RU2682960C1 - Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения - Google Patents

Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения Download PDF

Info

Publication number
RU2682960C1
RU2682960C1 RU2017140430A RU2017140430A RU2682960C1 RU 2682960 C1 RU2682960 C1 RU 2682960C1 RU 2017140430 A RU2017140430 A RU 2017140430A RU 2017140430 A RU2017140430 A RU 2017140430A RU 2682960 C1 RU2682960 C1 RU 2682960C1
Authority
RU
Russia
Prior art keywords
heating
supply
heat
regulator
temperature
Prior art date
Application number
RU2017140430A
Other languages
English (en)
Inventor
Николай Сергеевич Кобелев
Сергей Геннадьевич Емельянов
Владимир Николаевич Кобелев
Элина Владимировна Умеренкова
Евгений Владимирович Умеренков
Наталья Евгеньевна Семичева
Дмитрий Александрович Протасов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2017140430A priority Critical patent/RU2682960C1/ru
Application granted granted Critical
Publication of RU2682960C1 publication Critical patent/RU2682960C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий. Устройство для автоматизированного регулирования расхода тепла на отопление в системе теплоснабжения содержит подающий и обратный трубопроводы, перемычку с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление и температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регистраторы температуры наружного воздуха и температуры воды на отопление, которые соединены с соответствующими датчиками, регуляторы температуры содержат блоки сравнения, задания и обратной связи, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженными регулятором скорости вращения в виде блока порошковых электромагнитных муфт, соединенных с регистратором температуры воды на отопление, при этом внутренняя поверхность перемычки покрыта наноматериалом в виде стеклоподобной пленки, кроме того, на перемычке перед насосом смешивания выполнен автоматизированный блок, включающий два фильтра, параллельно соединенных посредством клапанов с регулятором давления, который снабжен датчиками давления, каждый из которых закреплен во внутреннем объеме соответствующего фильтра, а клапаны установлены перед фильтрами и электрически соединены с регулятором давления. Технический результат - поддержание нормированных теплотехнических параметров отопительных приборов при длительной эксплуатации системы теплоснабжения путем устранения поступления загрязнений в подающий трубопровод за счет автоматизированный очистки теплоносителя, поступающего из обратного трубопровода. 2 ил.

