RU2685091C1 - Электробаромембранный аппарат трубчатого типа - Google Patents

Электробаромембранный аппарат трубчатого типа Download PDF

Info

Publication number
RU2685091C1
RU2685091C1 RU2018128897A RU2018128897A RU2685091C1 RU 2685091 C1 RU2685091 C1 RU 2685091C1 RU 2018128897 A RU2018128897 A RU 2018128897A RU 2018128897 A RU2018128897 A RU 2018128897A RU 2685091 C1 RU2685091 C1 RU 2685091C1
Authority
RU
Russia
Prior art keywords
anode
cathode
grids
end flanges
permeate
Prior art date
Application number
RU2018128897A
Other languages
English (en)
Inventor
Сергей Иванович Лазарев
Сергей Владимирович Ковалев
Дмитрий Александрович Родионов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ")
Priority to RU2018128897A priority Critical patent/RU2685091C1/ru
Application granted granted Critical
Publication of RU2685091C1 publication Critical patent/RU2685091C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Электробаромембранный аппарат трубчатого типа состоит из: цилиндрического корпуса с ответными и торцевыми фланцами, монополярных электродов - анодов и катодов, сборников прианодного и прикатодного пермеата, каналов прианодного и прикатодного пермеата, сквозных и несквозных отверстий под трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, уплотнение трубных решеток через уплотнительные прокладки и прокладки с прижимными решетками и цилиндрическим корпусом с ответными фланцами соответственно осуществлено при помощи затяжки торцевых фланцев и ответных фланцев на цилиндрическом корпусе при помощи болтов, шайб и гаек, которые расположены на торцевых фланцах в их сечении под углами от горизонтальной оси 0, π/3, 2π/3, π, 4π/3 и 5π/3 соответственно, расположенные от края торцевых фланцев на расстоянии 15 мм, клемм устройства для подвода электрического тока, штуцеров ввода исходного раствора и вывода ретентата, штуцеров вывода прианодного и прикатодного пермеата, прокладок, щупов правого и левого цилиндрических, прижимных решеток, при этом между трубными решетками и прижимными решетками расположены монополярные электроды - анод и катод соответственно, в которых имеются сквозные отверстия под охлаждающие трубки, так же как и в прижимных решетках, уплотнение охлаждающих трубок осуществлено через кольцевые прокладки, клеммы устройства для подвода электрического тока, касаются монополярных электродов круглой формы - анодов и катодов соответственно, которые расположены в соответствующих им круглых посадочных областях в прижимных решетках на резьбе при расположении от горизонтальной оси в сечении аппарата под углом π/2, щупы правые и левые цилиндрические имеют сварное соединение у основания с монополярными электродами - анодами и катодами и размещенными в шахматном порядке в сечении аппарата, как и трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, за исключением тех мест, где находятся охлаждающие трубки, которые от горизонтальной оси в сечении аппарата, ограниченного сектором от 0 до π/2, расположены в первом, третьем и пятом ряду и столбце соответственно на: - третьем, - первом, третьем, пятом, - третьем месте соответственно, так же как и в остальных секторах от π/2 до π, от π до 3π/2 и от 3π/2 до 2π при зеркальном отображении сектора от 0 до π/2 по вертикальной и горизонтальной оси в сечении аппарата, торцевые фланцы выполнены в виде плоских круглых крышек, с внешней стороны которых в центре имеются сквозные отверстия с резьбой, в которую вкручены штуцеры ввода и вывода охлаждающей жидкости, между торцевыми фланцами и прижимными решетками установлена ограничительная прокладка, создающая зазор для распределительного и собирающего каналов охлаждающей жидкости соответственно, каналов прианодного и прикатодного пермеата, которые образованы между трубными решетками и монополярными электродами - анодом и катодом соответственно, а трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно выполнены увеличенными диаметрами в два раза. Технический результат - увеличение площади мембран для разделения растворов, осуществлением процесса охлаждения исходного (разделяемого) раствора и пермеата, снижением гидравлического сопротивления в камере разделяемого раствора. 6 ил.

