RU2682568C1 - Способ определения концентрации пероксида водорода в растворе - Google Patents

Способ определения концентрации пероксида водорода в растворе Download PDF

Info

Publication number
RU2682568C1
RU2682568C1 RU2017138312A RU2017138312A RU2682568C1 RU 2682568 C1 RU2682568 C1 RU 2682568C1 RU 2017138312 A RU2017138312 A RU 2017138312A RU 2017138312 A RU2017138312 A RU 2017138312A RU 2682568 C1 RU2682568 C1 RU 2682568C1
Authority
RU
Russia
Prior art keywords
hydrogen peroxide
ammeter
concentration
solution
current
Prior art date
Application number
RU2017138312A
Other languages
English (en)
Inventor
Мария Андреевна Комкова
Елена Евгеньевна Карякина
Аркадий Аркадьевич Карякин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2017138312A priority Critical patent/RU2682568C1/ru
Application granted granted Critical
Publication of RU2682568C1 publication Critical patent/RU2682568C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components

Abstract

Изобретение относится к области электроанализа и электрохимических сенсоров и может быть использовано при осуществлении методов лабораторного анализа или медицинской диагностики. Cпособ определения концентрации пероксида водорода в растворе с помощью устройства, содержащего модифицированный Берлинской лазурью измерительный электрод и хлоридсеребряный электрод сравнения, соединенные между собой через амперметр, включает погружение электродов устройства в анализируемый раствор с последующей регистрацией амперметром электрического тока в цепи. По величине тока делают вывод о концентрации пероксида водорода в анализируемом растворе в соответствии с предварительно построенной градуировочной зависимостью. Технический результат, достигаемый при использовании изобретения, заключается в упрощении системы регистрации сигнала (био)сенсоров без снижения их коэффициента чувствительности, а также увеличении соотношения сигнал/шум. 1 з.п. ф-лы, 1 табл., 2 пр., 4 ил.

