RU2684904C1 - Способ оценки тяжести течения сепсиса - Google Patents
Способ оценки тяжести течения сепсиса Download PDFInfo
- Publication number
- RU2684904C1 RU2684904C1 RU2018108085A RU2018108085A RU2684904C1 RU 2684904 C1 RU2684904 C1 RU 2684904C1 RU 2018108085 A RU2018108085 A RU 2018108085A RU 2018108085 A RU2018108085 A RU 2018108085A RU 2684904 C1 RU2684904 C1 RU 2684904C1
- Authority
- RU
- Russia
- Prior art keywords
- bacteria
- patient
- probe
- treated
- blood sample
- Prior art date
Links
- 206010040047 Sepsis Diseases 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 50
- 239000000523 sample Substances 0.000 claims abstract description 143
- 241000894006 Bacteria Species 0.000 claims abstract description 88
- 210000004369 blood Anatomy 0.000 claims abstract description 86
- 239000008280 blood Substances 0.000 claims abstract description 86
- 210000003743 erythrocyte Anatomy 0.000 claims abstract description 63
- 238000002509 fluorescent in situ hybridization Methods 0.000 claims abstract description 15
- 102100026073 Oligodendrocyte transcription factor 1 Human genes 0.000 claims abstract description 14
- 101710195940 Oligodendrocyte transcription factor 1 Proteins 0.000 claims abstract description 14
- 102100026056 Oligodendrocyte transcription factor 3 Human genes 0.000 claims abstract description 12
- 101710195927 Oligodendrocyte transcription factor 3 Proteins 0.000 claims abstract description 12
- 108010019644 Oligodendrocyte Transcription Factor 2 Proteins 0.000 claims abstract description 11
- 102100026058 Oligodendrocyte transcription factor 2 Human genes 0.000 claims abstract description 11
- 238000000386 microscopy Methods 0.000 claims abstract description 5
- 230000014670 detection of bacterium Effects 0.000 claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims abstract description 3
- 238000004020 luminiscence type Methods 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 19
- 201000010099 disease Diseases 0.000 abstract description 18
- 238000013399 early diagnosis Methods 0.000 abstract description 9
- 239000003814 drug Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000003745 diagnosis Methods 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 10
- 244000005700 microbiome Species 0.000 description 10
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 238000009640 blood culture Methods 0.000 description 7
- 239000003298 DNA probe Substances 0.000 description 6
- 239000000090 biomarker Substances 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 108010048233 Procalcitonin Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000000721 bacterilogical effect Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- CWCXERYKLSEGEZ-KDKHKZEGSA-N procalcitonin Chemical compound C([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@@H](N)CSSC1)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 CWCXERYKLSEGEZ-KDKHKZEGSA-N 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 108020004465 16S ribosomal RNA Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000010222 PCR analysis Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 238000007403 mPCR Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 208000031729 Bacteremia Diseases 0.000 description 3
- 241000588921 Enterobacteriaceae Species 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 238000004820 blood count Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 231100000676 disease causative agent Toxicity 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 108020000946 Bacterial DNA Proteins 0.000 description 2
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 2
- 208000003322 Coinfection Diseases 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 241000191940 Staphylococcus Species 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229960003699 evans blue Drugs 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 150000002540 isothiocyanates Chemical class 0.000 description 2
- 238000003771 laboratory diagnosis Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 208000028399 Critical Illness Diseases 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 206010024264 Lethargy Diseases 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 241001430197 Mollicutes Species 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 208000037815 bloodstream infection Diseases 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009112 empiric therapy Methods 0.000 description 1
- 206010014665 endocarditis Diseases 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000010197 meta-analysis Methods 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 206010034674 peritonitis Diseases 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 208000008203 tachypnea Diseases 0.000 description 1
- 206010043089 tachypnoea Diseases 0.000 description 1
- 208000021510 thyroid gland disease Diseases 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Изобретение относится к области медицине и представляет собой способ оценки тяжести течения сепсиса, включающий подготовку образцов крови больных сепсисом для проведения флуоресцентной in situ гибридизации с последующим обнаружением бактерий в образцах крови с использованием люминесцентной микроскопии, отличающийся тем, что определяют количество адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий и рассчитывают интегральный показатель по формуле:ИП=1,527+0,333×X1-1,116×Х2-0,137×Х3+0,033×Х4+0,061×Х5-0,184×Х6+3,242×Х7+0,71×Х8+0,888×Х9+0,336×Х10, где: X1 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo1;Х2 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo2; Х3 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo3; Х4 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo4; Х5 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo5; Х6 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo1; Х7 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo2; Х8 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo3; Х9 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo4; Х10 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo5, при этом при значении интегрального показателя меньше 2,5 тяжесть течения сепсиса считают легкой, при значении от 2,5 до 5,6 - средней, а при значении больше 5,6 - тяжелой. Способ позволяет повысить точность ранней диагностики сепсиса и оценить тяжесть течения заболевания. 2 ил., 4 табл., 4 пр.
