RU2685151C1 - Способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды - Google Patents
Способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды Download PDFInfo
- Publication number
- RU2685151C1 RU2685151C1 RU2017143264A RU2017143264A RU2685151C1 RU 2685151 C1 RU2685151 C1 RU 2685151C1 RU 2017143264 A RU2017143264 A RU 2017143264A RU 2017143264 A RU2017143264 A RU 2017143264A RU 2685151 C1 RU2685151 C1 RU 2685151C1
- Authority
- RU
- Russia
- Prior art keywords
- stomatal
- leaf
- water vapor
- conductivity
- plants
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 20
- 244000068988 Glycine max Species 0.000 claims abstract description 19
- 235000010469 Glycine max Nutrition 0.000 claims abstract description 14
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 10
- 235000013399 edible fruits Nutrition 0.000 claims abstract description 9
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 31
- 230000029553 photosynthesis Effects 0.000 description 11
- 238000010672 photosynthesis Methods 0.000 description 11
- 238000009395 breeding Methods 0.000 description 8
- 230000001488 breeding effect Effects 0.000 description 8
- 235000013339 cereals Nutrition 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000005068 transpiration Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 1
- 241000272186 Falco columbarius Species 0.000 description 1
- 241001464837 Viridiplantae Species 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 244000037666 field crops Species 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/04—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Botany (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Изобретение относится к области биотехнологии. Изобретение представляет собой способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды листьев, включающий определение устьичной проводимости листьев по измерению проводимости паров воды на центральной листовой пластине тройчатого листа, расположенного на 4 сверху узле главного побега растений сои в фазу плодообразования, при этом измерения проводят с 8:00 до 11:00 часов дня с помощью переносного газоанализатора марки LI-6400 XT и отбирают формы со значениями устьичной проводимости паров воды на 25% больше от средней по оцениваемой выборке. Изобретение позволяет сократить временные затраты и повысить точность по сравнению с известными способами. 2 ил.
Description
Изобретение относится к сельскому хозяйству, в частности к области растениеводства и селекции.
Одной из основных задач современной селекции является создание сортов сельскохозяйственных растений, формирующих высокий и стабильный урожай.
Формирование урожайности зависит от множества внешних и внутренних факторов и неразрывно связано с активностью и эффективностью фотосинтеза - важнейшего звена метаболизма зеленых растений, за счет которого создается до 95% органического вещества (Ничипорович, А.А. Энергетическая эффективность фотосинтеза и продуктивность растений / А.А. Ничипорович // Пущино: НЦ БИ АН СССР. - 1979. - 37 с.) [1].
Эффективность процесса фотосинтеза существенно обусловлена деятельностью устьичного аппарата листьев, через который осуществляется не только ассимиляция СО2, но и испарение водяного пара, то есть транспирация (Atkinson C.J. Drought tolerance of clonal Malus determined from measurements of stomatal conductance and leaf water potential / C.J. Atkinson, M. Policarpo, A.D. Webster, G. Kingswell // Tree Physiology. - 2000. - 20. - P. 557-563.) [2]. В силу этого оба эти процессы тесно взаимосвязаны между собой устьичной проводимостью, которая определяет активность и эффективность их протекания, и в следствие этого существенно может влиять на интенсивность роста растений и формирование ими конечного урожая (Li F. Studies of canopy structure and water use of apple trees on three rootstocks / F. Li, S. Cohen, A. Naor, K. Shaozong, A. Erez // Agricultural Water Management. - 2002. - 55. - P. 1-14.) [3]. Поэтому, представляется весьма актуальным для селекции проводить оценку и отбор селекционного материала по устьичной проводимости, что позволит создавать перспективных исходный материал и новые сорта на принципиально иных факторах - на основе активного и эффективного использования растениями фотосинтеза и транспирации (Farquhar et al., 1989). (Farquhar G.D. Carbon isotope discrimination and photosynthesis / G.D. Farquhar, J.R. Ehleringer, K.T. Hubick // Annual Review of Plant Physiology and Plant Molecular Biology. - 1989. - 40. - P. 503-537.) [4].