Description

Область техники
Изобретение относится к области электроанализа и электрохимических сенсоров (в том числе, для носимых устройств), и может быть использовано при осуществлении методов лабораторного анализа или медицинской диагностики.
Уровень техники
Концепция создания сенсоров, функционирующих в режиме генерации мощности, сегодня приобрела особую актуальность. С появлением и распространением высокотехнологичных носимых устройств возникла проблема миниатюризации источников энергии, например, батареек, а также их замены в аналитическом устройстве или перезарядки. Одним из решений данной проблемы может стать отказ от внешних источников питания, когда сенсор (в том числе, электрохимический) или носимое устройство на его основе в присутствии анализируемого вещества генерируют энергию, достаточную для регистрации и передачи сигнала. Принцип генерации энергии электрохимическим сенсором заключается в преобразовании химической энергии в электрохимическую в результате протекания реакции с участием анализируемого вещества (то есть аналогичен таковому для топливных элементов) и был впервые использован для «самозапитывания» биосенсора Вильнером и Катцем в 2001 году [Katz Е., Buckmann A.F., Willner I. Self-powered enzyme-based biosensors // Journal of American Chemical Society, 2001, vol. 123, pp. 10752-10753], а позднее запатентован [Willner I., Katz E. Self-powered biosensor // US 20040245101 А1].
Подобный принцип генерации сенсором мощности в присутствии анализируемого вещества был рассмотрен в ряде других патентов и статей [Feldman В. et al. Self-Powered Analyte Sensor // US 2010/0213057 A1; Feldman B. et al. Miniature Amperometric Self-Powered Continuous Glucose Sensor with Linear Response // Analytical Chemistry, 2012, vol. 84, pp. 3403-3409; Dong S.J. et al. A Self-Powered Acetaldehyde Sensor Based on Biofuel Cell // Analytical Chemistry, 2012, vol. 84, pp. 10345-10349; Turner et al. Cholesterol Self-Powered Biosensor // Analytical Chemistry, 2014, vol. 86, pp. 9540-9547 и др.].
Однако стоит отметить, что перечисленные сенсоры способны генерировать мощность, достаточную для маломощной электроники, только в присутствии миллимолярных концентраций анализируемого вещества, что делает использование таких сенсоров ограниченным, а полный отказ от источников энергии невозможным, ведь для решения большинства аналитических задач необходимо определять более низкие (на несколько порядков величины) концентрации [Arechederra R.L., Minteer S.D. Self-powered sensors // Anal. Bioanal. Chem, 2011, vol. 400(6), pp. 1605-1611].
Стоит также отметить, что на практике перечисленные сенсоры функционируют в режиме гальванической ячейки, а измерение генерируемого в присутствии анализируемого вещества тока осуществляется с помощью амперметра, включенного в цепь между электродами. При этом материалы электродов подбирают таким образом, чтобы разница потенциалов между катодом и анодом была максимальной, что позволяет увеличить генерируемую сенсором мощность, однако значительно сдвигает потенциал рабочего электрода от оптимального, заведомо снижая эффективность сенсора. Таким образом, для достижения наилучших аналитических характеристик сенсора в режиме гальванической ячейки необходимо, чтобы при соединении катода и анода через амперметр потенциал рабочего электрода оставался оптимальным.
Берлинская лазурь является наиболее совершенным электрокатализатором восстановления пероксида водорода [Karyakin А.А. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications // Electroanalysis, 2001, vol. 13(10), pp. 813-819], а амперометрические сенсоры на ее основе востребованы как для определения непосредственно пероксида водорода (это один из важнейших маркеров заболеваний дыхательных путей), так и для создания биосенсоров на основе ферментов-оксидаз, продуцирующих пероксид водорода в ходе ферментативной реакции. Впервые идея использования Берлинской лазури для создания амперометрических сенсоров и биосенсоров была предложена профессором Карякиным А.А. [Karyakin А.А., Gitelmacher O.V., Karyakina Е.Е. Prussian Blue based first-generation biosensor - a sensitive amperometric electrode for glucose // Analytical Chemistry, 1995, vol. 67(14), pp. 2419-2423], а в мировой практике находит широкое применение уже более двух десятилетий.
Наиболее близким к заявляемому решению является электрохимический сенсор на основе Берлинской лазури, описанный в работе [Sitnikova N.A., Borisova A.V., Komkova М.А., Karyakin А.А. Superstable Advanced Hydrogen Peroxide Transducer Based on Transition Metal Hexacyanoferrates // Analytical Chemistry, 2011, vol. 83(6), pp. 2359-2363]. В приведенной работе сенсор выполнен на основе планарной трехэлектродной структуры, рабочая поверхность которой модифицирована Берлинской лазурью, функционирует по трехэлектродной схеме: потенциал рабочего электрода 0.0 В относительно хлоридсеребряного электрода задается с помощью потенциостата.
Раскрытие изобретения
Техническая проблема, решаемая посредством заявляемого изобретения, заключается в необходимости преодоления недостатков, присущих аналогам и прототипу, в частности, использование потенциостата или иного сложного электрохимического оборудования для определения концентрации с помощью электрохимического сенсора, а также обусловленные этим высокие шумы за счет увеличения входных шумов операционными усилителями и системы обратной связи, затрудняющие точное и правильное определение низких концентраций аналита. Проблема решается за счет разработки способа определения веществ, в частности, пероксида водорода с помощью сенсоров на основе Берлинской лазури посредством генерации мощности.