Description

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации.
Аналогом данной конструкции является мембранный аппарат, конструкция которого приведена в работе Дубяги В.П., Перепечкина Л.П., Каталевского Е.Е Полимерные мембраны. М.: Химия, 1981.- С. 166-167. Аппарат изготовлен из корпуса, разделительных элементов состоящих из трубки и мембраны, штуцеров ввода разделяемого раствора и вывода ретентата, штуцеров вывода пермеата.
Недостатками аппарата является невозможность выделения анионов и катионов растворенных веществ из промышленных растворов и стоков, низкая скорость отвода пермеата, образование застойных зон на пути вывода пермеата. Эти недостатки частично устранены в прототипе.
Прототипом данной конструкции является электробаромембранный аппарат трубчатого типа, конструкция которого приведена в патенте № RU 2625669 C1, 18.07.2017, МПК B01D 61/46. Прототип состоит из цилиндрического корпуса с ответными и торцевыми фланцами, монополярных электродов - анодов и катодов, сборников прианодного и прикатодного пермеата, каналов прианодного и прикатодного пермеата, сквозных и несквозных отверстий под трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, уплотнение трубных решеток через уплотнительные прокладки и прокладки с прижимными решетками и цилиндрическим корпусом с ответными фланцами соответственно осуществлено при помощи затяжки торцевых фланцев и ответных фланцев на цилиндрическом корпусе при помощи болтов, шайб и гаек, которые расположены на торцевых фланцах в их сечении под углами от горизонтальной оси 0, π/3, 2π/3, π, 4π/3 и 5π/3 соответственно, расположенные от края торцевых фланцев на расстоянии 15 мм, клемм устройства для подвода электрического тока, штуцеров ввода исходного раствора и вывода ретентата, штуцеров вывода прианодного и прикатодного пермеата, прокладок, щупов правого и левого цилиндрических, прижимных решеток.
Недостатками прототипа являются: низкая площадь мембран для разделения растворов, невозможность охлаждения исходного (разделяемого) раствора и пермеата, высокое гидравлическое сопротивление в камере разделяемого раствора.
Технический результат выражается - увеличением площади мембран для разделения растворов, осуществлением процесса охлаждения исходного (разделяемого) раствора и пермеата, снижением гидравлического сопротивления в камере разделяемого раствора, за счет изменения конструкции аппарата: состоящей из цилиндрического корпуса с ответными и торцевыми фланцами, монополярных электродов - анодов и катодов, сборников прианодного и прикатодного пермеата, каналов прианодного и прикатодного пермеата, сквозных и несквозных отверстий под трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, уплотнение трубных решеток через уплотнительные прокладки и прокладки с прижимными решетками и цилиндрическим корпусом с ответными фланцами соответственно осуществлено при помощи затяжки торцевых фланцев и ответных фланцев на цилиндрическом корпусе при помощи болтов, шайб и гаек, которые расположены на торцевых фланцах в их сечении под углами от горизонтальной оси 0, π/3, 2π/3, π, 4π/3 и 5π/3 соответственно, расположенные от края торцевых фланцев на расстоянии 15 мм, клемм устройства для подвода электрического тока, штуцеров ввода исходного раствора и вывода ретентата, штуцеров вывода прианодного и прикатодного пермеата, прокладок, щупов правого и левого цилиндрических, прижимных решеток, отличающийся тем, что между трубными решетками и прижимными решетками расположены монополярные электроды - анод и катод соответственно, в которых имеются сквозные отверстия под охлаждающие трубки, так же как и в прижимных решетках, уплотнение охлаждающих трубок осуществлено через кольцевые прокладки, клеммы устройства для подвода электрического тока, касаются монополярных электродов круглой формы - анодов и катодов соответственно, которые расположены в соответствующих им