Известен способ определения устьичного сопротивления листьев растений, включающий помещение листа в камеру, прокачивание через нее воздуха и измерение температуры листа и эвапориметра при постоянной влажности воздуха, с последующим расчетом устьичного сопротивления по формуле (авторское свидетельство SU №1639497 А1, опубл. 20.03.1995) [5].
Недостатком данного способа является то, что он предназначен для использования в стационарных условиях и не позволяет оценить состояние растительного организма в момент отбора проб у большого количества коллекционных и селекционных образцов, произрастающих в поле.
Известна методика по которой устьичная проводимость пара Н2О (gsw) или обратная ей величина - устьичное сопротивление (rsw) рассчитывается с использованием транспирации (Е) и дефицита водяных паров в воздухе (D) на основании закона Фика: Е=gsw-(Wo-Wa)=(Wo-Wa)/rsw, где Wo - концентрация насыщенного пара в межклетниках (г/см3), Wa - концентрация водяного пара в воздухе. Поскольку температура хвои близка к температуре воздуха, D=Wo-Wa (Цельникер Ю.Л., Корзухин М.Д., Суворова Г.Г., Янькова Л.С, Копытова Л.Д., Филиппова А.К. Анализ влияния факторов среды на фотосинтез хвойных Предбайкалья // Проблемы экологического мониторинга и моделирования экосистем. С-Петербург, Гидрометеоиздат, 2007. Т XXI. С. 265-292.) [6].
Недостатком методики является то, что она предназначена для изучения хвойных и не учитывает особенности роста и развития полевых культур (в нашем случае сои).
Известен способ отбора высокопродуктивных растений зерновых колосовых культур, основанный на связи между массой колоса и массой зерна с колоса, и отбора растений по максимальному значению массы колоса (авт.св. СССР N 1060151, кл. А01Н 1/04) [7].
Известен способ отбора высокопродуктивных форм сои, включающий выращивание в поле в составе популяции индивидуальных растений и их браковку - отбор по отношению СП/ФП (селекционный признак/фоновый признак) с учетом характера экологической регрессии, при этом в качестве СП используют массу семян растения, отличающийся тем, что в качестве фонового признака берут массу отрезка нижней части главного побега растения в фазе полного созревания.
Длину отрезка нижней части главного побега растения берут равной 7-10 см, начиная от корневой шейки. Получение отрезка нижней части побега растения осуществляют в полевых условиях. Массу семян растения определяют путем обрывания плодов с растения в поле, последующего обмолота плодов и взвешивания полученных семян в лабораторных условиях.
Это позволяет сократить продолжительность процесса учета фонового признака, обеспечить достоверность его изменения и возможность проведения учета в полевых условиях (патент РФ №2482665 С1) [8].
Недостатками отмеченных способов является то, что они основаны на оценке элементов продуктивности и морфологии растений, и не учитывают при этом их физиологические параметры - в нашем случае устьичную проводимость паров воды листьями, которая играет важную роль в продукционном процессе растений.
Задачей изобретения является оценка и выделение перспективного генетического материала для селекции сои в полевых условиях по показателю устьичной проводимости паров воды листьев при повышении точности отбора.
Техническим результатом изобретения является сокращение затраченного времени, сохранение растений для последующего изучения при снижении трудоемкости измерений.
Поставленная задача и указанный технический результат достигается за счет того, что в заявляемом способе оценки и отбора селекционного материала сои по устьичной проводимости паров воды листьев, включающий определение устьичной проводимости путем измерения проводимости паров воды на центральной листовой пластине тройчатого листа, расположенного на 4 сверху узле главном побеге растений сои в фазу плодообразования, при этом измерения проводят с 8:00 до 11:00 часов дня с помощью переносного газоанализатора марки LI-6400 XT, отбирая растения со значениями устьичной проводимости паров воды на 25% больше от среднего значения по оцениваемой выборке.