Технический результат, достигаемый при использовании изобретения, заключается в увеличении соотношения сигнал/шум, а также упрощении системы регистрации сигнала (био)сенсоров без снижения их коэффициента чувствительности. Указанный технический результат достигается за счет использования сенсора по двухэлектродной схеме без потенциостата и регистрации сигнала с помощью амперметра, включенного в цепь.
Поставленная задача решается тем, что, согласно техническому решению, заявляемый способ определения концентрации пероксида водорода в растворе с помощью устройства, содержащего модифицированный Берлинской лазурью измерительный электрод и хлоридсеребряный электрод сравнения, соединенные между собой через амперметр, осуществляется при погружении электродов устройства в анализируемый раствор с последующей регистрацией амперметром электрического тока в цепи. По величине тока делают вывод о концентрации пероксида водорода в анализируемом растворе в соответствии с предварительно построенной градуировочной зависимостью. Дополнительно во внешнюю цепь последовательно амперметру может быть включен резистор. Для получения градуировочной зависимости электроды устройства помещают в буферный раствор и регистрируют фоновый сигнал с помощью амперметра, после чего при установлении постоянного значения фонового сигнала в буферный раствор вводят пробы пероксида водорода известных концентраций и регистрируют генерируемый при этом ток, пропорциональный концентрации введенного пероксида водорода, при этом градуировочную кривую строят в виде линейной зависимости силы генерируемого тока от концентрации пероксида водорода.
Краткое описание чертежей
Изобретение поясняется следующими фигурами.
На фиг. 1 изображены схемы а) для определения пероксида водорода на основе Берлинской лазури в режиме генерации мощности, б) электродной структуры, с помощью которой может быть реализован заявляемый способ.
На фиг. 2 представлены примеры амперометрического отклика сенсора на основе Берлинской лазури на добавление 12 мкМ пероксида водорода с использованием потенциостата (а), что характерно для прототипа, и без потенциостата (посредством генерации мощности) (б), что является признаком заявляемого способа (0.05 М фосфатный буфер, 0.1 М KCl, рН=6.0, перемешивание на магнитной мешалке).
На фиг. 3 представлены градуировочные зависимости определения пероксида водорода с помощью сенсоров на основе Берлинской лазури с использованием потенциостата (
Figure 00000001
) и без потенциостата (посредством генерации мощности) (
Figure 00000002
) (n=3, Р=0.95) (0.05 М фосфатный буфер, 0.1 М KCl, рН=6.0, перемешивание на магнитной мешалке).
На фиг. 4 приведены вольтамперные кривые восстановления кислорода: (
Figure 00000001
) - 200 мкМ, и пероксида водорода: (Δ) - 10 мкМ, (
Figure 00000003
) - 200 мкМ, зарегистрированные в режиме генерации мощности. 0.05 М фосфатный буфер, 0.1 М KCl, рН=6.0, на воздухе.
Позициями на чертежах обозначены
1 - рабочий электрод,
2 - электрод сравнения,
3 - амперметр.
На практике амперометрические сенсоры на основе Берлинской лазури работают по трехэлектродной схеме при рабочем потенциале 0.0 В, задаваемом относительно хлоридсеребряного электрода сравнения с помощью потенциостата. Задать такой близкий к 0.0 В потенциал рабочего электрода возможно, соединив его накоротко с электродом сравнения. Функционирует такая система в режиме гальванической ячейки (фиг. 1, а). В присутствии пероксида водорода во внешней цепи протекает ток, пропорциональный содержанию пероксида водорода в растворе и регистрируемый с помощью амперметра.
Важно, что аналитические характеристики сенсоров в режиме генерации мощности совпадают с таковыми для идентичных сенсоров, используемых по трехэлектродной схеме с помощью потенциостата, или даже превосходят их (табл. 1).
Figure 00000004
Figure 00000005
Заявляемый способ позволяет повысить соотношение сигнал/шум, а значит понизить предел обнаружения. Уменьшение шумов обусловлено отсутствием системы обратной связи для фиксирования потенциала на рабочем электроде (нулевой потенциал относительно хлоридсеребряного электрода сравнения достигается при соединении электродов накоротко через амперметр), а также отсутствием системы операционных усилителей.
Одним из преимуществ использования сенсоров на основе Берлинской лазури является возможность селективного определения пероксида водорода в присутствии как легко окисляемых веществ (аскорбатов, уратов, парацетамола и др.), так и окислителей (кислорода). Селективность определения пероксида водорода сохраняется в предлагаемом авторами режиме генерации мощности. Так, отклик сенсора на микромолярные концентрации пероксида водорода может быть замаскирован только более чем двадцатикратным избытком аскорбата, а ток восстановления пероксида водорода более чем на два порядка величины превосходит ток восстановления кислорода (фиг. 4).
Согласно настоящему изобретению, для регистрации сигнала может быть использовано любое устройство типа амперметр, обеспечивающее возможность регистрации силы тока.