круглых посадочных областях в прижимных решётках на резьбе при расположении от горизонтальной оси в сечении аппарата под углом π/2, щупы правые и левые цилиндрические имеют сварное соединение у основания с монополярными электродами - анодами и катодами и размещенными в шахматном порядке в сечении аппарата, как и трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, за исключением тех мест, где находятся охлаждающие трубки, которые от горизонтальной оси в сечении аппарата ограниченного сектором от 0 до π/2, расположены в первом, третьем и пятом ряду и столбце соответственно на: - третьем, - первом, третьем, пятом: - третьем месте соответственно, так же как и в остальных секторах от π/2 до π, от π до 3π/2 и от 3π/2 до 2π, при зеркальном отображении сектора от 0 до π/2 по вертикальной и горизонтальной оси в сечении аппарата. Торцевые фланцы выполнены в виде плоских круглых крышек, с внешней стороны которых в центре имеются сквозные отверстия с резьбой, в которую вкручены штуцера ввода и вывода охлаждающей жидкости. Между торцевыми фланцами и прижимными решетками установлена ограничительная прокладка создающая зазор для распределительного и собирающего каналов охлаждающей жидкости соответственно, каналов прианодного и прикатодного пермеата, которые образованы между трубными решетками и монополярными электродами - анодом и катодом соответственно. Трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, выполнены увеличенными диаметрами в два раза.
На фиг. 1 показана часть вида и разреза электробаромембранного аппарата трубчатого типа; фиг. 2 - вид сверху; фиг. 3 - вид слева; фиг. 4 - сечение А-А на фиг. 1; фиг. 5 - вид Б увеличенный на фиг. 1; фиг 6 - вид В увеличенный на фиг.4.
Электробаромембранный аппарат трубчатого типа состоит из цилиндрического корпуса с ответными 1 и торцевыми фланцами 2, монополярных электродов - анодов 5 и катодов 6, сборников прианодного 7 и прикатодного 8 пермеата, каналов прианодного 23 и прикатодного 24 пермеата, сквозных и несквозных отверстий под трубки 25 с расположенными снаружи прианодными 26 и прикатодными 27 мембранами соответственно, уплотнение трубных решеток 3 через уплотнительные прокладки 15 и прокладки 14 с прижимными решетками 4 и цилиндрическим корпусом с ответными фланцами 1 соответственно осуществлено при помощи затяжки торцевых фланцев 2 и ответных фланцев 1 на цилиндрическом корпусе при помощи болтов 16, шайб 17 и гаек 18, которые расположены на торцевых фланцах 2 в их сечении под углами от горизонтальной оси 0, π/3, 2π/3, π, 4π/3 и 5π/3 соответственно, расположенные от края торцевых фланцев 2 на расстоянии 15 мм, клемм устройства для подвода электрического тока 9, штуцеров ввода исходного раствора 10 и вывода ретентата 11, штуцеров вывода прианодного 12 и прикатодного пермеата 13, прокладок 14, щупов правого 21 и левого цилиндрических 22, прижимных решеток 4, между трубными решетками 3 и прижимными решетками 4 расположены монополярные электроды - анод и катод 5,6 соответственно, в которых имеются сквозные отверстия под охлаждающие трубки 20, так же как и в прижимных решетках 4, уплотнение охлаждающих трубок 20 осуществлено через кольцевые прокладки 19, клеммы устройства для подвода электрического тока 9, касаются монополярных электродов круглой формы - анодов и катодов 5,6 соответственно, которые расположены в соответствующих им круглых посадочных областях в прижимных решетках 4 на резьбе при расположении от горизонтальной оси в сечении аппарата под углом π/2, щупы правые 21 и левые 22 цилиндрические имеют сварное соединение у основания с монополярными электродами - анодами 5 и катодами 6 и размещенными в шахматном порядке в сечении аппарата, как и трубки 25 с расположенными снаружи прианодными и прикатодными мембранами 26,27 соответственно, за исключением тех мест, где находятся охлаждающие трубки 20, которые от горизонтальной оси в сечении