RU2684760C1 - Способ и система предоперационного моделирования медицинской процедуры - Google Patents

Способ и система предоперационного моделирования медицинской процедуры Download PDF

Info

Publication number
RU2684760C1
RU2684760C1 RU2018117791A RU2018117791A RU2684760C1 RU 2684760 C1 RU2684760 C1 RU 2684760C1 RU 2018117791 A RU2018117791 A RU 2018117791A RU 2018117791 A RU2018117791 A RU 2018117791A RU 2684760 C1 RU2684760 C1 RU 2684760C1
Authority
RU
Russia
Prior art keywords
tubular structure
point
anatomical
trajectory
model
Prior art date
Application number
RU2018117791A
Other languages
English (en)
Inventor
Альберт Рафикович Хуснутдинов
Максим Анатольевич Горбунов
Original Assignee
Общество с ограниченной ответственностью "ЭНСИМ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ЭНСИМ" filed Critical Общество с ограниченной ответственностью "ЭНСИМ"
Priority to RU2018117791A priority Critical patent/RU2684760C1/ru
Application granted granted Critical
Publication of RU2684760C1 publication Critical patent/RU2684760C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Группа изобретений относится к области медицины и раскрывает способ создания персонифицированной модели анатомической трубчатой структуры на основе данных медицинского исследования пациента. Предложен способ построения траектории анатомической трубчатой структуры на основе данных медицинских изображений, характеризующийся тем, что: принимают данные медицинского исследования пациента, принимают информацию о маркерной точке внутри трубчатой структуры и диапазоне плотностей ткани внутри трубчатой структуры, определяют текущее направление для построения, путем нахождения максимального расстояния от маркерной точки до границ трубчатой структуры, которые определяются диапазоном плотностей ткани внутри трубчатой структуры, вычисляют исходную точку для построения, путем вычисления центральной точки внутри трубчатой структуры, производят пошаговое построение траектории трубчатой структуры, включающее на каждом шаге: вычисление, на основе исходной точки и текущего направления для построения, новой точки для построения трубчатой структуры, вычисление нового направления для построения, путем нахождения вектора между исходной и новой точкой, сохраняют информацию об исходной точке и ее связи с новой точкой; производят дальнейшее пошаговое построение траектории анатомической трубчатой структуры, при этом новая точка и новое направление являются исходной точкой и текущим направлением соответственно для следующего шага построения траектории трубчатой структуры. Также предложен способ предоперационного моделирования хирургической процедуры, содержащий этапы, на которых осуществляют построение модели анатомической трубчатой структуры на основе данных медицинского исследования пациента, и передают, и используют данную модель для моделирования медицинской процедуры, причем построение модели анатомической трубчатой структуры содержит следующие шаги: принимают данные медицинского исследования пациента, размещают эти данные в виртуальном пространстве, при этом центр каждого воксела является точкой в этом пространстве и определяет плотность ткани в этой точке; принимают информацию о маркерных точках и диапазоне плотностей ткани внутри анатомической трубчатой структуры; производят построение траекторий трубчатых структур на основе каждой маркерной точки и диапазона плотностей ткани внутри трубчатой структуры; формируют модель трубчатой структуры, определяя области пересечения траекторий трубчатых структур и усредняя точки траекторий в этих областях, и вычисляя контуры трубчатых структур в каждой точке траектории. Также предложена система предоперационного моделирования хирургической процедуры, содержащая: по крайней мере, одно устройство обработки команд; по крайней мере, одно устройство хранения данных; одну или более компьютерных программ, загружаемых в, по крайней мере, одно вышеупомянутое устройство хранения данных и выполняемых на, по крайней мере, одном из вышеупомянутых устройств обработки команд, при этом одна или более компьютерных программ содержат инструкции для выполнения любого из способов. Группа изобретений обеспечивает способ построения модели анатомической трубчатой структуры на основе данных медицинского исследования пациента. 3 н.п. ф-лы, 6 ил.