Изобретение основано на функциональной связи устьичной проводимости листьев с фотосинтезом и транспирацией листьев и, как следствие, с урожайностью. Предлагаемый способ позволяет все необходимые измерения свести к двум: определение устьичной проводимости листьев по измерению проводимости паров воды / и дать объективную оценку возможной потенциальной урожайности изучаемых образцов путем определения ее фактической величины у посева.
Величина корреляции устьичной проводимости листьев с фактической урожайностью при оценке 65 коллекционных образцов составляла +0,54 (при Р=0,05).
Сущность предлагаемого решения поясняется чертежами, где на фиг. 1 представлен график, отражающий взаимосвязь устьичной проводимости паров воды с интенсивностью фотосинтеза листьев у различных по продуктивности сортов сои в фазу плодообразования, а на фиг. 2 представлен генотипический интервал варьирования устьичной проводимости паров воды и связь ее с урожайность генотипов сои в фазу плодообразования.
На большом наборе коллекционных образцов (65 шт.) и современных районированных сортов (более 15 шт.) экспериментально установлено, что современные высокопродуктивные генотипы сои обладают высокими значениями устьичной проводимости водяных паров листьев и интенсивностью фотосинтеза - коэффициент корреляции составлял +0,72 и был достоверным при уровне 05 (фиг. 1), что позволяет использовать этот показатель для оценки генофонда культуры и выделять перспективные из них для вовлечения в селекцию культуры на высокую семенную продуктивность - коэффициент корреляции между устьичной проводимостью и урожайностью семян у сорта составлял +0,54 и был достоверным при уровне 05 (фиг. 2).
В измерения включали центральную листовую пластину тройчатого листа, расположенные на четвертом сверху узле главного побега. Это связано с тем, что они являются физиологически наиболее зрелыми и вносят наибольший вклад в формирование урожайности растений (Бартков, Б.И. Распределение ассимилянтов в период плодоношения бобовых растений (о принципе дублирования в фотосистемах) / Б.И. Бартков, Е.Г. Зверева // Физиология и биохимия культурных растений. - 1974. - Т. 6. - Вып. 5. - С. 502-505) [9].
Оптимальное время проведения измерения с 8:00 до 11:00 часов дня, так как в это время суток на растения не оказывает влияние повышение температуры воздуха в полуденное время, а также обезвоживание и перегрев листа и растения в целом.
Способ осуществляется следующим образом.
В полевых условиях на интактных растениях генотипов сои определяют устьичную проводимость водяных паров листьев путем измерения проводимости паров на центральной листовой пластине тройчатого листа, расположенного на 4 сверху узле главном побеге растений сои в фазу плодообразования, с 8:00 до 11:00 часов дня с помощью переносного газоанализатора марки LI-6400 XT. (марки LI-6400 XT или аналога) (LI-6400 XT Portable Photosynthesis System, LI-COR: Biosciences, www.licor.com) [10]. В течении 1,5-2 минут ожидают стабилизации газообмена в измерительной камере. После чего фиксируют значение устьичной проводимости паров воды, которое отображается на цифровом экране компьютера прибора, нажатием кнопки. Для селекции отбирают растения со значениями устьичной проводимости паров вода на 25% больше от среднего значения по оцениваемой выборке.
Пример.