Description
Изобретение относится к медицине, а именно к медицинской микробиологии, и может быть использовано в клинической практике для оценки тяжести течения заболевания у септических больных.
Актуальность проблемы ранней диагностики бактериемии и сепсиса обуславливается тем, что генерализованные бактериальные инфекции являются тяжелыми осложнениями у больных.
Разработаны шкалы по оценке тяжести состояния пациентов такие, как Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) II, SOFA, Surviving Sepsis Campaign (SSC), РАСХИ и др., которые включают для расчетов общепринятые клинические и лабораторные данные. Существующие шкалы для оценки тяжести и исхода сепсиса громоздки и неудобны, поэтому на практике чаще используют простые, сокращенные формулы прогнозирования, состоящие из 4-5 критериев [Рудное В.А. Сепсис: современные подходы к диагностике и интенсивной терапии // Вестник анестезиологии и реаниматологии, 2010. Т. 7, №1, С. 48-57].
В последнее время в клинической практике для ранней диагностики некоторых патологических процессов стали использовать определение специфических белков - биомаркеров [Рудное В.А. Сепсис: современные подходы к диагностике и интенсивной терапии // Вестник анестезиологии и реаниматологии, 2010, Т. 7, №1, С. 48-57].
Известно около 200 биомаркеров сепсиса, однако только немногие из них находят клиническое применение. [Чеботкевич В.К, Кайтанджан Е.И., Бурылев В.В., Щетинкина Е.Е. Современные методы лабораторной диагностики сепсиса // Клиническая микробиологическая антимикробная химиотерапия, 2013, Том 15, №4, С. 295-300].
Известен способ определения прокальцитонина при диагностике сепсиса, который начал применяться только в последние годы как маркер инфекционного процесса [Tang В.М., Eslick G.D., Craig J.С, McLean A.S. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and metaanalysis // Lancet Infect Dis. 2007, Mar, 7 (3), p.210].
Недостатком использования определения прокальцитонина для диагностики сепсиса является несоответствие тяжести состояния, эффективности проводимой терапии и прогноза летального исхода. Отрицательным является его неспецифичность, так как прокальцитонин повышается не только при инфекционном процессе, но и при заболеваниях щитовидной железы и при некоторых опухолях [Cate С.С, Pettengill O.S., Sorenson G.D. Byosynthesis of Procalcitonin in small cell carcinoma of the lung Cancer Res. 1986, 46, p.812-8].
Известен способ обнаружения другого биомаркера инфекционного процесса - белка пресепсина, образующегося в результате бактериального фагоцитоза [Liu В, Chen YX, Yin Q, et al. Diagnostic value and prognostic evaluation of Presepsin for sepsis in an emergency department.// Crit Care, 2013, 17(5), R244]. Вместе с тем, известно о проникновении бактерий в эритроциты [Щуплова Е.А., Стадников А.А., Фадеев С.Б. Роль биологических свойств Staphylococcus epidermidis во внутриэритроцитарной инвазии и изменении активности каталазы и супероксиддисмутазы эритроцитов при экспериментальной генерализованной инфекции // Бюллетень экспериментальной биологии и медицины, 2015, №1, С. 79-82], которые не являются фагоцитирующими клетками и поэтому пресепсин не образуется. В связи с чем, данный биомаркер не является надежным критерием для диагностики сепсиса и оценки тяжести состояния больных, что говорит о недостатке данного способа.
Таким образом, с помощью биомаркеров определяют биохимическое состояние крови септических больных, но наличие возбудителей и идентификацию микроорганизмов биомаркеры не показывают, а также их значения могут повышаться при других заболеваниях. В связи с чем, для постановки точного диагноза и оценки тяжести состояния септических больных необходимо использовать методы обнаружения гемокультуры.