аппарата ограниченного сектором от 0 до π/2, расположены в первом, третьем и пятом ряду и столбце соответственно на: - третьем, - первом, третьем, пятом: - третьем месте соответственно, так же как и в остальных секторах от π/2 до π, от π до 3π/2 и от 3π/2 до 2π, при зеркальном отображении сектора от 0 до π/2 по вертикальной и горизонтальной оси в сечении аппарата. Торцевые фланцы 2 выполнены в виде плоских круглых крышек, с внешней стороны которых в центре имеются сквозные отверстия с резьбой, в которую вкручены штуцера ввода 28 и вывода 29 охлаждающей жидкости. Между торцевыми фланцами 2 и прижимными решетками 4 установлена ограничительная прокладка 32 создающая зазор для распределительного и собирающего каналов охлаждающей жидкости 30,31 соответственно, каналов прианодного 23 и прикатодного пермеата 24, которые образованы между трубными решетками 3 и монополярными электродами - анодом и катодом 5,6 соответственно.
Цилиндрический корпус с ответными фланцами 1, торцевые фланцы 2, трубная решетка 3, прижимная решетка 4, штуцера ввода исходного раствора и вывода ретентата 10, 11, штуцера вывода прианодного и прикатодного пермеата 12, 13, штуцера ввода и вывода охлаждающей жидкости 28,29, выполнены из диэлектрического материала - капролона или стеклотекстолита.
Трубки 25 могут быть изготовлены из пористого фторопласта.
Монополярные электроды - анод и катод 5, 6 с приваренными к ним у основания в шахматном порядке щупами правыми и левыми цилиндрическими 21, 22, а также клеммы устройства для подвода электрического тока 9 могут быть изготовлены из материала марок Х18Н15-ПМ, Х18Н15-МП.
Охлаждающие трубки 20 могут быть выполнены из силикона.
В качестве прикатодных и прианодных мембран 26, 27 могут применяться мембраны следующих типов МГА-95, МГА-70П, МГА-80П, МГА-90П, МГА-95П-Н, МГА-95П-Т, МГА-100П, УАМ-150П, УАМ-300П, УАМ-500П, УАМ-1000П, ОПМН-П, ОФМН-П, ОПМ-К, ESPA, ESNA, мембраны «Таммел».
Уплотнительные прокладки 15 и прокладки 14 могут быть изготовлены из паронита. Кольцевые прокладки 19 могут изготавливаться из паронита, резины.
Электробаромембранный аппарат трубчатого типа работает следующим образом. Исходный раствор под давлением, превышающим осмотическое давление растворенных в нем веществ, фиг. 1, 2, через штуцер ввода исходного раствора 10 подается во внутреннее пространство цилиндрического корпуса с ответными фланцами 1, где постепенно заполняет весь объем.
В этот же момент времени к аппарату подводится внешнее постоянное электрическое поле вызывающее определенную плотность тока в растворе путем подключения клемм устройства для подвода электрического тока 9, фиг. 1, 2, 3, через монополярные электроды - анод и катод 5, 6, имеющими сварное соединение у снования щупами правыми и левыми цилиндрическими 21, 22 и размещенными в шахматном порядке в сечении аппарата.
Раствор, протекает в межмембранном пространстве, фиг. 1, между цилиндрическим корпусом с ответными фланцами 1, трубными решетками 3 и прианодными и прикатодными мембранами 27, 26, расположенными на трубках 25, двигаясь, перемешивается.
В межмембранном пространстве, фиг. 1, 4, 5, 6, вещество, растворенное в жидкости диссоциирует на ионы, под действием электрического тока анионы и катионы проникают через прианодные и прикатодные мембраны 27, 26 соответственно в зависимости от схемы подключения электродов «плюс» или «минус», далее сквозь трубки 25 и попадают в зазоры между внутренними частями трубки 25 и щупами правыми и левыми цилиндрическими 21, 22, а затем самотеком с прианодным и прикатодным пермеатами и газами, образующимися на щупах правых и левых цилиндрических 21, 22 в результате электрохимических реакций поступает в сборники прианодного и прикатодного пермеата 7, 8, фиг. 1, образованные между трубными решетками 3 и монополярными электродами - анодом и катодом 5, 6 соответственно обеспечивающие минимальный зазор в 7 мм. Далее прианодный и прикатодный пермеат отводится через каналы прианодного и прикатодного 23, 24 пермеата, расположенными в сечении аппарата от горизонтальной оси под углами 3π/2 совпадающими с отверстиями в штуцерах вывода прианодного и прикатодного пермеата 12, 13 вкрученных на резьбе в прижимные решётки 4 в виде кислот и оснований и растворенных газов в зависимости от схемы подключения электродов «плюс» или «минус».