Оценку селекционного материала проводили на сортах сои на опытных полях ФГБНУ ВНИИ зернобобовых и крупяных культур и ФГБНУ Тульский НИСХ, когда растения достигли фазы развития плодообразования. В поле на интактных растениях в селекционном посеве измерения начинали в 8:00 по местному времени и продолжают до 11:00. На опытной делянке отмечали здоровые, типичные растения для оцениваемого сорта или линии сои, без видимых повреждений центральный листовый пластины тройчатого листа, расположенного на 4 сверху узле главном побеге. Прикрепляли к листу растения измерительную камеру переносного газоанализатора марки LI-6400 XT. В течении 1,5-2 минут ожидали стабилизации газообмена в измерительной камере. После чего фиксировали значение проводимости паров воды, которое отображалось на цифровом экране компьютера прибора, нажатием кнопки. Открепляли измерительную камеру и переходили к измерению следующего растения. Последовательность действий повторяли. По результатам статистической обработки полученных экспериментальные данных оценки селекционного материала (сортов и линий) (фиг. 2) выделяли сорта и линии со значениями устьичной проводимости паров воды листьев на 25% превышающие среднее значение по выборке. Линейная корреляция устьичной проводимости паров воды листьями сои с урожайностью в коллекции из 65 генотипов была положительной и составила +0,54, а с интенсивностью фотосинтеза - r=0,59, что достоверно при Р.
Это свидетельствует о том, целенаправленный отбор по устьичной проводимости может быть эффективным. За годы исследований интервал генотипического варьирования устьичной проводимости паров воды листьями растений сои находился: в 2015 году - в интервале от 0,11 до 0,52 моль H2O м2/с, в 2016 - от 0,42 до 1,02 моль H2O м2/с, в 2017 - от 0,35 до 2,22 моль H2O м2/с.
В наших исследованиях наиболее высокими значениями устьичной проводимости паров воды характеризовались сорта Белгородская 7 - 1,02 моль H2O м2/с; Белгородская 8 - 0,80 моль H2O м2/с; Светлая - 0,75 моль H2O м2/с; Мерлин - 0,69 моль H2O м2/с., которые могут быть рекомендованы селекции в качестве исходного материала для создания сортов с высокой урожайностью. Данный способ оценки позволит повысить эффективность отбора на 15-25% и сократить период создания сорта с высокой интенсивностью фотосинтеза на 1-2 года.
Техническим результатом изобретения является то, что с высокой точностью и минимальными затратами времени можно проводить оценку генотипов сои по устьичной проводимости паров воды листьев в полевых условиях экспресс-методом с сохранением растений для последующей оценки по хозяйственно-полезным признакам: урожайности, качеству зерна, устойчивости к биотическим и абиотическим стрессорам; а благодаря широкому диапазону варьирования признака (фиг. 2), выделять высокоурожайные сорта и линии с высокой устьичной проводимостью листьев для включения их в селекционный процесс культуры.
Claims (1)
- Способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды листьев, включающий определение устьичной проводимости листьев по измерению проводимости паров воды на центральной листовой пластине тройчатого листа, расположенного на 4 сверху узле главного побега растений сои в фазу плодообразования, при этом измерения проводят с 8:00 до 11:00 часов дня с помощью переносного газоанализатора марки LI-6400 XT и отбирают формы со значениями устьичной проводимости паров воды на 25% больше от средней по оцениваемой выборке.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143264A RU2685151C1 (ru) | 2017-12-11 | 2017-12-11 | Способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143264A RU2685151C1 (ru) | 2017-12-11 | 2017-12-11 | Способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2685151C1 true RU2685151C1 (ru) | 2019-04-16 |
Family
ID=66168553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017143264A RU2685151C1 (ru) | 2017-12-11 | 2017-12-11 | Способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2685151C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2789881C1 (ru) * | 2022-06-06 | 2023-02-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Орловский государственный аграрный университет имени Н.В. Парахина" | Способ отбора высокопродуктивных генотипов гречихи по эффективности использования воды |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1060151A1 (ru) * | 1980-12-12 | 1983-12-15 | Университет дружбы народов им.П.Лумумбы | Способ отбора продуктивных зерновых колосовых культур |