Description

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий.
Известно устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения (см. патент РФ №2485407, МПК F24D 3/00, опубл. 2006.13, Блок №17), содержащие подающий и обратный трубопроводы с насосом смещения, регулятор расхода тепла на отопление с датчиками температуры воды на отопление и температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе.
Недостатком являются энергозатраты, обусловленные необходимостью демонтажных работ по замене перемычки, разрушающейся при длительной эксплуатации под воздействием загрязнений, поступающих из обратного трубопровода.
Известно устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения (см. патент РФ №2581975, МПК F240 3/00, опубл. 20.04. Блок № 11), содержащее подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление и температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регистратор температуры наружного воздуха и регистратор температуры воды на отопление, которые соединены с соответствующими датчиками температуры, причем каждый из регуляторов температуры содержит блоки сравнения, задания и нелинейности обратной связи, также электронный и магнитный датчики, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженными регулятором скорости вращения в виде блока порошковых электромагнитных муфт, при этом магнитные усилители регистратора температуры воды на отопление электрически соединены с соответствующим регулятором скорости вращения регулирующего клапана и насосом смешивания, при этом внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки.
Недостатком является снижение при длительной эксплуатации теплообменных параметров отопительных приборов в системе теплоснабжения здания из-за наличия загрязнений в виде ржавчины и/или окалины в теплоносителе, поступающем из обратного трубопровода через перемычку с насосом смешивания в подающий трубопровод.
Технической задачей предлагаемого изобретения является поддержание нормированного теплотехнических параметров отопительных приборов при длительной эксплуатации системы теплоснабжения путем устранения поступления загрязнений в подающий трубопровод, за счет автоматизированный очистки теплоносителя, поступающего из обратного трубопровода.
Технический результат по поддержанию нормированных теплотехнических параметров отопительных приборов достигается тем, что устройство для автоматизированного регулирования расхода тепла на отопление в системе теплоснабжения содержащее подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление и температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регулятор температуры наружного воздуха и регулятор температуры воды на отопление, которые соединены с соответствующими датчиками температуры, причем каждый из регуляторов температуры содержит блоки сравнения, задания и нелинейности обратной связи, также электронный и магнитный датчики, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженными регулятором скорости вращения в виде блока порошковых электромагнитных муфт, при этом магнитные усилители регистратора температуры воды на отопление электрически соединены с соответствующим регулятором скорости вращения регулирующего клапана и насосом смешивания, при этом внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки, при этом на перемычке перед насосом смешивания выполнен автоматизированный блок очистки от твердых частиц загрязнений теплоносителя, поступающего из обратного трубопровода, включающий два фильтра параллельно соединенных посредством клапанов с регулятором давления, который снабжен датчиками давления, каждый из которых закреплен во внутреннем объеме соответствующего фильтра, а клапаны установлены перед фильтрами и электрически соединены с регулятором давления.
На фиг.1 схематически представлено устройство для автоматизированного регулирования расхода тепла в системе теплоснабжения с размещенным на перемычке перед насосом смешивания автоматизированным блоком очистки от твердых частиц загрязнений теплоносителя, поступающего из обратного трубопровода; на фиг. 2 – продольный разрез перемычки с нано покрытием внутренней поверхности нанообразующей стеклоподобной пленкой.
Устройство состоит из подающего трубопровода 1, обратного трубопровода 2, перемычки 3, соединенной с подающим 1 и обратным 2 трубопроводам, насосом смешивания 4 на перемычки 3, регулятора расхода тепла на отопление 5 с датчиком температуры воды на отопление 6, датчиком температуры наружного воздуха 7, регулирующим клапаном 8 на подающем трубопроводе 1. Регулятор расхода тепла на отопление 5 включает регулятор температуры наружного воздуха 9 с датчиком 7 и регулятор температуры воды 10 на отопление с датчиком 6. Регулятор температуры наружного воздуха 9 содержит блок сравнения 11 и блок задания 12, при этом блок сравнения 11 соединен с входом электронного усилителя 13, оборудованного блоком нелинейной обратной связи 14, кроме того, блок сравнения 11 соединен с датчиком 7 температуры наружного воздуха. Выход электронного усилителя 13 соединен с входом магнитного усиления 15 с выпрямителем на выходе, подключенным к регулятору скорости вращения 16 в виде блока порошковых электромагнитных муфт, который размещен между приводом 17 и регулирующим клапаном 8 на подающем трубопроводе 1. Регулятор температуры воды 10 содержит блок сравнения 18 и блок задания 19, при этом блок сравнения 18 соединен с датчиком 6 температуры воды на отопление. Выход электронного усилителя 20 соединен с входом магнитного усилителя 22 с выпрямителем на выходе, подключенным к регулятору скорости вращения 23 в виде блока порошковых электромагнитных муфт, который размещен между приводом 24 и насосом смешивания 4 на перемычке. Внутренняя поверхность 25 перемычки 3, соединяющей подающей трубопровод 1 и обратный трубопровод 2, покрыта нано материалом в виде стеклоподобной пленки 26 и обратный трубопровод. На перемычке 3 перед насосом смешивания 4 выполнен автоматизированный блок 27 от твердых частиц загрязнений, поступающих с теплоносителем из обратного трубопровода 2 и включающий два параллельно соединенных посредством клапанов 28 и 29 фильтров 30 и 31 с регулятором давления 32, который снабжен датчиками давления 33 и 34, причем датчик давления 33 установлен во внутреннем объеме 35 перед очищающим элементом 36 фильтра 30, а датчик давления 34 установлен во внутреннем объеме 37 перед очищающим элементом фильтра 31.
Устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения работает следующем образом.
Известно, что при перемещении теплоносителя как “горячего” по подающему трубопроводу 1 к обогревательным приборам, так и “холодного” возвращающегося через обратный трубопровод 2 к источнику тепловой энергии, наблюдается образование загрязнений в виде твердых частиц ржавчины и окалины из-за окисления соответствующих элементов отопления здания. В результате резко снижается теплофизические свойства отопительных приборов с уменьшением их энергетической эффективности, которое падает от 15 до 30% (см., например, Коваленко Л.М., Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. – М.: Энергоатомиздат. 1986. - 240 с., ил.). Кроме того, твердые частицы загрязнений при перемешивании с теплоносителем способствуют возрастанию гидравлического сопротивления движущемуся потоку, что требует увеличения мощности на привод 24 насоса смешивания, соответственно, дополнительных энергозатрат на системы централизованного теплоснабжения (см., например, Зингер Н.М. Гидравлические и тепловые режимы теплофикационных систем. – М.: Энергоатомиздат. 1986. - 320 с., ил.). При выполнении автоматизированного блока очистки 27 на перемычке 3 теплоноситель, насыщенный твердыми частицами загрязнений из обратного трубопровода 2 перемещается к регулятору давления 32, который насыщен твердыми частицами загрязнений из обратного трубопровода 2 перемещается к регулятору давления 32, который электрическим сигналом открывает клапан 28, и поступает во внутренний объем 35 фильтра 30 (клапан 29 закрыт), где контактирует с очищающим элементом 36. После отделения твердых частиц загрязнений теплоноситель насосом смешивания 4 перемещается в подающий трубопровод 1 и отопительные приборы системы теплоснабжения, где с нормированной энергетической эффективностью осуществляет обогрев помещения до заданного температурного режима. По мере накопления твердых частиц загрязнений на очищающем элементе 36 фильтра 30 давление во внутреннем объеме 35 возрастает, что регистрируется датчиком давления 33 и сигнал от него поступает к регулятору давления 32. После этого электрически осуществляется переключение на закрытие клапана 28 и открытие клапана 29. Тогда теплоноситель с загрязнениями в виде твердых частиц из обратного трубопровода 2 через регулятор давления 32 поступает во внутренний объем 37 фильтра 31 для контакта с очищающим элементом 38, после чего без загрязненный направляется через насос 4 в подающий трубопровод 1. Одновременно очищающий элемент 36 фильтра 30 освобождается от накопившихся твердых частиц загрязнений, путем регенерации или демонтажа. Периодическое переключение фильтров 30 и 31 под воздействием регулятора давления 32, обеспечивает постоянство очистки теплоносителя, поступающего из обратного трубопровода 2 в подающий трубопровод 1 и далее к отопительным приборам помещений, что не только обеспечивает нормированную энергетическую эффективность отопления, но и снимает энергозатраты системы теплоснабжения жилых, общественных и производственных зданий. Вода после потребителей тепловой энергии, например нагревательных приборов, перемещается по обратному трубопроводу 2, насыщенная загрязнениями и с высокой степенью концентрации как парообразных, так и преимущественно твердых (ржавчина, окалина) частиц. поступает на перемычку 3, где эти загрязнения интенсивно налипают на ее внутреннюю поверхность 25. В результате работы насоса смешивания 4 создается перепад давления в перемычке 3 между обратным трубопроводом 2 и подающим трубопроводом 1, который воздействует на налипающие по внутренней поверхности 25 парообразные пузырьки. Последующие непрерывно происходящие перемещения парообразных и твердых загрязнений, движущиеся потоком перекачиваемой воды, приводят к разрывности целостности потока, т.е. внезапным гидравлическим ударам, вызывающим повреждение металла, следовательно, к возникновению кавитации (см., например, Соколов Е.Я Теплофикация и тепловые сети. Изд. 8.: Изд. MЭИ. 2009.-257 с.. ил.).
Следовательно, последующая эксплуатация устройства для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения приводит к необходимости замены перемычки и, как следствие, к необходимости дополнительных энергозатрат, связанных с демонтажными работами. При покрытии наноматериалом в виде стеклоподобной пленки 26 внутренней поверхности 25 перемычки 3 загрязнения не налипают и, соответственно, не образуются парообразные пузырьки, которые перемещаются в подающий трубопровод 1. В результате смешивания очищенной воды, поступающей в подающий трубопровод 1 из источника тепловой энергии, и воды из обратного из трубопровода 2, концентрация загрязнений резко уменьшается, что обеспечивает условия длительной эксплуатации устройства автоматизированного регулирования расхода тепла (см., например, Киш Л. Кинетика электрохимического растворения металлов. М.: МИР. 1990. - 272 с., ил.) Известно, что наличие клапана в трубопроводе как регулирующего устройства просто, но низкоэффективно из-за снижения его теплофизических параметров - давления, особенно на перемычке между подающим и обратным трубопроводами (см., например, Ионин А.