В настоящее время «золотым стандартом» лабораторной диагностики бактериемий и сепсиса является бактериологический метод выделения гемо-культур. При подозрении на инфекцию кровотока у пациента, еще до начала эмпирической терапии антибиотиками широкого спектра действия, производится забор крови для бактериального посева. Забор крови рекомендуется проводить 2-3 раза по 20-30 мл (по 10-15 мл для двух параллельных высевов на аэробные и анаэробные среды). Исследования показывают, что при меньшем объеме забираемой крови частота выявления возбудителей существенно снижается. [Lin Н. - H., Liu Y. - F., Tien N. at al. Evaluation of the blood volume effect on the diagnosis of bacteremia in automated blood culture system // Journal of Microbiology, Immunology and Infection., 2013., Vol. 46., p. 46-52]. Недостатком бактериологического метода является длительность культивирования посевов до 5-7 суток, длительное время для идентификации чистой культуры с помощью различных биохимических тестов, а также проведение теста на выявление резистентности к антибиотикам. Кроме того, эффективность бактериологического метода составляет около 45% [Рудное В.А. Сепсис: современные подходы к диагностике и интенсивной терапии // Вестник анестезиологии и реаниматологии, 2010. Т. 7, №1, С. 48-57] и данный метод не приемлем для прихотливых и некультивируемых бактерий, таких как микоплазмы, нокардии, риккетсии, хламидии и ряд других микроорганизмов [Киселева Е.Е. Алгоритм выявления и видовой идентификации бактерий в крови с использованием ПЦР // Вестник гематологии, 2017, Т. XIII, №1, С. 19-24]. Бактериологический метод диагностики сепсиса позволяет обнаружить возбудителя заболевания, но не выявляет критерии для оценки тяжести течения сепсиса.
По сравнению с бактериологическим методом, методы молекулярной диагностики, основанные на анализе белков или нуклеиновых кислот микроорганизмов лишены вышеуказанных недостатков. Примером молекулярно-генетических методов являются методы ПЦР-анализа гемокультуры, метод мультиплексного ПЦР-анализа в режиме реального времени. Главное преимущество данных методов в сокращении длительности анализов до 5-12 часов, возможность выявления некультивируемых форм возбудителей и одновременное выявление нескольких разных мишеней (как генетических маркеров патогенов, так и маркеров их антибиотикорезистентности) в одном клиническом образце [Гаврилое С.Н., Скачкова Т.С., Шипулина О.Ю., Савочкина Ю.А., Шипулин Г.А., Малеев В.В. Современные молекулярно-генетические методы, используемые для этиологической диагностики сепсиса // Журнал микробиологии, эпидемиологии и иммунобиологии. 2016,№2, С. 91-99].
Недостатком данного метода является выделение ДНК транзиторных микроорганизмов, не имеющих клинического значения, что приводит к ложноположительным результатам диагностики сепсиса, а также сложность при очистке бактериальной ДНК от генетического материала в образце крови больного человека. Для реализации методов ПЦР-анализа гемокультуры и мультиплексного ПЦР-анализа в режиме реального времени необходимо дорогостоящее оборудование и более трудоемкую подготовку исследуемого материала.
Известен современный молекулярно-генетический метод флуоресцентной in situ гибридизации (FISH), в котором используются флуоресцирующие молекулы для детекции специфических фрагментов ДНК и РНК [Sladjana Malic et. al. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). // Microbiology. 2009, 155, р. 2603-2611]. Материалом для исследования методом FISH может служить кровь, костный мозг, биоптат, плацента и др. В исследуемых образцах FISH позволяет выявлять нуклеиновые кислоты в клеточных структурах, морфологию и одновременно проводить идентификацию микроорганизмов.
В качестве прототипа изобретения выбран способ ранней диагностики сепсиса, основанный на методе FISH [Gosiewski Т, Pietrzyk A, Brzychczy-Wloch М, Heczko P.Use of PCR and FISH methods for rapid identification of bacterial bloodstream infections. // Ann Acad Med Siles 2011, 65, p. 14-22]. Недостатком данного способа является то, что авторы предлагают на основе обнаруженной бактериальной ДНК делать заключение о ранней диагностике развития сепсиса в отсутствии критериев оценки тяжести течения заболевания у септических больных, что затрудняет принятие решения лечения их эффективными антибактериальными препаратами.
Задачей заявляемого технического решения является создание способа оценки тяжести течения заболевания септических состояний у больных по количеству адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий с использованием метода FISH.