Таким образом, из раствора последовательно протекающего по всему межмембранному пространству электробаромембранного аппарата трубчатого типа, фиг. 1, образованного между цилиндрическим корпусом с ответными фланцами 1, трубными решетками 3, охлаждающими трубками 20 и прианодными и прикатодными мембранами 27, 26, в зависимости от схемы подключения электродов «плюс» или «минус», в виде анионов и катионов удаляются растворенные вещества.
При заполнении всего межмембранного пространства электробаромембранного аппарата трубчатого типа фиг.1, исходным раствором, одновременно через штуцер ввода охлаждающей жидкости 28, с одной стороны аппарата, подается охлаждающая жидкость, поступающая между торцевым фланцем 2, прижимной решеткой 4, ограничительной прокладкой 32 и попадает в распределительный канал охлаждающей жидкости 30, далее поступает в внутреннее пространство охлаждающей трубки 20 и попадает в собирательный канал охлаждающей жидкости 31, который так же образован, с другой стороны аппарата, между торцевым фланцем 2, прижимной решеткой 4, ограничительной прокладкой 32 и выводится через штуцер вывода охлаждающей жидкости 29 расположенный на торцевом фланце 2 выполненного в виде плоской круглой крышки, с внешней стороны которых в центре имеются сквозные отверстия с резьбой, в которую вкручены штуцера ввода 28 и вывода 29 охлаждающей жидкости.
Торцевые концы трубок 25, фиг. 1, с прикатодными и прианодными мембранами 26, 27 закреплены в трубных решётках 3 при помощи кольцевых прокладок 19 вставленных в посадочную поверхность на внутренней стороне трубных решёток 3, которые охватывают концы трубок 25 с внешней стороны вместе с прикатодными и прианодными мембранами 26, 27 и препятствуют протеканию разделяемого раствора в сборники прианодного и прикатодного пермеата 7 и 8 соответственно.
Торцевые концы охлаждающих трубок 20, фиг. 1, закреплены в прижимных решетках 4 при помощи кольцевых прокладок 19 вставленных в посадочную поверхность на внутренней стороне прижимных решеток 4, которые охватывают концы охлаждающих трубок 20.
Охлаждающие трубки 20, фиг.5, так же закреплены в трубных решетках 3 при помощи кольцевых прокладок 19 вставленных в посадочную поверхность на внутренней стороне трубных решёток 3, которые охватывают охлаждающие трубки 20.
Увеличение площади мембран для разделения растворов и одновременное осуществление процесса охлаждения исходного (разделяемого) раствора и пермеата, фиг. 1, 4, 5, 6, обеспечено тем, что трубки 25 с расположенными снаружи прианодными и прикатодными мембранами 27, 26 соответственно, выполнены увеличенными диаметрами в два раза, а охлаждающие трубки 20 расположены в межмембранном пространстве. Так как исходный (разделяемый) раствор охлаждается через теплопередающую стенку охлаждающей трубки 20, то, как следствие, охлаждается и пермеат.
Снижение гидравлического сопротивления в камере разделяемого раствора, фиг, 1, 4, 5, 6 обеспечено тем, что в межмембранном пространстве нет сеток-турбулизаторов, отсутствие которых в межмембранном пространстве позволяет свободно циркулировать раствору от штуцера ввода исходного раствора 10 до штуцера вывода ретентата 11.
На разработанной конструкции электробаромембранного аппарата трубчатого типа без наложения электрического поля можно проводить баромембранные процессы, например микрофильтрацию, ультрафильтрацию, нанофильтрацию и обратный осмос при разделении растворов химических, машиностроительных и пищевых производств.