А. Теплоснабжение. М.: Стройиздат. 1982. 336 с., ил.), когда осуществляется частое регулирование расхода воды, что вызывает повышенный перерасход энергии на привод насоса смешения. При наличии нормированной температуры наружного воздуха (см., например, СНиП «Строительная климатология и геофизика». М., 1993. 80 с., ил.) и соответствующей температуры воды в подающей тепловой сети, регулятор скорости вращения 23 в виде порошковых электромагнитных муфт передает заданную мощность привода 17 и насос смешения 4 на перемычке 3 работает с необходимым расходом воды при оптимальных энергозатратах. Если температура наружного воздуха понижается, что фиксируется датчиком 7, и сигнал, поступающий от него в регистратор температуры наружного воздуха 9 регулятора расхода тепла на отопление 5, становится меньше, чем сигнал от блока задания 12 и на выходе блока сравнения от блока задания 12, то на выходе блока сравнения 11 появится сигнал положительной полярности, который поступает на вход электрического усилителя 13 одновременно с сигналом нелинейной обратной связи 14. За счет этого в электронном усилителе 13 компенсируется нелинейность характеристики привода 17 регулирующего клапана 8 на подающем трубопроводе 1. Сигнал с выхода электронного усилителя 13 поступает на вход магнитного усилителя 15, где усиливается по мощности, выпрямляется и подается на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт. Положительная полярность сигнала электронного усилителя 13 вызывает увеличение тока возбуждения на выходе магнитного усилителя 15, в регуляторе скорости вращения 16 возрастает момент от привода 17, открывая на большую величину регулируемый клапан 8, тем самым увеличивая подачи горячего теплоносителя по подающему трубопроводу 1 на отопление в системе теплоснабжения.
Увеличение расхода горячего теплоносителя в подающем трубопроводе 1 фиксируется датчиком температуры воды 6 на отопление, который при превышении нормированного значения (по условиям погодно-климатического расположения отапливаемого здания) (см. СНиП 2.04.05-02 «Отопление, вентиляция, кондиционирование». М.: ЦНТП, 2004, 94 с.) подает в регулятор температуры воды 10 сигнал, который становится большим, чем сигнал от блока задания 19, и на выходе блока 18 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 20 одновременно с сигналом нелинейной обратной связи 21. За счет этого в электронном усилителе 20 компенсируется нелинейность характеристики привода 24 насоса смешивания 4 на перемычке 3. Сигнал с выхода электронного усилителя 20 поступает на вход магнитного усилителя 22, где усиливается по мощности, выпрямляется и подается на регулятор скорости вращения 23 в виде блока порошковых электромагнитных муфт.
Отрицательная полярность сигнала электронного усилителя 20 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 22, в результате уменьшается момент от привода 24 и подача теплоносителя в систему теплоснабжения, что и приводит к уменьшению температуры в подающем трубопроводе 1 на отопление здания.
При кратковременном, в течение одних суток или нескольких дней в неделю, повышении температуры наружного воздуха под воздействием, например, солнечной радиации или оттепели, что фиксируется датчиком 7, сигнал поступающий от него на регулятор температуры наружного воздуха 9 регулятора расхода тепла на отопление 5, становится большим, чем сигнал от блока задания 12, и на выходе блока сравнения 11 появится сигнал отрицательной обратной полярности, который поступает на вход электронного усилителя 13 одновременно с сигналом нелинейной обратной связи 14. Сигнал с выхода электронного усилителя 13 поступает на вход магнитного усилителя, где усиливается по мощности, выпрямляется и подается на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 13 вызывает уменьшение тока и он становится меньшим, чем сигнал от блока задания 19, и на выходе блока сравнения от блока задания 19 и на выходе блока сравнения 18 появляется сигнал положительной полярности, который поступает на вход электронного усилителя 20, одновременно с сигналом нелинейной обратной связи 21. Сигнал с выхода электронного усилителя 20 поступает на вход магнитного усилителя 22, где усиливается по мощности, выпрямляет и подается на регулятор скорости вращения 23 в виде блока порошковых электромагнитных муфт.
Положительная полярность сигнала электронного усилителя 20 вызывает увеличение тока возбуждения на выходе магнитного усилителя 22, в результате увеличивается величина момента от привода 27 и подача теплоносителя из обратного трубопровода 2 на отопление в систему теплоснабжения, что и приводит к поддержанию нормированной температуры в подающем трубопроводе 1 на отопление здания с экономией теплоносителя, т.е. наблюдается устранение «перетопа» (перегрева) помещений при кратковременном повышении температуры наружного воздуха.
Оригинальность предлагаемого изобретения заключается в том, что обеспечивается поддержание нормированных теплотехнических параметров отопительных приборов и снижение энергозатрат на отопление в системах теплоснабжения жилых, общественных и промышленных зданий путем очистки от твердых частиц загрязнений теплоносителя, поступающего из обратного трубопровода в подающий трубопровод, за счёт выполнения автоматизированного блока очистки, включающего два фильтра параллельно соединенных посредством клапанов с регулятором давления, который снабжен датчиком давления, при этом автоматизированный блок отделения от твердых частиц загрязненный расположен на перемычке между подающим и обратным трубопроводами.