Для решения указанной задачи в заявляемом способе оценки тяжести течения сепсиса осуществляют подготовку образцов крови больных сепсисом для проведения флуоресцентной in situ гибридизации с последующим обнаружением бактерий в образцах крови с использованием люминесцентной микроскопии, определяют количество адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий и рассчитывают интегральный показатель по формуле:
ИП=1,527+0,333×X1-1,116×Х2-0,137×Х3+0,033×Х4+0,061×Х5-0,184×Х6+3,242×Х7+0,71×Х8+0,888×Х9+0,336×Х10,
где: X1 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo1;
Х2 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo2;
Х3 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo3;
Х4 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo4;
Х5 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo5;
Х6 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo1;
Х7 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo2;
Х8 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo3;
Х9 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo4;
Х10 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo5,
при этом при значении интегрального показателя меньше 2,5 - тяжесть течения сепсиса считают легкой, при значении от 2,5 до 5,6 - средней, а при значении больше 5,6 - тяжелой.
Технический результат от реализации изобретения выражается в создании способа оценки тяжести течения заболевания у больных сепсисом с возможностью обнаружения и одновременной идентификации микроорганизмов, находящихся на поверхности эритроцитов и внутри эритроцитов крови больных сепсисом.
Новым в заявляемом способе является то, что с использованием метода FISH установлена взаимосвязь между количеством адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий и степенью тяжести течения заболевания больных сепсисом.
Авторы с помощью метода FISH с использованием нескольких видов ДНК-зондов, представленных в таблице 1, обработали образцы крови больных с предварительным диагнозом: «Сепсис». Авторы для работы использовали характерные виды олигонуклеотидных зондов, комплементарных видоспецифическим участкам гена 16S рРНК микроорганизмов, как наиболее часто встречающихся возбудителей при сепсисе. В исследуемых образцах крови авторы подсчитывали количество адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий.
На фигуре 1 изображена адгезия бактерий к поверхности эритроцита в образце крови больного сепсисом.
На фигуре 2 представлено внутриэритроцитарное проникновение бактерий в исследуемом образце крови больного сепсисом.
Для выявления моно- или полимикробной инфекции авторы использовали одновременно все виды олигонуклеотидных зондов при обработке одного образца крови обследуемого больного.
В результате работы авторы определили процент бактериальных клеток адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий с использованием данных ДНК-зондов.
Далее полученные данные сопоставили с клиническим анамнезом больных сепсисом и получили три группы, отличающиеся по степени тяжести течения заболевания. Результаты представлены в таблице 2.
Как видно из таблицы 2 с увеличением степени тяжести течения сепсиса возрастает доля адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий.
Далее авторы провели оценку тяжести течения сепсиса у больных согласно прототипу и заявляемому способу. Результаты представлены в таблице 3.
Как видно из таблицы 3, прототип изобретения позволяет только обнаружить микроорганизмы в образце крови септических больных, а с помощью заявляемого способа можно подсчитать количество как адгезированных бактерий на поверхности эритроцитов, так и их внутриэритроцитарное расположение. Полученные данные можно использовать в качестве критерия для оценки тяжести течения заболевания.
Для комплексной оценки тяжести течения заболевания у больных сепсисом с использованием одновременно нескольких ДНК-зондов был проведен статистический анализ полученных данных, результаты которого позволили получить регрессионную модель, описывающую взаимосвязь количества адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий со степенью тяжести течения заболевания у больных сепсисом.
Регрессионная модель представляет собой интегральный показатель, значения которого позволили дифференцировать степень тяжести течения сепсиса.
Интегральный показатель (ИП) рассчитывается по формуле:
ИП=1,527+0,333×X1-1,116×Х2-0,137×Х3+0,033×Х4+0,061×Х5-0,184×Х6+3,242×Х7+0,71×Х8+0,888×Х9+0,336×Х10,
где: X1 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo1;
Х2 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo2;
Х3 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo3;
Х4 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo4;
Х5 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo5;
Х6 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo1;
Х7 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo2;
Х8 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo3;
Х9 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo4;
Х10 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo5.
По результатам значений ИП и клинически подтвержденных диагнозов авторы получили 3 группы, отличающиеся по степени тяжести течения сепсиса: легкая, средняя и тяжелая форма. Диапазоны дифференциации тяжести течения сепсиса представлены в таблице 4.
Как видно из таблицы 4, что чем выше значения интегрального показателя (количество адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий), тем тяжелее состояние больного.
Таким образом, авторы сделали заключение о том, что определение количества адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий с использованием метода FISH, а также расчет интегрального показателя позволяет оценить тяжесть течения заболевания у больных сепсисом. Необходимо отметить, что данный способ гораздо дешевле и более легкий в обработке исследуемого материала, чем ПЦР-анализ гемокультуры и метод мультиплексного ПЦР-анализа в режиме реального времени.
