RU2683875C1 - Диодный лазер с внешним резонатором - Google Patents

Диодный лазер с внешним резонатором Download PDF

Info

Publication number
RU2683875C1
RU2683875C1 RU2018112499A RU2018112499A RU2683875C1 RU 2683875 C1 RU2683875 C1 RU 2683875C1 RU 2018112499 A RU2018112499 A RU 2018112499A RU 2018112499 A RU2018112499 A RU 2018112499A RU 2683875 C1 RU2683875 C1 RU 2683875C1
Authority
RU
Russia
Prior art keywords
light beam
laser
output
diode
reflecting mirror
Prior art date
Application number
RU2018112499A
Other languages
English (en)
Inventor
Виталий Валентинович Васильев
Сергей Александрович Зибров
Владимир Леонидович Величанский
Original Assignee
Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы"), Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) filed Critical Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Priority to RU2018112499A priority Critical patent/RU2683875C1/ru
Application granted granted Critical
Publication of RU2683875C1 publication Critical patent/RU2683875C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Изобретение может быть использовано для перестраиваемых диодных лазеров с внешними резонаторами, обеспечивающими генерацию на одной продольной моде. Диодный лазер с внешним резонатором содержит последовательно установленные на оптической оси лазерный диод, коллимирующий объектив, интерференционный фильтр и фокусирующий объектив, глухое отражающее зеркало, а также выходное отражающее зеркало, установленное за коллимирующим объективом и обеспечивающее выход оптического излучения под углом к единой оптической оси в виде аксиально-симметричного светового пучка. Выходное отражающее зеркало может быть выполнено в виде прямоугольной призмы с основаниями в виде равнобедренных треугольников с тупым углом при вершине, а отражающей поверхностью является ее передняя боковая поверхность, ограниченная основаниями равнобедренных треугольников. Длина отражающей поверхности превышает короткий размер светового пучка лазерного диода, ширина отражающей поверхности равна короткому размеру светового пучка лазерного диода, деленному на косинус угла падения светового пучка на выходное отражающее зеркало. Технический результат - повышение выходной мощности за счет снижения потерь и упрощения конструкции и настройки лазера. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к квантовой электронике и лазерной технологии. Оно может быть использовано для создания перестраиваемых диодных лазеров с внешними резонаторами, обеспечивающими генерацию на одной продольной моде.
Известен твердотельный лазер с продольной накачкой [RU 2172544, C1, H01S 3/02, 20.08.2001], в корпусе которого установлены последовательно соединенные оптический модуль накачки и резонатор лазера с активным элементом и выходным зеркалом, причем, активный элемент вклеен теплопроводящим компаундом в калиброванный ложемент, который выполнен со стороны оптического модуля накачки в цилиндрической оправе резонатора, закрепленной в корпусе лазера соосно с оптической осью модуля накачки, при этом, калибр ложемента D=d+(5-50) мкм, где d - диаметр активного элемента.
Недостатком этого технического решения является относительно высокая сложность.
Известен также компактный твердотельный лазер с продольной накачкой [RU 2382458, C1, H01S 3/0933, 20.02.2010], включающий оптический модуль, содержащий линейку диодов, корпус, в котором установлены резонатор с зеркалами, активный элемент, помещенный в ложементе, теплоотводящую рубашку, оптоволокно и объектив накачки, причем, заднее зеркало резонатора выполнено в виде отдельного оптического элемента, активный элемент установлен в радиально-симметричную теплоотводящую рубашку, закрепленную между зеркалами, а в центре ее выполнен ложемент, между боковой поверхностью элемента и ложементом рубашки помещена прокладка из теплопроводного материала, оптический модуль вынесен за пределы корпуса и связан с лазером оптоволокном, подключенным к объективу накачки, установленному на торце корпуса лазера со стороны заднего зеркала резонатора.
Недостатком этого технического решения также является относительно высокая сложность.
Наиболее близким по технической сущности к предложенному является диодный лазер с внешним резонатором [Intrferens-filter-stabilbzed external-cavity diode lasers. X.Bailard, A.Gaudet, S.Bize, P.Lemonde, Ph.Laurent, А/ Clairon, P.Rosenbusch.
Figure 00000001
de Rerferrence Temps-Espace, Observatoire de Paris, 61 Avenue de
Figure 00000002
, 75014 Paris, France Received 28 February 2006; received in revised form 3 May 2006; accepted 5 May 2006], содержащий последовательно установленные на единой оптической оси лазерный диод, первый коллимирующий объектив, интерференционный фильтр, фокусирующий объектив, выходное полупрозрачное зеркало и второй коллимирующий объектив.
Недостатком наиболее близкого технического решения является относительно высокие световые потери на полупрозрачном зеркале, относительно высокая сложность, вызванная необходимостью использования второго коллимирующего объектива, относительно высокая сложность настройки, вызванная сложностью подбора оптимального коэффициента отражения полупрозрачного зеркала, обеспечивающего достаточный уровень оптической обратной связи и максимальную выходную мощность.
Задача изобретения состоит в создании диодного лазера с внешним резонатором, обладающего более низкими потерями, менее сложной конструкцией, меньшей сложностью настройки и большей аксиальной симметрией выходного пучка.
Требуемый технический результат заключается в повышении выходной мощности за счет снижения потерь и упрощения конструкции и настройки лазера.
Поставленная задача решается, а требуемый технический результат достигается тем, что, в устройство, содержащее последовательно установленные на единой оптической оси лазерный диод, коллимирующий объектив, интерференционный фильтр, фокусирующий объектив, согласно изобретению, введены глухое отражающее зеркало, установленное на единой оптической оси за фокусирующим объективом, и выходное отражающее зеркало, установленное за коллимирующим объективом и обеспечивающее выход оптического излучения диодного лазера под углом к единой оптической оси в виде аксиально-симметричного светового пучка.