Предлагаемый авторами способ определения пероксида водорода с помощью сенсоров (устройств) на основе Берлинской лазури в режиме генерации мощности заключается в следующем. Сенсор функционирует по двухэлектродной схеме, а рабочий электрод и хлоридсеребряный электрод сравнения соединены накоротко через амперметр, с помощью которого регистрируется аналитический сигнал. В частном варианте воплощения настоящего изобретения в качестве таких устройств были использованы планарные двухэлектродные структуры, рабочая поверхность которых модифицирована Берлинской лазурью. В присутствии пероксида водорода во внешней цепи генерируется ток, пропорциональный содержанию пероксида водорода в растворе (фиг.1, а). Изобретение иллюстрируется приведенными ниже примерами.
Осуществление изобретения
Для реализации заявляемого способа изготавливают устройство - сенсор, содержащий модифицированный Берлинской лазурью измерительный электрод и хлоридсеребряный электрод сравнения, соединенные между собой через амперметр. В частных случаях реализации, дополнительно во внешнюю цепь последовательно амперметру может быть включен резистор, что позволяет регулировать мощность, генерируемую сенсором в присутствии аналита. Электроды устройства погружают в анализируемый раствор и регистрируют амперметром электрический ток в цепи. По величине тока делают вывод о концентрации пероксида водорода в анализируемом растворе в соответствии с предварительно построенной градуировочной зависимостью. Для получения градуировочной зависимости электроды устройства помещают в буферный раствор и регистрируют фоновый сигнал с помощью амперметра, после чего при установлении постоянного значения фонового сигнала в буферный раствор вводят пробы пероксида водорода известных концентраций и регистрируют генерируемый при этом ток, пропорциональный концентрации введенного пероксида водорода, при этом градуировочную кривую строят в виде линейной зависимости силы генерируемого тока от концентрации пероксида водорода.
Возможность реализации заявляемого способа показана на следующих примерах.
Пример 1. Регистрация сигнала с помощью электрохимического сенсора для определения пероксида водорода на основе Берлинской лазури в режиме генерации мощности.
Эксперименты проводили в стационарном режиме при постоянном перемешивании. Двухэлектродную структуру (фиг. 1, б), включающую хлоридсеребряный электрод сравнения и рабочий электрод, рабочая поверхность которой модифицирована Берлинской лазурью, опускали в стакан с анализируемым раствором. Рабочий электрод и хлоридсеребряный электрод сравнения соединяли через цифровой амперметр, с помощью которого регистрировали протекающий во внешней цепи ток. В отсутствие анализируемого вещества (пероксида водорода) устанавливается постоянное значение фонового сигнала. При добавлении пероксида водорода генерируется ток, пропорциональный его концентрации. В качестве аналитического сигнала рассматривали скачок тока в результате добавления пероксида водорода в анализируемый раствор. На фиг. 2 (б) приведены примеры скачков тока при добавлении 12 мкМ пероксида водорода, регистрируемые в режиме генерации мощности с помощью амперметра. Также на фиг. 2 (а) приведены примеры откликов, зарегистрированных с помощью идентичного сенсора, но функционирующего по классической трехэлектродной схеме (рабочий потенциал 0.0 В относительно хлоридсеребряного электрода сравнения задается с помощью потенциостата). Использование сенсора в режиме генерации мощности позволяет добиться увеличения соотношения сигнал/шум на порядок.
Исследовали зависимость генерируемого тока от концентрации пероксида водорода. Для этого с помощью амперметра, включенного в цепь, регистрировали ток, постепенно увеличивая концентрацию пероксида водорода в анализируемом растворе (от 0.2 до 1000 мкМ). При работе сенсора в режиме генерации мощности ток, протекающий в цепи в присутствии анализируемого вещества, линейно зависит от его концентрации в исследуемом диапазоне (фиг. 3).
Для идентичных сенсоров исследовали зависимость аналитического сигнала от концентрации пероксида водорода в режиме трехэлектродной схемы. Показано, что аналитические характеристики сенсоров в режиме генерации мощности не только не уступают таковым для идентичных сенсоров, работающих по классической трехэлектродной схеме, но даже превосходят их (табл. 1). В том числе, удается понизить предел обнаружения за счет уменьшения шумов почти на порядок. Таким образом, упрощение системы регистрации сигнала (замена потенциостата на амперметр) достигается без снижения аналитических характеристик сенсоров.
Пример 2. Селективное определение пероксида водорода в присутствии растворенного кислорода воздуха с помощью сенсора на основе Берлинской лазури в режиме генерации мощности.
Растворимость кислорода воздуха в воде составляет около 0.2 мМ. Соответственно, исследовали вольтамперограммы БЛ в анализируемом растворе в отсутствии и присутствии пероксида в количестве, эквимолярном растворенному кислороду. Токи восстановления пероксида водорода на несколько порядков превосходят токи восстановления эквимолярного количества кислорода воздуха, растворенного в анализируемом растворе (фиг. 4). Таким образом, используя заявляемый способ, возможно осуществлять селективное определение пероксида водорода в присутствии кислорода воздуха.