Эффективность заявляемого способа оценки тяжести течения заболевания у больных сепсисом составляет 99%.
Способ осуществляется следующим образом:
1) Кровь от обследуемого больного трехкратно отмывают фосфатно-солевым буфером (ФСБ) (рН=7,4) центрифугированием при 1000 об/мин в течение 5 мин и доводят до одномиллионной концентрации клеток в миллилитре.
2) Пробу объемом 1 мл осаждают центрифугированием при 1000 об/мин в течение 5 мин и ресуспендируют в 400 мкл 0,5% раствора глутарового альдегида, фиксируют в течение 30 мин при 25°С.
3) Фиксированные клетки промывают ФСБ (рН=7,4) и ресуспендируют в растворах этанола с восходящей концентрацией 50, 80 и 100% по 400 мкл каждого раствора с последующей инкубацией в течение 10 мин при 4°С.
4) Эритроциты промывают ФСБ (рН=7,4) центрифугированием при 1000 об/мин в течение 5 мин и ресуспендируют в 300 мкл дистиллированной воде.
5) Аликвоты по 100 мкл фиксированных клеток осаждают центрифугированием при 1000 об/мин в течение 5 мин и ресуспендируют в 100 мкл буферного раствора для гибридизации (0,9 М NaCl и 20 mM Tris-HCl, рН=7), содержащего 500 нМ соответствующего ДНК-зонда, меченного на 5'-конце флуо-ресцеина изотиоцианатом (FITC) (ООО «ДНК-синтез», Москва).
6) Проводят гибридизацию в течение 5 ч при температуре соответствующей температуре отжига для каждого вида зонда.
7) После гибридизации клетки центрифугируют при 1000 об/мин в течение 5 мин и добавляют 500 мкл промывочного раствора для удаления ДНК-зондов, не связавшихся с ДНК исследуемых бактерий, инкубируют в течение 30 мин при соответствующей температуре.
8) Пробу центрифугируют и ресуспендируют в 300 мкл ФСБ, эритроциты дополнительно окрашивают синим Эванса.
9) С помощью люминесцентной микроскопии определяют количество адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий, а также одновременно проводят идентификацию бактерий по соответствующим зондам в образцах крови обследуемого больного.
10)Рассчитывают интегральный показатель по формуле:
ИП=1,527+0,333×X1-1,116×Х2-0,137×Х3+0,033×Х4+0,061×Х5-0,184×Х6+3,242×Х7+0,71×Х8+0,888×Х9+0,336×Х10,
где: X1 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo1;
Х2 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo2;
Х3 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo3;
Х4 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo4;
Х5 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo5;
Х6 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo1;
Х7 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo2;
Х8 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo3;
Х9 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo4;
Х10 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo5.
11) Оценивают степень тяжести течения сепсиса, используя значения интегрального показателя (ИП): ИП меньше 2,5 - тяжесть течения сепсиса считают легкой, при значении ИП от 2,5 до 5,6 - средней, а при значении ИП больше 5,6 - тяжелой.
Примеры конкретного выполнения способа.