Кроме того, требуемый технический результат достигается тем, что, выходное отражающее зеркало выполнено в виде прямоугольной призмы, основания которой представляют собой равнобедренные треугольники с тупым углом при вершине, а отражающей поверхностью является ее передняя боковая поверхность, ограниченная основаниями равнобедренных треугольников, причем, длина отражающей поверхности превышает короткий размер светового пучка лазерного диода, ширина отражающей поверхности равна короткому размеру светового пучка лазерного диода, деленному на косинус угла падения светового пучка на выходное отражающее зеркало, а угол при вершине прямоугольной призмы выполнен тупым для исключения затенения светового пучка задними неотражающими боковыми поверхностями призмы.
Кроме того, требуемый технический результат достигается тем, что, выходное отражающее зеркало снабжено оправой, выполненной в виде рамки, позволяющей перемещать выходное зеркало вдоль длинного размера светового пучка лазерного диода, причем, размер проходного отверстия рамки превышает полный размер сечения светового пучка лазерного диода, и обеспечивает возможность установки выходного отражающего зеркала в центральной или периферийной зоне светового пучка.
Кроме того, требуемый технический результат достигается тем, что, глухое отражающее зеркало выполнено подвижным на пьезоэлементе для осуществления настройки диодного лазера.
Кроме того, требуемый технический результат достигается тем, что, интерференционный фильтр выполнен в виде многослойного диэлектрического покрытия, нанесенного на тонкую кварцевую подложку диаметром большим, чем максимальный размер светового пучка лазерного диода.
На чертеже представлены:
на фиг. 1 - конструкция диодного лазера с внешним резонатором;
на фиг. 2 - схема расположения выходного отражающего зеркала относительно светового пучка лазерного диода;
на фиг. 3 - пример крепления выходного отражающего зеркала в своей оправе.
На чертеже обозначены:
1 - лазерный диод;
2 - коллимирующий объектив;
3 - выходное отражающее зеркало;
4 - оправа выходного отражающего зеркала;
5 - неподвижная оправа интерференционного фильтра;
6 - подвижная оправа интерференционного фильтра;
7 - интерференционный фильтр;
8 - оправа подвижного зеркала;
9 - корпус;
10 - фокусирующий объектив;
11 - глухое отражающее зеркало;
12 - пьезоэлемент;
13 - сечение светового пучка лазерного диода.
Диодный лазер с внешним резонатором содержит последовательно установленные на единой оптической оси лазерный диод 1, коллимирующий объектив 2, интерференционный фильтр 7, фокусирующий объектив 10 и отражающее зеркало И, установленное на единой оптической оси за фокусирующим объективом, а также выходное отражающее зеркало 3, установленное за коллимирующим объективом 2 на единой оптической оси под углом к ней.
Особенностью предложенного диодного лазера с внешним резонатором является то, что, выходное отражающее зеркало 3 выполнено в виде прямоугольной призмы (фиг. 2), основания которой представляют собой равнобедренные треугольники с тупым углом при вершине, а отражающей поверхностью является ее передняя боковая поверхность, ограниченная основаниями равнобедренных треугольников, причем, длина отражающей поверхности превышает короткий размер светового пучка лазерного диода, ширина отражающей поверхности равна короткому размеру светового пучка лазерного диода, деленному на косинус угла падения светового пучка на выходное отражающее зеркало, а угол при вершине прямоугольной призмы выполнен тупым для исключения затенения светового пучка задними неотражающими боковыми поверхностями призмы.
При этом, выходное отражающее зеркало 3 снабжено оправой 4, выполненной в виде рамки, позволяющей перемещать выходное зеркало вдоль длинного размера светового пучка лазерного диода, причем, размер проходного отверстия рамки превышает полный размер сечения светового пучка лазерного диода, и обеспечивает возможность установки выходного отражающего зеркала в центральной или периферийной зоне светового пучка.
Кроме того, глухое отражающее зеркало выполнено подвижным на пьезоэлементе для осуществления настройки диодного лазера, а интерференционный фильтр выполнен в виде многослойного диэлектрического покрытия, нанесенного на тонкую кварцевую подложку диаметром большим, чем максимальный размер светового пучка лазерного диода.
Используется диодный лазер с внешним резонатором следующим образом.
Излучение лазерного диода 1 собирается коллимирующим объективом 2, который формирует параллельный пучок излучения. Часть светового пучка сразу выводится из лазерного резонатора выходным отражающим зеркалом 3. Интерференционный фильтр 7 обеспечивает генерацию лазера на одной продольной моде, благодаря спектральной селективности его пропускания. Замыкается лазерный резонатор глухим отражающим зеркалом 11.
Поперечное сечение излучения, поступающего на выходное отражающее зеркало 3 имеет форму эллипса с типичным соотношением осей 1:3. Выходное отражающее зеркало 3 вырезает из излучения область с примерно равными поперечными размерами. Это является важным фактором при использовании выходного излучения лазера и выборе оптических элементов, расположенных за лазером (оптическая развязка, делительные кубики, зеркала). Меньшее сечение лазерного пучка позволяет использовать более компактные и дешевые оптические компоненты. Кроме того аксиальная симметрия пучка позволяет с большей эффективностью согласовывать излучение лазера с такими оптическими элементами, как оптические волокна и интерферометры.
Регулировка уровня оптической обратной связи может осуществляться смещением глухого отражающего зеркала 11 к периферии лазерного пучка. Поскольку сечение пучка имеет распределение интенсивности, близкое к гауссовому, то выходная мощность будет снижаться по мере смещения зеркала к его периферии.
Таким образом, в предложенной конструкции лазера достигается требуемый технический результат, поскольку обеспечивается симметризация выходного светового пучка, повышение выходной мощности за счет снижения потерь, упрощение конструкции и настройки лазера.