Description

Изобретение относится к области медицины и раскрывает способ создания персонифицированной модели анатомической трубчатой структуры (кровеносных сосудов, бронх и др.) на основе данных медицинского исследования пациента, и систему для компьютерного моделирования медицинской процедуры с использованием модели анатомической трубчатой структуры пациента. Изобретение может быть использовано для предоперационной подготовки, планирования или репетиции хирургической операции в виртуальной среде с использованием модели анатомических трубчатых структур реального пациента.
Известный уровень техники
Известен патент RU2642913 (С2), опубликован 29.02.2018, «Система и способ создания индивидуальной для пациента модели анатомической структуры на основе цифрового изображения». Способ моделирования медицинской процедуры с визуальным контролем, в котором: принимают, при помощи вычислительного устройства, данные медицинского изображения, относящиеся к конкретному пациенту; принимают, при помощи вычислительного устройства, метаданные анамнеза болезни, относящиеся к медицинским карточкам конкретного пациента, не включающие данные медицинского изображения; создают, при помощи вычислительного устройства, индивидуальную для пациента цифровую визуальную модель анатомической структуры конкретного пациента на основе данных медицинского изображения и метаданных анамнеза болезни, при этом указанная индивидуальная для пациента цифровая визуальная модель демонстрирует моделируемое индивидуальное для пациента физиологическое поведение на основе указанных метаданных анамнеза болезни, а моделируемое индивидуальное для пациента физиологическое поведение включает взаимодействие, и/или реакцию, и/или ответную реакцию; причем индивидуальная для пациента цифровая визуальная модель включает трехмерную (3D) анатомическую модель анатомической структуры; и индивидуальную для пациента цифровую визуальную модель отображают на дисплее; и используют индивидуальную для пациента цифровую визуальную модель при моделировании медицинской процедуры с визуальным контролем, при этом моделирование включает приложение силовой обратной связи к физическому медицинскому инструменту, с которым работает врач, использующий моделирование, при этом моделируемое индивидуальное для пациента физиологическое поведение включает взаимодействие индивидуальной для пациента цифровой визуальной модели с физическим медицинским инструментом, учитывающее метаданные анамнеза болезни. В данном патенте не описывается способ построения модели анатомической структуры на основе данных медицинского исследования, ссылаясь на патент описанный ниже.
Известен патент US8543338 (В2), опубликован 24.09.2013, «System and method for performing computerized simulations for image-guided procedures using a patient specific model», в котором описывается способ построения 3d-мoдeли анатомической структуры. Процесс включает в себя идентификацию части данных изображения как набора вокселей (маски), которые представляют желаемый объем анатомической структуры. Обработка данных может дополнительно включать в себя создание поверхностей этого объема, также называемое пограничным представлением (В-rep). Эти поверхности обычно представлены многоугольными сетками. Обработка может дополнительно включать в себя вычисление центральных линий трубчатых участков полученной многоугольной сетки, например кровеносных сосудов, кишечника или толстой кишки. Недостатком способа является процесс сегментации анатомических структур, при котором необходимо из общего массива данных медицинского исследования выделить области, принадлежащие разным анатомическим структурам. Анатомические структуры (органы человека) обладают примерно одинаковой плотностью тканей, что затрудняет проведение сегментации путем фильтрации по плотности ввиду частичной потери данных медицинского исследования.
Известна статья «Построение 3D модели кровеносных сосудов по серии КТ изображений печени», авторов Артем М. Ятченко, Андрей С. Крылов, Андрей В. Гаврилов, Иван В. Архипов, Труды 19-й Международной конференции по компьютерной графике и зрению, 5-9 октября 2009 г. Москва: МГУ им. М.В. Ломоносова, 2009. С. 344-347. В статье описывается способ построения модели кровеносных сосудов печени. Способ включает в себя бинаризацию данных исследования пациента, которая позволяет выделить набор вокселов принадлежащих кровеносным сосудам печени из общего массива данных исследования. Проводят скелетизацию полученной воксельной модели, путем удаления всех граничных, не значимых вокселей. На основе полученного скелета кровеносных сосудов строится граф кровеносных сосудов, определяется толщина сосудов. Граф кровеносных сосудов используется для построения 3д-модели сосудов.
Технической задачей настоящего изобретения является создание способа построения модели анатомической трубчатой структуры на основе данных медицинского исследования пациента.
Раскрытие сущности изобретения