Пример 1. Больной X., 1960 г.р. поступил в ООКБ №1 с предварительным диагнозом: «Менингит, сепсис». При осмотре отмечалась выраженная вялость, сероватый оттенок кожных покровов, отечность стоп. Тахипноэ достигало 96 в мин, что свидетельствовало о наличии дыхательной недостаточности. Температура тела в течение трех дней держалась в пределах 38,7-39°С. Лабораторные показатели общего анализа крови были значительно ниже нормы: Hb - 76 г/л, ц.п. - 0,82, эритроцитов - 2,89×1012/л, лейкоцитов - 2,94×106/л. При использовании заявляемого способа подготовки эритроцитов возможно выявление бактерий на поверхности и внутри эритроцитов, а также одновременная их идентификация, что позволит подтвердить поставленный диагноз у больного, а также с помощью расчета интегрального показателя оценить тяжесть течения заболевания. Для этого кровь от обследуемого больного трехкратно отмывали фосфатно-солевым буфером (ФСБ) (рН=7,4) центрифугированием при 1000 об/мин в течение 5 мин и доводили до одномиллионной концентрации клеток в миллилитре. Пробу объемом 1 мл осаждали центрифугированием при 1000 об/мин в течение 5 мин и ресуспендировали в 400 мкл 0,5% раствора глутарового альдегида, фиксировали в течение 30 мин при 25°С. Фиксированные клетки промывали ФСБ (рН=7,4) и ресуспендировали в растворах этанола с восходящей концентрацией 50, 80 и 100% по 400 мкл каждого раствора с последующей инкубацией в течение 10 мин при 4°С. Эритроциты промывали ФСБ (рН=7,4) центрифугированием при 1000 об/мин в течение 5 мин и ресуспендировали в 300 мкл дистиллированной воде. Аликвоты по 100 мкл фиксированных клеток осаждали центрифугированием при 1000 об/мин в течение 5 мин и ресуспендировали в 100 мкл буферного раствора для гибридизации (0,9 М NaCl и 20 mM Tris-HCl, рН=7), содержащего 500 нМ соответствующего ДНК-зонда, меченного на 5'-конце флуоресцеина изотиоцианатом (FITC) (ООО «ДНК-синтез», Москва). Далее в исследуемой пробе проводили гибридизацию в течение 5 ч при температуре соответствующей температуре отжига для каждого вида зонда. После гибридизации клетки центрифугировали при 1000 об/мин в течение 5 мин и добавляли 500 мкл промывочного раствора для удаления ДНК-зондов, не связавшихся с ДНК исследуемых бактерий, инкубировали в течение 30 мин при соответствующей температуре. Пробу центрифугировали и ресуспендировали в 300 мкл ФСБ. Эритроциты дополнительно окрашивали синим Эванса. С помощью люминесцентной микроскопии определяли количество адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий, а также одновременно проводили идентификацию бактерий по соответствующим зондам в образцах крови обследуемого больного. Далее рассчитывали интегральный показатель по формуле:
ИП=1,527+0,333×X1-1,116×Х2-0,137×Х3+0,033×Х4+0,061×Х5-0,184×Х6+3,242×Х7+0,71×Х8+0,888×Х9+0,336×Х10,
где: X1=20 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo1;
Х2=0 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом O1igo2;
Х3=0 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом O1igo3;
Х4=0 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo4;
Х5=12 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo5;
Х6=5 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo1;
Х7=0 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo2;
Х8=0 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo3;
Х9=0 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo4;
Х10=16 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo5.
Полученные экспериментальные значения были использованы для расчета интегрального показателя по вышеуказанной формуле:
ИП=1,527+0,333×20-1,116×0-0,137×0+0,033×0+0,061×12-0,184×5+3,242×0+0,71×0+0,888×0+0,336×16=13,375
В результате расчета получили значение интегрального показателя равное 13,375, которое соответствует 3 группе - тяжелая степень заболевания. Специфическое свечение обнаружили с зондами Oligo1 и Oligo6, комплементарных видоспецифическим участкам гена 16S рРНК микроорганизмов Enterobacteriaceae и Staphylococcus spp. У больного выявили полимикробную инфекцию. Последующее наблюдение пациента на основе клинических и лабораторных показателей подтвердило раннее выставленный диагноз.
Было сделано заключение о том, что у больного подтвердился диагноз: «Сепсис», с помощью заявляемого способа оценили тяжелую степень течения заболевания и определили возбудителей сепсиса - Enterobacteriaceae и Staphylococcus spp.
Пример 2. Больная Ф., 1935 г.р. поступила в ООКБ №1 с диагнозом: «Септический эндокардит, ишемический инсульт». При поступлении состояние тяжелое, температура тела - 38,7°С. Пульс - 102 в минуту; частота дыхания - 34 в минуту. Лабораторные показатели общего анализа крови были ниже нормы: Hb - 102 г/л, ц.п. - 0,98, эритроциты - 4,34×1012/л, общее количество лейкоцитов - 18,5×109/л. У больной взяли образец крови и обработали согласно примеру 1. В результате применения заявляемого способа получили значение интегрального показателя равное 4,8, что соответствует 2 группе - средняя степень тяжести течения сепсиса. Специфическое свечение обнаружили с зондом Oligo3, комплементарного видоспецифическому участку гена 16S рРНК микроорганизма - Staphylococcus aureus. Последующее наблюдение пациентки на основе клинических и лабораторных показателей подтвердило раннее выставленный диагноз.
Было сделано заключение о средней тяжести течения заболевания по количеству адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий, возбудителем является S. aureus.