Claims (1)

  1. Устройство для автоматизированного регулирования расхода тепла на отопление в системе теплоснабжения, содержащее подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление и температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регистратор температуры наружного воздуха и регистратор температуры воды на отопление, которые соединены с соответствующими датчиками температуры, причем каждый из регуляторов температуры содержит блоки сравнения, задания и нелинейности обратной связи, также электронный и магнитный датчики, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженными регулятором скорости вращения в виде блока порошковых электромагнитных муфт, при этом магнитные усилители регистратора температуры воды на отопление электрически соединены с соответствующим регулятором скорости вращения регулирующего клапана и насосом смешивания, при этом внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки, отличается тем, что на перемычке перед насосом смешивания выполнен автоматизированный блок очистки от твердых частиц загрязнений теплоносителя, поступающего из обратного трубопровода и включающий два фильтра параллельно соединенных посредством клапанов с регулятором давления, который снабжен датчиками давления, каждый из которых закреплен во внутреннем объеме соответствующего фильтра, а клапаны установлены перед фильтрами и электрически соединены с регулятором давления.
RU2017140430A 2017-11-21 2017-11-21 Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения RU2682960C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017140430A RU2682960C1 (ru) 2017-11-21 2017-11-21 Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017140430A RU2682960C1 (ru) 2017-11-21 2017-11-21 Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения

Publications (1)