Claims (5)

1. Диодный лазер с внешним резонатором, содержащий последовательно установленные на единой оптической оси лазерный диод, коллимирующий объектив, интерференционный фильтр и фокусирующий объектив, отличающийся тем, что введены глухое отражающее зеркало, установленное на единой оптической оси за фокусирующим объективом, и выходное отражающее зеркало, установленное за коллимирующим объективом и обеспечивающее выход оптического излучения диодного лазера под углом к единой оптической оси в виде аксиально-симметричного светового пучка.
2. Диодный лазер с внешним резонатором по п. 1, отличающийся тем, что выходное отражающее зеркало выполнено в виде прямоугольной призмы, основания которой представляют собой равнобедренные треугольники с тупым углом при вершине, а отражающей поверхностью является ее передняя боковая поверхность, ограниченная основаниями равнобедренных треугольников, причем длина отражающей поверхности превышает короткий размер светового пучка лазерного диода, ширина отражающей поверхности равна короткому размеру светового пучка лазерного диода, деленному на косинус угла падения светового пучка на выходное отражающее зеркало, а угол при вершине прямоугольной призмы выполнен тупым для исключения затенения светового пучка задними неотражающими боковыми поверхностями призмы.
3. Диодный лазер с внешним резонатором по п. 1, отличающийся тем, что выходное отражающее зеркало снабжено оправой, выполненной в виде рамки, позволяющей перемещать выходное зеркало вдоль длинного размера светового пучка лазерного диода, причем размер проходного отверстия рамки превышает полный размер сечения светового пучка лазерного диода, и обеспечивает возможность установки выходного отражающего зеркала в центральной или периферийной зоне светового пучка.
4. Диодный лазер с внешним резонатором по п. 1, отличающийся тем, что глухое отражающее зеркало выполнено подвижным на пьезоэлементе для осуществления настройки диодного лазера.
5. Диодный лазер с внешним резонатором по п. 1, отличающийся тем, что интерференционный фильтр выполнен в виде многослойного диэлектрического покрытия, нанесенного на тонкую кварцевую подложку диаметром, большим, чем максимальный размер светового пучка лазерного диода.
RU2018112499A 2018-04-09 2018-04-09 Диодный лазер с внешним резонатором RU2683875C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112499A RU2683875C1 (ru) 2018-04-09 2018-04-09 Диодный лазер с внешним резонатором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112499A RU2683875C1 (ru) 2018-04-09 2018-04-09 Диодный лазер с внешним резонатором