Пример 3. Больная Б., 1975 г.р. поступила в ООКБ №1 с диагнозом: «Гнойный перитонит, сепсис». При поступлении общее состояние средней тяжести, температура тела - 38,4°С, артериальное давление 130/90 мм рт.ст., пульс 88 в минуту. Показатели общего анализа крови находились в пределах нормы: Hb - 118 г/л; эр - 3,8×1012/л; ц.п.- 1,5. У больной взяли образец крови и обработали согласно примеру 1. В результате применения заявляемого способа получили значение интегрального показателя равное 2,009, что соответствует 1 группе - легкая степень тяжести течения сепсиса. Специфическое свечение обнаружили с зондом Oligo1, комплементарного видоспецифическому участку гена 16S рРНК микроорганизма - представителя Enterobacteriaceae. Последующее наблюдение пациента на основе клинических и лабораторных показателей подтвердило раннее выставленный диагноз.
Было сделано заключение о легкой степени тяжести течения заболевания по количеству адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий.
Пример 4. Больной Н., 1957 г.р. поступил в ООКБ №1 с предполагаемым диагнозом «Сепсис». При осмотре общее состояние удовлетворительное, температура тела - 37,4°С, артериальное давление 130/90 мм рт.ст., пульс 68 в минуту. Показатели общего анализа крови находились в пределах нормы: Hb - 133 г/л; эр - 4,46×1012/л; ц.п. - 0,9. У больного взяли образец крови и обработали согласно примеру 1. В результате исследования в образце крови специфического свечения не обнаружили. Было сделано заключение о том, что у больного диагноз не подтвердился.
Таким образом, заявляемый способ оценки тяжести течения сепсиса позволяет повысить точность ранней диагностики и по количеству адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий оценить тяжесть течения заболевания у больных сепсисом. Данный способ гораздо дешевле и более легкий в обработке исследуемого материала, чем ПЦР-анализ гемокультуры и метод мультиплексного ПЦР-анализа в режиме реального времени, а также может достаточно широко применяться в условиях клинико-диагностических лабораторий.
Claims (13)
- Способ оценки тяжести течения сепсиса, включающий подготовку образцов крови больных сепсисом для проведения флуоресцентной in situ гибридизации с последующим обнаружением бактерий в образцах крови с использованием люминесцентной микроскопии, отличающийся тем, что определяют количество адгезированных на поверхности эритроцитов и внутриэритроцитарно расположенных бактерий и рассчитывают интегральный показатель по формуле:
- ИП=1,527+0,333×X1-1,116×Х2-0,137×Х3+0,033×Х4+0,061×Х5-0,184×Х6+3,242×Х7+0,71×Х8+0,888×Х9+0,336×Х10,
- где: X1 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo1;
- Х2 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo2;
- Х3 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo3;
- Х4 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo4;
- Х5 - количество адгезированных бактерий на поверхности эритроцитов в образце крови больного, обработанных зондом Oligo5;
- Х6 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo1;
- Х7 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo2;
- Х8 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo3;
- Х9 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo4;
- Х10 - количество внутриэритроцитарно расположенных бактерий в образце крови больного, обработанных зондом Oligo5,
- при этом при значении интегрального показателя меньше 2,5 тяжесть течения сепсиса считают легкой, при значении от 2,5 до 5,6 - средней, а при значении больше 5,6 - тяжелой.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018108085A RU2684904C1 (ru) | 2018-03-05 | 2018-03-05 | Способ оценки тяжести течения сепсиса |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018108085A RU2684904C1 (ru) | 2018-03-05 | 2018-03-05 | Способ оценки тяжести течения сепсиса |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2684904C1 true RU2684904C1 (ru) | 2019-04-16 |
Family
ID=66168523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018108085A RU2684904C1 (ru) | 2018-03-05 | 2018-03-05 | Способ оценки тяжести течения сепсиса |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2684904C1 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2236006C1 (ru) * | 2002-12-11 | 2004-09-10 | Новокузнецкий государственный институт усовершенствования врачей | Способ прогнозирования неблагоприятного течения заболевания у больных с распространенным перитонитом и абдоминальным сепсисом |