SU1639497A1 (ru) * | 1989-02-24 | 1991-04-07 | Центр Автоматизации Научных Исследований И Метрологии Ан Мсср | Способ определени устьичного сопротивлени листьев растений |
RU2482665C1 (ru) * | 2011-12-16 | 2013-05-27 | Государственное научное учреждение Всероссийский научно-исследовательский институт масличных культур имени В.С. Пустовойта Российской академии сельскохозяйственных наук | Способ отбора высокопродуктивных форм сои |
-
2017
- 2017-12-11 RU RU2017143264A patent/RU2685151C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1060151A1 (ru) * | 1980-12-12 | 1983-12-15 | Университет дружбы народов им.П.Лумумбы | Способ отбора продуктивных зерновых колосовых культур |
SU1639497A1 (ru) * | 1989-02-24 | 1991-04-07 | Центр Автоматизации Научных Исследований И Метрологии Ан Мсср | Способ определени устьичного сопротивлени листьев растений |
RU2482665C1 (ru) * | 2011-12-16 | 2013-05-27 | Государственное научное учреждение Всероссийский научно-исследовательский институт масличных культур имени В.С. Пустовойта Российской академии сельскохозяйственных наук | Способ отбора высокопродуктивных форм сои |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2789881C1 (ru) * | 2022-06-06 | 2023-02-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Орловский государственный аграрный университет имени Н.В. Парахина" | Способ отбора высокопродуктивных генотипов гречихи по эффективности использования воды |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Siddiqui et al. | Phenotyping of rice in salt stress environment using high-throughput infrared imaging | |
Zhao et al. | Elevated CO2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes | |
Gholami et al. | Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.) | |
Mauromicale et al. | Effect of branched broomrape (Orobanche ramosa) infection on the growth and photosynthesis of tomato | |
Kuan-Hung et al. | Applying Dickson quality index, chlorophyll fluorescence, and leaf area index for assessing plant quality of Pentas lanceolata | |
Kumar et al. | Leaf water content— a simple indicator of drought tolerance in crop plants | |
Zhou et al. | Cotton yield stability achieved through manipulation of vegetative branching and photoassimilate partitioning under reduced seedling density and double seedlings per hole | |
Ivetić et al. | Relationship between morphological and physiological attributes of hop hornbeam seedlings | |
CN112034111B (zh) | 一种鉴定水稻品种高产低排的方法 | |
Guàrdia et al. | Autumn frost resistance on several walnut species: methods comparison and impact of leaf fall | |
RU2685151C1 (ru) | Способ оценки и отбора высокоурожайных генотипов сои по устьичной проводимости паров воды | |
Zhou et al. | Heterosis effects on photosynthesis of upland cotton (Gossypium hirsutum) hybrid cultivars | |
CN114199714B (zh) | 一种集成萌芽期生长和苗期生理指标高通鉴选植物抗性品种的方法 | |
Silber et al. | Response of Leucadendron ‘Safari Sunset’to regulated deficit irrigation: Effects of stress timing on growth and yield quality | |
RU2366156C1 (ru) | Способ оценки потенциальной продуктивности бобовой культуры | |
RU2626586C1 (ru) | Способ оценки селекционного материала гороха посевного на интенсивность фотосинтеза листьев | |
RU2305930C2 (ru) | Способ диагностирования адаптивного потенциала сортов плодовых культур | |
Nie et al. | Terminal removal at first square enhances vegetative branching to increase seedcotton yield at low plant density | |
Coffelt et al. | A set of descriptors for evaluating guayule germplasm | |
Lehrer et al. | Carbon dioxide assimilation by virus-free sugarcane plants and by plants which were infected by Sugarcane Yellow Leaf Virus | |
El Bey et al. | Water stress indicators in citrus, olive and apple trees: A review | |
RU2720426C1 (ru) | Способ отбора генотипов пшеницы озимой с повышенным содержанием в зерне белка и клейковины по эффективности использования воды | |
RU2789881C1 (ru) | Способ отбора высокопродуктивных генотипов гречихи по эффективности использования воды | |
Mineață et al. | Study of the water regime of some cherry varieties in the north-eastern conditions of Romania | |
RU2618836C1 (ru) | Способ оценки генотипов гречихи по интенсивности транспирации |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191212 |