Предлагаемым вариантом осуществления настоящего изобретения является способ предоперационного моделирования хирургической процедуры, содержащий этапы на которых осуществляют построение модели анатомической трубчатой структуры на основе данных медицинского исследования пациента и передают и используют данную модель для моделирования медицинской процедуры, при этом построение модели анатомической трубчатой структуры содержит следующие шаги: принимают данные медицинского исследования пациента, размещают эти данные в виртуальном пространстве, при этом центр каждого воксела является точкой в этом пространстве и определяет плотность ткани в этой точке; принимают информацию о маркерных точках и диапазоне плотностей ткани внутри анатомической трубчатой структуры; производят построение траекторий трубчатых структур на основе каждой маркерной точки и диапазона плотностей ткани внутри трубчатой структуры; формируют модель трубчатой структуры, определяя области пересечения траекторий трубчатых структур и усредняя точки траекторий в этих областях, и вычисляя контуры трубчатых структур в каждой точке траектории.
Способ построения траектории анатомической трубчатой структуры на основе данных медицинских изображений характеризующийся тем, что: принимают данные медицинского исследования пациента, принимают информацию о маркерной точке внутри трубчатой структуры и диапазоне плотностей ткани внутри трубчатой структуры, определяют текущее направление для построения, путем нахождения максимального расстояния от маркерной точки до границ трубчатой структуры, которые определяются диапазоном плотностей ткани внутри трубчатой структуры, вычисляют исходную точку для построения, путем вычисления центральной точки внутри трубчатой структуры, производят пошаговое построение траектории трубчатой структуры, включающее на каждом шаге: вычисление, на основе исходной точки и текущего направления для построения, новой точки для построения трубчатой структуры, вычисление нового направления для построения, путем нахождения вектора между исходной и новой точкой, сохраняют информацию об исходной точке и ее связи с новой точкой; производят дальнейшее пошаговое построение траектории анатомической трубчатой структуры, при этом новая точка и новое направление являются исходной точкой и текущим направлением соответственно для следующего шага построения траектории трубчатой структуры.
Техническое решение может быть выполнено в виде системы предоперационного моделирования медицинской процедуры содержащей: по крайней мере, одно устройство обработки команд; по крайней мере, одно устройство хранения данных; одну или более компьютерных программ, загружаемых в, по крайней мере, одно вышеупомянутое устройство хранения данных и выполняемых на, по крайне мере, одном из вышеупомянутых устройств обработки команд, при этом одна или более компьютерных программ содержат следующие инструкции: принимают данные медицинского исследования пациента, размещают эти данные в виртуальном пространстве, при этом центр каждого воксела является точкой в этом пространстве и определяет плотность ткани в этой точке, принимают информацию о маркерных точках и диапазоне плотностей ткани внутри анатомической трубчатой структуры, производят построение траекторий трубчатых структур на основе каждой маркерной точки и диапазона плотностей ткани внутри трубчатой структуры, вычисляют контуры трубчатых структур в каждой точке каждой траектории, путем определения точек на границе трубчатой структуры, лежащих в плоскости поперечного сечения трубчатой структуры, формируют модель анатомической трубчатой структуры, определяя области пересечения траекторий трубчатых структур и связывая точки пересекаемых траекторий в этих областях, передают и используют данную модель для моделирования медицинской процедуры.
Краткое описание чертежей
На фиг. 1 схематично изображена вексельная модель размещенная в виртуальном пространстве.
На фиг. 2 изображен срез КТ и маркированная точка на кровеносном сосуде.
На фиг. 3 схематично изображен процесс нахождения исходной точки и направления для построения траектории трубчатой структуры.
На фиг. 4 схематично изображен процесс пошагового построения траектории трубчатой структуры
На фиг. 5 схематично изображены области пересечения траекторий трубчатой структуры.
На фиг. 6 схематично изображен процесс нахождения финального контура трубчатой структуры.
Осуществление изобретения
Ниже будут рассмотрены некоторые термины, которые в дальнейшем будут использоваться при описании технического решения.
Компьютерная томография (КТ) - метод неразрушающего послойного исследования внутреннего строения предмета. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.
Компьютерная томография сохраняет в файлах рентгеновскую плотность, которая зависит от физической плотности тканей. Для количественной оценки рентгеновской плотности используется шкала Хаунсфилда, диапазон плотностей тканей составляет -1024 до +3071 HU. Средние показатели по шкале Хаунсфилда: воздух -1000 HU, жир -120 HU, вода 0 HU, мягкие ткани +40 HU, кости +400 HU и выше.