Claims (1)

  1. Электробаромембранный аппарат трубчатого типа, состоящий из: цилиндрического корпуса с ответными и торцевыми фланцами, монополярных электродов - анодов и катодов, сборников прианодного и прикатодного пермеата, каналов прианодного и прикатодного пермеата, сквозных и несквозных отверстий под трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, уплотнение трубных решеток через уплотнительные прокладки и прокладки с прижимными решетками и цилиндрическим корпусом с ответными фланцами соответственно осуществлено при помощи затяжки торцевых фланцев и ответных фланцев на цилиндрическом корпусе при помощи болтов, шайб и гаек, которые расположены на торцевых фланцах в их сечении под углами от горизонтальной оси 0, π/3, 2π/3, π, 4π/3 и 5π/3 соответственно, расположенные от края торцевых фланцев на расстоянии 15 мм, клемм устройства для подвода электрического тока, штуцеров ввода исходного раствора и вывода ретентата, штуцеров вывода прианодного и прикатодного пермеата, прокладок, щупов правого и левого цилиндрических, прижимных решеток, отличающийся тем, что между трубными решетками и прижимными решетками расположены монополярные электроды - анод и катод соответственно, в которых имеются сквозные отверстия под охлаждающие трубки, так же как и в прижимных решетках, уплотнение охлаждающих трубок осуществлено через кольцевые прокладки, клеммы устройства для подвода электрического тока касаются монополярных электродов круглой формы - анодов и катодов соответственно, которые расположены в соответствующих им круглых посадочных областях в прижимных решетках на резьбе при расположении от горизонтальной оси в сечении аппарата под углом π/2, щупы правые и левые цилиндрические имеют сварное соединение у основания с монополярными электродами - анодами и катодами и размещенными в шахматном порядке в сечении аппарата, как и трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно, за исключением тех мест, где находятся охлаждающие трубки, которые от горизонтальной оси в сечении аппарата, ограниченного сектором от 0 до π/2, расположены в первом, третьем и пятом ряду и столбце соответственно на: - третьем, - первом, третьем, пятом, - третьем месте соответственно, так же как и в остальных секторах от π/2 до π, от π до 3π/2 и от 3π/2 до 2π при зеркальном отображении сектора от 0 до π/2 по вертикальной и горизонтальной оси в сечении аппарата, торцевые фланцы выполнены в виде плоских круглых крышек, с внешней стороны которых в центре имеются сквозные отверстия с резьбой, в которую вкручены штуцеры ввода и вывода охлаждающей жидкости, между торцевыми фланцами и прижимными решетками установлена ограничительная прокладка, создающая зазор для распределительного и собирающего каналов охлаждающей жидкости соответственно, каналов прианодного и прикатодного пермеата, которые образованы между трубными решетками и монополярными электродами - анодом и катодом соответственно, а трубки с расположенными снаружи прианодными и прикатодными мембранами соответственно выполнены увеличенными диаметрами в два раза.
RU2018128897A 2018-08-06 2018-08-06 Электробаромембранный аппарат трубчатого типа RU2685091C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018128897A RU2685091C1 (ru) 2018-08-06 2018-08-06 Электробаромембранный аппарат трубчатого типа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018128897A RU2685091C1 (ru) 2018-08-06 2018-08-06 Электробаромембранный аппарат трубчатого типа

