорная антенна с неоднородным диэлектрическим заполнением пространства раскрыва

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2281662A (en) * 1993-09-07 1995-03-08 Alcatel Espace Antenna
US7088300B2 (en) * 2001-08-24 2006-08-08 Roke Manor Research Limited Vivaldi antenna
RU2298268C1 (ru) * 2005-09-23 2007-04-27 Евгений Анатольевич Никитин Антенна
RU2345453C1 (ru) * 2007-05-11 2009-01-27 ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Министерства Обороны Российской Федерации Широкополосная трехдиапазонная рупорно-микрополосковая антенна
RU2593910C2 (ru) * 2014-07-11 2016-08-10 Закрытое акционерное общество "ИРКОС" Антенна вивальди с печатной линзой на единой диэлектрической подложке
RU169524U1 (ru) * 2016-07-18 2017-03-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Широкополосная тем-рупорная антенна с неоднородным диэлектрическим заполнением пространства раскрыва

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021030758A1 (en) 2019-08-14 2021-02-18 Compass Technology Group Llc Flat lens antenna
EP4014279A4 (en) * 2019-08-14 2023-08-16 Compass Technology Group LLC FLAT LENS ANTENNA
US11973270B2 (en) 2019-08-14 2024-04-30 Compass Technology Group Llc Flat lens antenna
CN110767991A (zh) * 2019-09-29 2020-02-07 西北核技术研究院 一种透镜型超宽谱电磁脉冲辐射天线和天线阵列
CN110767991B (zh) * 2019-09-29 2022-03-04 西北核技术研究院 一种透镜型超宽谱电磁脉冲辐射天线和天线阵列

Similar Documents

Publication Publication Date Title
US8773312B1 (en) Magnetic pseudo-conductor conformal antennas
KR0148253B1 (ko) 매립형 표면파 안테나
CN105470651B (zh) 一种基于介质加载的超宽带紧缩场馈源
US5973653A (en) Inline coaxial balun-fed ultrawideband cornu flared horn antenna
CN109638428A (zh) 一种应用于5g的新一代通信天线
KR20170068611A (ko) 복합 루프 안테나
US20170194718A1 (en) Multi-band dual polarization omni-directional antenna
EP3104460B1 (en) Antenna device
RU2686876C1 (ru) ТЕМ-рупор
JP2011082951A (ja) 逆l型アンテナ
CN111430920A (zh) 超宽带天线及超宽带通信装置
TW201543750A (zh) 多頻天線
Yadav et al. A compact ultra‐wideband transverse electromagnetic mode horn antenna for high power microwave applications
US11095031B2 (en) Lossy antenna arrays with frequency-independent beamwidth
KR101720455B1 (ko) 근접 센서용 야기 안테나
RU2655033C1 (ru) Малогабаритный двухполяризационный волноводный излучатель фазированной антенной решетки с высокой развязкой между каналами
CN112952357A (zh) 一种平面组合脉冲辐射天线
Zainud-Deen et al. Radiation characteristics enhancement of dielectric resonator antenna using solid/discrete dielectric lens
US9337540B2 (en) Ultra-wideband, low profile antenna
Duangtang et al. Gain improvement of conical horn antennas by adding wire medium structure
CN108879078A (zh) 一种组合脉冲辐射天线
KR20150142189A (ko) 초광대역 테이퍼 슬롯 안테나
CN110098460B (zh) 一种基于电调等离子体的可重构宽带天线
CN108565548B (zh) 一种毫米波天线
Kampeephat et al. Enhancement of monopole antenna gain with additional vertical wire medium structure

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200803