Воксел (англ. Voxel - образовано из слов: объемный (англ. volumetric) и пиксель (англ. pixel)) - элемент объемного изображения, содержащий значение элемента растра в трехмерном пространстве. Вокселы являются аналогами двумерных пикселей для трехмерного пространства. Вексельные модели часто используются для визуализации и анализа медицинской и научной информации.
Современные томографы сохраняют данные об исследовании пациента в специальном формате DICOM. DICOM-файл содержит информацию об интенсивности или плотности тканей в конкретном срезе, в каждой точке среза. Срезы могут производиться в трех плоскостях: сагиттальной, фронтальной, горизонтальной. DICOM файлы объединяются в серию и представляют набор последовательных срезов органа или участка тела. Данные в серии, все точки (вокселы) каждого среза в серии, представляют собой 3х мерный массив, где каждый элемент массива хранит координаты точки (воксела) и плотность ткани. Загрузка, обработка, использование информации хранящейся в DICOM-файлах не представляет технической сложности исходя их текущего уровня техники.
Данные медицинского исследования пациента, содержащиеся в DICOM файле, назовем воксельной моделью пациента.
Для реализации способа построения модели трубчатой структуры воксельную модель пациента размещают в виртуальном пространстве. На фиг. 1 схематично изображена воксельная модель размещенная в виртуальном пространстве. Воксел 1 (фиг. 1), в воксельной модели пациента, это объем пространства, характеризующийся одинаковой плотностью ткани в пределах этого объема. С учетом технических возможностей КТ воксел может иметь минимальные размеры, зависящие от шага среза и от площади среза, чем больше площадь исследованной области пациента, тем больше размер воксела 1, с учетом фиксированного разрешения томографа. Таким образом, напрямую из воксельной модели пациента невозможно получить точные данные о плотности такни в произвольной точке пространства, поскольку все точки, находящиеся в объеме воксела, будут иметь одинаковую плотность ткани в пределах этого объема, что приводит к менее точным результатам.
Для решения этой проблемы воксельную модель размещают в виртуальном пространстве (фиг. 1), при этом центр каждого воксела 3 является точкой в этом пространстве, и содержит значение плотности ткани в этой точке. Для определения плотности ткани в произвольной точке 2 воксельной модели, например, между двумя вокселами, вычисляют среднее арифметическое значение плотности ткани соседних центральных точек 3 вокселей (интерполяция плотностей ближайших центров вокселей). Таким образом, размещение воксельной модели в виртуальном пространстве позволяет уйти от ограничений воксельной модели, при этом использовать всю ее информацию для вычисления плостности ткани в произвольной точке 2 пространства.
На фиг. 2 изображен срез КТ 4 и маркированная точка 5 на кровеносном сосуде. С помощью изображения среза КТ 4 в виртуальном пространстве задается маркерная точка 5 внутри интересующей трубчатой структуры (кровеносных сосудов, бронх или др.). В качестве примера, построение модели трубчатой структуры осуществляется на кровеносных сосудах. Маркерные точки позволяют выделить интересующие, с точки зрения дальнейшего предоперационного моделирования, анатомические трубчатые структуры.
Далее определяют диапазон плотностей тканей внутри трубчатой структуры, выход за пределы этого диапазона означает выход за пределы трубчатой структуры. Диапазон плотностей ткани внутри трубчатой структуры зависит от методов исследования пациента и интересующей анатомической структуры, так, например: для КТ исследования без рентгено-контрастного вещества диапазон плотности крови в сосудах будет примерно от -160 до 50 HU (по шкале Хаунсфилда), а с применением рентгено-контрастного вещества от 300 до 400 HU; для бронхов диапазон плотностей будет примерно от -1000 (воздух) до -800 HU.
Построение траектории трубчатой структуры
Координаты маркерной точки 5 и диапазон плотностей ткани внутри трубчатой структуры являются исходной информацией для построения траектории трубчатой структуры, само построение происходит в виртуальном пространстве, в котором размещена воксельная модель пациента.
Определяют текущее направление для построения 8 (фиг. 3), путем нахождения максимального расстояния от маркерной точки 5 до границ трубчатой структуры. В примере данной реализации (фиг. 3) нахождение максимального расстояния от маркерной точки 5 до границ трубчатой структуры осуществляется построением трех попарно перпендикулярных осей 6, точкой пересечения которых является маркерная точка 5, и нахождением на этих осях точек 7, лежащих на границе трубчатой структуры. Границы трубчатой структуры определяются диапазоном плотностей ткани внутри трубчатой структуры, при этом точки (не показаны) на каждой оси 6 смещают с определенным шагом, начиная с маркерной точки 2, и вычисляют плотность ткани в каждой точке смещения (не показаны). Точка 7 расположена вблизи границы трубчатой структуры, если плотность ткани в точке смещения вышла за пределы диапазона плотностей ткани внутри трубчатой структуры. При этом плотность ткани в произвольной точке пространства вычисляется как среднее арифметическое плотностей ткани центров ближайших вокселей.