Publications (1)

Publication Number Publication Date
RU2683875C1 true RU2683875C1 (ru) 2019-04-02

Family

ID=66089801

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112499A RU2683875C1 (ru) 2018-04-09 2018-04-09 Диодный лазер с внешним резонатором

Country Status (1)

Country Link
RU (1) RU2683875C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759430A (zh) * 2022-04-02 2022-07-15 中国科学院国家授时中心 一种猫眼外腔半导体激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073905A1 (en) * 2000-03-25 2001-10-04 Renishaw Plc Wavelength tuning in external cavity lasers
US6584133B1 (en) * 2000-11-03 2003-06-24 Wisconsin Alumni Research Foundation Frequency-narrowed high power diode laser array method and system
US20040165639A1 (en) * 2002-11-05 2004-08-26 Jds Uniphase Corporation, State Of Incorporation: Delaware Laser device
RU2457591C2 (ru) * 2007-04-27 2012-07-27 Таль Компактный источник лазерного излучения с уменьшенной шириной спектра

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073905A1 (en) * 2000-03-25 2001-10-04 Renishaw Plc Wavelength tuning in external cavity lasers
US6584133B1 (en) * 2000-11-03 2003-06-24 Wisconsin Alumni Research Foundation Frequency-narrowed high power diode laser array method and system
US20040165639A1 (en) * 2002-11-05 2004-08-26 Jds Uniphase Corporation, State Of Incorporation: Delaware Laser device
RU2457591C2 (ru) * 2007-04-27 2012-07-27 Таль Компактный источник лазерного излучения с уменьшенной шириной спектра

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X.Bailard, A.Gaudet, S.Bize, P.Lemonde, Ph.Laurent, А/ Clairon, P.Rosenbusch, Intrferens-filter-stabilbzed external-cavity diode lasers, Optics Communications, 02.02.2008, https://www.researchgate.net/publication/222706505_Interference-filter-stabilized_external-cavity_diode_lasers. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759430A (zh) * 2022-04-02 2022-07-15 中国科学院国家授时中心 一种猫眼外腔半导体激光器

Similar Documents

Publication Publication Date Title
WO2020207434A1 (zh) 激光器和激光雷达
JP2007527616A (ja) レーザー発光特性調整のためのボリューム・ブラッグ・グレーティングの使用
JPH07508139A (ja) 同調可能な固体レーザ
US7729392B2 (en) Monoblock laser with reflective substrate
CN101859975B (zh) 双波长可调谐掺铥光纤激光器
US5048044A (en) Optically pumped lasers
US6967976B2 (en) Laser with reflective etalon tuning element
CN112260051B (zh) 一种1342nm红外固体激光器
RU2683875C1 (ru) Диодный лазер с внешним резонатором
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
US3660779A (en) Athermalization of laser rods
EP0199793A1 (en) FULL RAMAN LASER WITH SINGLE MIRROR.
US20220173576A1 (en) Laser oscillation device
US6959023B1 (en) Laser with reflective etalon tuning element
RU2725639C2 (ru) Перестраиваемый диодный лазер с внешним резонатором
RU2607815C1 (ru) Составной резонатор эксимерного лазера
JPH05226749A (ja) 波長可変レーザー装置
RU2365006C2 (ru) Дисковый лазер с модулированной добротностью резонатора (варианты)
CN220066399U (zh) 一种脉冲时序可调控的激光产生装置
RU2599918C1 (ru) Устройство для частотного преобразования лазерного излучения на основе вынужденного комбинационного рассеяния
WO1991006139A1 (en) Diode pumped segmented fibre bundle coupled conical rod laser system
KR100360474B1 (ko) 제2고조파발생장치
RU2182739C2 (ru) Микролазер (варианты)
Venus et al. Spectral stabilization of high efficiency diode bars by external Bragg resonator
RU2635400C1 (ru) Твердотельный лазер