Publication Number Publication Date
RU2682960C1 true RU2682960C1 (ru) 2019-03-22

Family

ID=65858666

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017140430A RU2682960C1 (ru) 2017-11-21 2017-11-21 Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения

Country Status (1)

Country Link
RU (1) RU2682960C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2110734C1 (ru) * 1996-08-28 1998-05-10 Борис Васильевич Булин Схема подключения к тепловой сети системы водяного отопления
RU2232351C2 (ru) * 2002-09-16 2004-07-10 Закрытое акционерное общество "Взлет" Автоматизированный тепловой пункт
RU2485407C1 (ru) * 2011-12-15 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство для регулирования расхода тепла на отопление в системах теплоснабжения
RU2581975C1 (ru) * 2014-12-10 2016-04-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство автоматизированного регулирования расхода тепла на отоплениев системах теплоснабжения
WO2016083673A1 (en) * 2014-11-28 2016-06-02 Est Energy Save Technologies Oy Heat recovery unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2110734C1 (ru) * 1996-08-28 1998-05-10 Борис Васильевич Булин Схема подключения к тепловой сети системы водяного отопления
RU2232351C2 (ru) * 2002-09-16 2004-07-10 Закрытое акционерное общество "Взлет" Автоматизированный тепловой пункт
RU2485407C1 (ru) * 2011-12-15 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство для регулирования расхода тепла на отопление в системах теплоснабжения
WO2016083673A1 (en) * 2014-11-28 2016-06-02 Est Energy Save Technologies Oy Heat recovery unit
RU2581975C1 (ru) * 2014-12-10 2016-04-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство автоматизированного регулирования расхода тепла на отоплениев системах теплоснабжения

Similar Documents

Publication Publication Date Title
US10072850B2 (en) Heat exchanger and method for regulating a heat exchanger
KR980010210A (ko) 난방환기공기조절(hvac) 시스템에서 자동화된 분기유량조정
WO2007090405A3 (en) Control of a system with a large thermal capacity
RU2011122941A (ru) Однотрубная система теплоснабжения с регулированием расхода
RU2682960C1 (ru) Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения
RU2581975C1 (ru) Устройство автоматизированного регулирования расхода тепла на отоплениев системах теплоснабжения
RU2683974C1 (ru) Устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения
RU2485407C1 (ru) Устройство для регулирования расхода тепла на отопление в системах теплоснабжения
RU2431781C1 (ru) Устройство для регулирования температуры воздуха в помещении
US11047582B2 (en) Method and devices for controlling a fluid transportation network
RU2607775C1 (ru) Автоматизированный индивидуальный тепловой пункт с зависимым присоединением системы отопления и закрытой системой горячего водоснабжения
RU96934U1 (ru) Устройство для регулирования температуры воздуха в помещении
RU49605U1 (ru) Устройство для регулирования расхода тепла на отопление в системах теплоснабжения
RU2551867C1 (ru) Абонентский ввод системы теплоснабжения здания
RU133592U1 (ru) Блочный автоматизированный унифицированный тепловой пункт
RU2427762C1 (ru) Абонентский ввод системы теплоснабжения здания
CN104373953A (zh) 一种应用限流孔板的智能燃烧系统
RU2533701C2 (ru) Устройство для регулирования температуры воздуха в помещении
RU2631040C1 (ru) Система гелиотеплохладоснабжения
Gehlert et al. Analysis and optimisation of dynamic facility ventilation in recirculation aquacultural systems
CN102095010A (zh) 一种适用多种数字电子阀门的通用智能控制器设计
RU2674713C1 (ru) Система регулирования параметров теплоносителя на источнике теплоснабжения в зависимости от внутренней температуры воздуха у потребителей
RU193051U1 (ru) Устройство для регулирования температуры воды для систем отопления
EP1426699B1 (de) Automatische Regelvorrichtung für Umwälzpumpen
RU2415348C1 (ru) Способ автоматического регулирования тепловой нагрузки здания и устройство для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201122