Ось, на которой лежат точки на границе трубчатой структуры 7, наиболее удаленные от маркерной точки 5, соответствует продольному направлению трубчатой структуры и принимается за текущее направление 8 для построения траектории.
Исходная точка для построения 9, в примере данной реализации, вычисляется путем усреднения точек 7 на границе трубчатой структуры лежащих на двух «коротких» осях 6 (фиг. 3). В предпочтительной реализации исходная точка 9 для построения должна быть приближена к центру трубчатой структуры, от этого зависит направление для построения на следующем шаге построения траектории.
Пошаговое построение траектории анатомической трубчатой структуры производят на основе информации об исходной точке 9 и текущем направлении для построения траектории 8 (фиг. 4), вычисленных на предыдущем шаге.
Вычисляют новую точку для построения траектории трубчатой структуры (фиг. 4). Для этого вычисляют шаговую точку 10, лежащую на прямой, соответствующей текущему направлению для построения 8, при этом расстояние от исходной точки 9 до шаговой точки 10 задается заранее или вычисляется в процессе построения. Затем, в плоскости перпендикулярной текущему направлению для построения 8 и проходящей через шаговую точку 10, вычисляются точки на границе трубчатой структуры 7, которые определяют контур анатомической трубчатой структуры. Центральная точка контура определяется путем вычисления среднеарифметического значения координат всех точек 6 сглаженного контура. Центральная точка контура принимается за новую точку 11 для построения траектории анатомической трубчатой структуры.
За новое направление 12 для построения траектории трубчатой структуры принимается вектор из исходной 9 в новую точку 11.
Сохраняют информацию об исходной точке 9 и ее связи с новой точкой 11 для построения.
Производят дальнейшее пошаговое построение траектории анатомической трубчатой структуры, при этом новая точка 11 и новое направление 12 являются исходной точкой и текущим направлением соответственно для следующего шага построения траектории.
Построение траектории трубчатой структуры прекращается при выполнении граничных условий, к которым относится: 1) в случае вычисления новой точки 11 для построения, выход координат точки за пределы воксельной модели, 2) в случае выхода шаговой точки 10 за пределы трубчатой структуры, которые определяются плотностью ткани в шаговой точке.
В результате построения траектории одной анатомической трубчатой структуры вычисляется множество точек, связанных друг с другом и лежащих внутри интересующей трубчатой структуры.
Модель анатомической трубчатой структуры строится на основе множества вычисленных траекторий трубчатых структур. Построение модели включает объединение траекторий трубчатых структур проходящих через общий объем в пространстве, определение областей 14 пересечения траекторий и усреднение точек 15 пересекаемых траекторий в этих областях 14 (фиг. 5).
Объединение траекторий трубчатых структур осуществляется в областях 14, где имеет место наложение или пересечение этих траекторий в пространстве (фиг. 5). Для нахождения наложений или пересечений траекторий используется маркировка объема пространства, занимаемого каждой траекторией трубчатой структуры. В примере реализации, маркировка объема пространства выполнена виде сфер 13, расположенных между каждой парой точек 15 траектории (фиг. 5). В областях 14, где имеется пересечение траекторий, позиции точек 15 этих траекторий усредняются.
Вычисление финального контура трубчатой структуры для каждой точки траектории изображено на фиг. 6, зная координаты текущей точки 16 и двух соседних точек 17 траектории определяют нормаль плоскости 18 и плоскость контура 19 трубчатой структуры, которая походит через текущую точку 16. Затем в плоскости контура 19 вычисляют точки на границе трубчатой структуры, которые определяют финальный контур 20 трубчатой структуры.
В итоге модель анатомической трубчатой структуры содержит множество точек траекторий трубчатых структур и контуры трубчатых структур в каждой точке траектории.
Модель анатомической трубчатой структуры может передаваться в системы моделирования хирургической процедуры, и использоваться для построения трехмерной модели анатомической структуры конкретного пациента. Из известного уровня техники известны системы моделирования хирургической процедуры, подробно описанные в патентах RU 2642913, US 8543338. Как правило, эти системы содержат устройство обработки команд, устройство хранения данных, компьютерную программу, загружаемую в устройство хранения данных и выполняемых на устройстве обработки команд. Так же системы моделирования хирургической процедуры могут содержать устройства отслеживания манипуляций имитаторов медицинских инструментов, которыми пользуется хирург в процессе тренировочной хирургической операции. Система моделирования может содержать различные дополнительные устройства ввода и вывода информации (клавиатура, мышь, мониторы и др). Отличие предлагаемой системы моделирования процедуры от подобных решений заключается в способе построения модели анатомической трубчатой структуры конкретного пациента.