RU2016100626A (ru) * | 2016-01-11 | 2017-07-14 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГОУ ВПО ТГМУ Минздрава России) | Способ прогнозирования тяжести течения и исхода заболевания у пациентов с хирургическим сепсисом |
-
2018
- 2018-03-05 RU RU2018108085A patent/RU2684904C1/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2236006C1 (ru) * | 2002-12-11 | 2004-09-10 | Новокузнецкий государственный институт усовершенствования врачей | Способ прогнозирования неблагоприятного течения заболевания у больных с распространенным перитонитом и абдоминальным сепсисом |
RU2016100626A (ru) * | 2016-01-11 | 2017-07-14 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГОУ ВПО ТГМУ Минздрава России) | Способ прогнозирования тяжести течения и исхода заболевания у пациентов с хирургическим сепсисом |
Non-Patent Citations (4)
Title |
---|
G.PILZ et al. Krankenplege-Journal, 1991, 29, pp. 483-492. Оперативная гинекология / Под ред. Кулакова В.И. М.: Медицина, 1990, с. 356-360. * |
GOSIEWSKI Т et al. Use of PCR and FISH methods for rapid identification of bacterial bloodstream infections // Ann Acad Med Siles, 2011, 65, p. 14-22. * |
P.P. GHILLANI et al. Identification and Measurement of Calci-tonin Precursors in Serum of Patients with Malignant Diseases. Cancer Research, 1989, vol. 49, pp. 6845-6851. * |
P.P. GHILLANI et al. Identification and Measurement of Calci-tonin Precursors in Serum of Patients with Malignant Diseases. Cancer Research, 1989, vol. 49, pp. 6845-6851. G.PILZ et al. Krankenplege-Journal, 1991, 29, pp. 483-492. Оперативная гинекология / Под ред. Кулакова В.И. М.: Медицина, 1990, с. 356-360. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10910088B2 (en) | Method and device for nucleic acid based diagnostic approaches including the determination of a deviant condition, especially a health condition and/or a pathogenic condition of a sample | |
Masaki et al. | Nocardia elegans infection involving purulent arthritis in humans | |
CN113186309A (zh) | 泌尿系统细菌感染检测体系及其试剂盒和应用 | |
CN112391460A (zh) | 用于脓毒症的生物标志物组及脓毒症判断方法和试剂盒 | |
RU2362808C1 (ru) | Способ диагностики дисбаланса микробиоты различных биотопов человека и степени его выраженности | |
Badiee et al. | Molecular detection of invasive aspergillosis in hematologic malignancies | |
RU2684904C1 (ru) | Способ оценки тяжести течения сепсиса | |
CN108034735B (zh) | 一种关节假体感染诊断试剂盒 | |
Badiee et al. | Invasive fungal infection in renal transplant recipients demonstrated by panfungal polymerase chain reaction | |
US20090023181A1 (en) | Method and Device for Detection of Erythromycin-Induced Clindamycin Resistance | |
CN113293221B (zh) | 一种人类脓毒症病原体检测试剂盒及检测方法 | |
CN110184371B (zh) | 一种检测皮特不动杆菌的特异性引物及其方法和应用 | |
CN115725742B (zh) | 一种用于诊断痒螨病的pcr试剂盒及检测方法 | |
RU2237248C1 (ru) | Способ прогнозирования неблагоприятного течения острого ограниченного гнойно-воспалительного заболевания легких и плевры микробной этиологии | |
RU2821994C1 (ru) | Способ определения показателя антибиотикорезистентности бактерий рода Desulfovibrio spp. | |
RU2685278C1 (ru) | Способ оценки эффективности лечения урогенитального хламидиоза | |
RU2800821C1 (ru) | Способ ранней диагностики сепсиса с помощью определения абсолютного количества нейтрофильных внеклеточных ловушек | |
KR20230131324A (ko) | 핵산 기반의 측면 흐름 분석을 이용한 옴진드기 진단용 정보 제공 방법 | |
RU2638453C1 (ru) | Способ выявления и оценки уровня патогенности возбудителей оппортунистических инфекций у женщин репродуктивного возраста и новорожденных детей для прогнозирования течения и развития осложнений инфекционных заболеваний | |
Mussa | The Asia Journal of Applied Microbiology | |
Nett et al. | Review of techniques for diagnosis of catheter-related Candida biofilm infections | |
Kumar et al. | Use of Procalcitonin for Optimizing Antimicrobial Therapy in Long Term ICU Patients | |
Townsend et al. | What is Slough? A pilot study to define the proteomic and microbial composition of wound slough and its implications for wound healing. | |
Ghareeb et al. | Detection of FsrB Quorum-Sensing Gene and Biofilm Production in Enterococcus faecalis Isolated from UTI Women | |
Mohammed et al. | Loop-mediated isothermal amplification: A rapid and simple method for detection of fluconazole resistant Candida albicans vaginitis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210306 |