Publications (1)

Publication Number Publication Date
RU2685091C1 true RU2685091C1 (ru) 2019-04-16

Family

ID=66168352

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018128897A RU2685091C1 (ru) 2018-08-06 2018-08-06 Электробаромембранный аппарат трубчатого типа

Country Status (1)

Country Link
RU (1) RU2685091C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716121C1 (ru) * 2019-06-27 2020-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Электробаромембранный аппарат трубчатого типа
RU2718037C1 (ru) * 2019-12-13 2020-03-31 Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет» (ФГБОУ ВО «ТГТУ») Электробаромембранный аппарат трубчатого типа
RU2800283C2 (ru) * 2021-11-17 2023-07-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Баромембранный аппарат трубчатого типа с турбулизацией потока
CN117486321A (zh) * 2023-12-25 2024-02-02 安徽省高迪科技有限公司 一种太阳能动力电极氧化净水装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2273512C2 (ru) * 2004-06-07 2006-04-10 Тамбовский государственный технический университет (ТГТУ) Электробаромембранный аппарат трубчатого типа
US7029563B2 (en) * 2002-07-30 2006-04-18 Zhejiang Omex Environmental Engineering Ltd. EDI device with composite electrode
RU2540363C1 (ru) * 2013-08-13 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ Электробаромембранный аппарат трубчатого типа
RU2625116C1 (ru) * 2016-03-09 2017-07-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО "ТГТУ" Электробаромембранный аппарат трубчатого типа
RU2625669C1 (ru) * 2016-03-10 2017-07-18 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО "ТГТУ" Электробаромембранный аппарат трубчатого типа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029563B2 (en) * 2002-07-30 2006-04-18 Zhejiang Omex Environmental Engineering Ltd. EDI device with composite electrode
RU2273512C2 (ru) * 2004-06-07 2006-04-10 Тамбовский государственный технический университет (ТГТУ) Электробаромембранный аппарат трубчатого типа
RU2540363C1 (ru) * 2013-08-13 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ Электробаромембранный аппарат трубчатого типа
RU2625116C1 (ru) * 2016-03-09 2017-07-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО "ТГТУ" Электробаромембранный аппарат трубчатого типа
RU2625669C1 (ru) * 2016-03-10 2017-07-18 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО "ТГТУ" Электробаромембранный аппарат трубчатого типа

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716121C1 (ru) * 2019-06-27 2020-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Электробаромембранный аппарат трубчатого типа
RU2718037C1 (ru) * 2019-12-13 2020-03-31 Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет» (ФГБОУ ВО «ТГТУ») Электробаромембранный аппарат трубчатого типа
RU2800283C2 (ru) * 2021-11-17 2023-07-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Баромембранный аппарат трубчатого типа с турбулизацией потока
CN117486321A (zh) * 2023-12-25 2024-02-02 安徽省高迪科技有限公司 一种太阳能动力电极氧化净水装置及其使用方法
CN117486321B (zh) * 2023-12-25 2024-04-05 安徽省高迪科技有限公司 一种太阳能动力电极氧化净水装置及其使用方法

Similar Documents

Publication Publication Date Title
RU2685091C1 (ru) Электробаромембранный аппарат трубчатого типа
RU2625669C1 (ru) Электробаромембранный аппарат трубчатого типа
AU706578B2 (en) Non-fouling, flow-through capacitor, system and method of separation
US8961751B2 (en) Electrochemical liquid treatment cell with modular construction
US8652326B2 (en) Device for the continuous electrochemical deionisation with integrated membrane unit
CA3108552C (en) Electrochemical flow reactor
AU2012346360A1 (en) Desalination system and method
RU2540363C1 (ru) Электробаромембранный аппарат трубчатого типа
RU2553859C1 (ru) Электробаромембранный аппарат рулонного типа
RU2634010C2 (ru) Электробаромембранный аппарат рулонного типа
RU2487746C1 (ru) Электробаромембранный аппарат рулонного типа
RU2689615C1 (ru) Электробаромембранный аппарат трубчатого типа
RU2622659C1 (ru) Электробаромембранный аппарат плоскокамерного типа
US3985636A (en) Electrodialysis apparatus electrode system
RU2716121C1 (ru) Электробаромембранный аппарат трубчатого типа
RU2625116C1 (ru) Электробаромембранный аппарат трубчатого типа
NO20191174A1 (en) Spiral wound bipolar electrodialysis cell
RU2624695C1 (ru) Электробаромембранный аппарат с плоскими охлаждающими камерами
RU2690339C1 (ru) Электродиализатор с охлаждением разделяемого раствора
RU2700333C1 (ru) Электробаромембранный аппарат трубчатого типа
JPH0323207B2 (ru)
RU2625668C1 (ru) Электробаромембранный аппарат плоскокамерного типа
RU2375313C2 (ru) Проточный диафрагменный электролизер
RU2658410C1 (ru) Электробаромембранный аппарат плоскокамерного типа
RU2718037C1 (ru) Электробаромембранный аппарат трубчатого типа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200807