Claims (3)

1. Способ построения траектории анатомической трубчатой структуры на основе данных медицинских изображений, характеризующийся тем, что: принимают данные медицинского исследования пациента, принимают информацию о маркерной точке внутри трубчатой структуры и диапазоне плотностей ткани внутри трубчатой структуры, определяют текущее направление для построения, путем нахождения максимального расстояния от маркерной точки до границ трубчатой структуры, которые определяются диапазоном плотностей ткани внутри трубчатой структуры, вычисляют исходную точку для построения, путем вычисления центральной точки внутри трубчатой структуры, производят пошаговое построение траектории трубчатой структуры, включающее на каждом шаге: вычисление, на основе исходной точки и текущего направления для построения, новой точки для построения трубчатой структуры, вычисление нового направления для построения, путем нахождения вектора между исходной и новой точкой, сохраняют информацию об исходной точке и ее связи с новой точкой; производят дальнейшее пошаговое построение траектории анатомической трубчатой структуры, при этом новая точка и новое направление являются исходной точкой и текущим направлением соответственно для следующего шага построения траектории трубчатой структуры.
2. Способ предоперационного моделирования хирургической процедуры, содержащий этапы, на которых осуществляют построение модели анатомической трубчатой структуры на основе данных медицинского исследования пациента, и передают, и используют данную модель для моделирования медицинской процедуры, отличающийся тем, что построение модели анатомической трубчатой структуры содержит следующие шаги: принимают данные медицинского исследования пациента, размещают эти данные в виртуальном пространстве, при этом центр каждого воксела является точкой в этом пространстве и определяет плотность ткани в этой точке; принимают информацию о маркерных точках и диапазоне плотностей ткани внутри анатомической трубчатой структуры; производят построение траекторий трубчатых структур на основе каждой маркерной точки и диапазона плотностей ткани внутри трубчатой структуры способом, описанным в п. 1; формируют модель трубчатой структуры, определяя области пересечения траекторий трубчатых структур и усредняя точки траекторий в этих областях, и вычисляя контуры трубчатых структур в каждой точке траектории.
3. Система предоперационного моделирования хирургической процедуры, содержащая: по крайней мере, одно устройство обработки команд; по крайней мере, одно устройство хранения данных; одну или более компьютерных программ, загружаемых в, по крайней мере, одно вышеупомянутое устройство хранения данных и выполняемых на, по крайне мере, одном из вышеупомянутых устройств обработки команд, при этом одна или более компьютерных программ содержат инструкции для выполнения способа по любому из пп. 1-2.
RU2018117791A 2018-05-14 2018-05-14 Способ и система предоперационного моделирования медицинской процедуры RU2684760C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018117791A RU2684760C1 (ru) 2018-05-14 2018-05-14 Способ и система предоперационного моделирования медицинской процедуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018117791A RU2684760C1 (ru) 2018-05-14 2018-05-14 Способ и система предоперационного моделирования медицинской процедуры

Publications (1)

Publication Number Publication Date
RU2684760C1 true RU2684760C1 (ru) 2019-04-12

Family

ID=66168191

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018117791A RU2684760C1 (ru) 2018-05-14 2018-05-14 Способ и система предоперационного моделирования медицинской процедуры

Country Status (1)

Country Link
RU (1) RU2684760C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110026793A1 (en) * 2007-05-30 2011-02-03 Vikash Ravi Goel Automated centerline extraction method and generation of corresponding analytical expression and use thereof
US8543338B2 (en) * 2007-01-16 2013-09-24 Simbionix Ltd. System and method for performing computerized simulations for image-guided procedures using a patient specific model
RU2534948C2 (ru) * 2008-12-10 2014-12-10 Конинклейке Филипс Электроникс Н.В. Анализ сосудов
RU2642913C2 (ru) * 2011-01-27 2018-01-29 Симбионикс Лтд. Система и способ создания индивидуальной для пациента модели анатомической структуры на основе цифрового изображения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8543338B2 (en) * 2007-01-16 2013-09-24 Simbionix Ltd. System and method for performing computerized simulations for image-guided procedures using a patient specific model
US20110026793A1 (en) * 2007-05-30 2011-02-03 Vikash Ravi Goel Automated centerline extraction method and generation of corresponding analytical expression and use thereof
RU2534948C2 (ru) * 2008-12-10 2014-12-10 Конинклейке Филипс Электроникс Н.В. Анализ сосудов
RU2642913C2 (ru) * 2011-01-27 2018-01-29 Симбионикс Лтд. Система и способ создания индивидуальной для пациента модели анатомической структуры на основе цифрового изображения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЯТЧЕНКО А.М. и др., Построение 3D модели кровеносных сосудов по серии КТ изображений печени",, Труды 19-й Международной конференции по компьютерной графике и зрению, 5-9 октября 2009 г. Москва: МГУ им. М.В. Ломоносова, 2009. С. 344-347. *

Similar Documents

Publication Publication Date Title
US20190021677A1 (en) Methods and systems for classification and assessment using machine learning
US11547499B2 (en) Dynamic and interactive navigation in a surgical environment
US7397475B2 (en) Interactive atlas extracted from volume data
CN107067398B (zh) 用于三维医学模型中缺失血管的补全方法及装置
KR20210104715A (ko) 광학 코드를 이용한 증강 현실 디스플레이
RU2711140C2 (ru) Редактирование медицинских изображений
EP3164075B1 (en) Unified coordinate system for multiple ct scans of patient lungs
Nuzhnaya et al. Computer simulation and navigation in surgical operations
JP2001014446A (ja) 医用画像処理装置
EP3561768B1 (en) Visualization of lung fissures in medical imaging
JP2007144177A (ja) 低コントラストの管形状対象のための半自動セグメント分割手法の方法及び装置
US20140193789A1 (en) Cutting simulation device and cutting simulation program
RU2685961C2 (ru) Способ и система предоперационного моделирования хирургической процедуры
Yoshida et al. Clinical planning support system-CliPSS
CN103919571A (zh) 超声图像分割
RU2684760C1 (ru) Способ и система предоперационного моделирования медицинской процедуры
Li et al. Three-dimensional reconstruction of paracentesis approach in transjugular intrahepatic portosystemic shunt
Meinzer et al. Medical imaging: examples of clinical applications
CN109242964B (zh) 三维医学模型的处理方法和装置
JP7172086B2 (ja) 手術シミュレーション装置及び手術シミュレーションプログラム
CN111798468A (zh) 图像处理方法及装置、存储介质及电子终端
Skurski et al. Image processing methods for diagnostic and simulation applications in cardiology
RU178470U1 (ru) Устройство предоперационного моделирования хирургической процедуры
RU2816071C1 (ru) Комбинированная интраоперационная навигационная система с использованием генерации ультразвуковых изображений методом трассировки лучей
Kerr et al. “True” color surface anatomy: mapping the Visible Human to patient-specific CT data