Claims (2)

1. Способ селективного определения концентрации пероксида водорода в растворе в присутствии кислорода с помощью устройства, содержащего модифицированный Берлинской лазурью измерительный электрод и хлоридсеребряный электрод сравнения, соединенные между собой через амперметр, включающий погружение электродов устройства в анализируемый раствор с последующей регистрацией амперметром электрического тока в цепи, при этом по величине тока делают вывод о концентрации пероксида водорода в анализируемом растворе в соответствии с предварительно построенной градуировочной зависимостью.
2. Способ по п. 1, характеризующийся тем, что для получения градуировочной зависимости электроды устройства помещают в буферный раствор и регистрируют фоновый сигнал с помощью амперметра, после чего при установлении постоянного значения фонового сигнала в буферный раствор вводят пробы пероксида водорода известных концентраций и регистрируют генерируемый при этом ток, пропорциональный концентрации введенного пероксида водорода, при этом градуировочную кривую строят в виде линейной зависимости силы генерируемого тока от концентрации пероксида водорода.
RU2017138312A 2017-11-03 2017-11-03 Способ определения концентрации пероксида водорода в растворе RU2682568C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017138312A RU2682568C1 (ru) 2017-11-03 2017-11-03 Способ определения концентрации пероксида водорода в растворе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017138312A RU2682568C1 (ru) 2017-11-03 2017-11-03 Способ определения концентрации пероксида водорода в растворе

Publications (1)

Publication Number Publication Date
RU2682568C1 true RU2682568C1 (ru) 2019-03-19

Family

ID=65805841

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017138312A RU2682568C1 (ru) 2017-11-03 2017-11-03 Способ определения концентрации пероксида водорода в растворе

Country Status (1)

Country Link
RU (1) RU2682568C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007707C1 (ru) * 1992-01-27 1994-02-15 Веревкин Валерий Иванович Устройство для измерения удельной электропроводности и плотности тока
RU2006110364A (ru) * 2006-03-31 2007-10-20 Общество с ограниченной ответственностью "РУСЕНС"(RU) Датчики на пероксид водорода на основе планарных электродов, модифицированных гексацианоферратом железа
RU2419785C1 (ru) * 2010-07-06 2011-05-27 Общество с ограниченной ответственностью "ЧипДетект" Гидрозоль для формирования покрытий электрохимических пероксидчувствительных сенсоров и биосенсоров, способ его получения, электрохимический сенсор и биосенсор, способы их получения и применения
RU2442976C2 (ru) * 2009-11-30 2012-02-20 Российская Федерация, от имени которой выступает Федеральное Агентство по науке и инновациям Способ приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007707C1 (ru) * 1992-01-27 1994-02-15 Веревкин Валерий Иванович Устройство для измерения удельной электропроводности и плотности тока
RU2006110364A (ru) * 2006-03-31 2007-10-20 Общество с ограниченной ответственностью "РУСЕНС"(RU) Датчики на пероксид водорода на основе планарных электродов, модифицированных гексацианоферратом железа
RU2442976C2 (ru) * 2009-11-30 2012-02-20 Российская Федерация, от имени которой выступает Федеральное Агентство по науке и инновациям Способ приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода
RU2419785C1 (ru) * 2010-07-06 2011-05-27 Общество с ограниченной ответственностью "ЧипДетект" Гидрозоль для формирования покрытий электрохимических пероксидчувствительных сенсоров и биосенсоров, способ его получения, электрохимический сенсор и биосенсор, способы их получения и применения

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Большаков И.А., Микросенсоры на основе Берлинской лазури для определения пероксида водорода в биологических объектах, Авто, М., 14.10.2010, с.12, 13. *
Большаков И.А., Микросенсоры на основе Берлинской лазури для определения пероксида водорода в биологических объектах, Автореферат, М., 14.10.2010, с.12, 13. *
Комкова М.А., Карякин А.А. - Высокоэффективные (био)сенсоры на основе Берлинской лазури для носимых устройств, не требующих источников питания // Аcta Naturae, 2016, спецвыпуск, том 2, Научные труды V съезда физиологов СНГ., Сочи-Дагомыс 4-8 октября 2016 г., стр. 130. *

Similar Documents

Publication Publication Date Title
Huang et al. Nano biosensors: properties, applications and electrochemical techniques
Metters et al. based electroanalytical sensing platforms
JP5022033B2 (ja) 電気化学的特性のアッセイのための方法および装置
Vandaveer IV et al. Recent developments in amperometric detection for microchip capillary electrophoresis
Piermarini et al. Uricase biosensor based on a screen-printed electrode modified with Prussian blue for detection of uric acid in human blood serum
Jothimuthu et al. Zinc detection in serum by anodic stripping voltammetry on microfabricated bismuth electrodes
US20040063152A1 (en) Method for electrochemical analysis, corresponding configurations and the use thereof
DK0958495T3 (da) In vitro analysand sensor med lille volumen
Gerard et al. Immobilization of lactate dehydrogenase on electrochemically prepared polyaniline films
Brainina et al. A chronoamperometric method for determining total antioxidant activity
Gross et al. Nitrite/nitrate detection in serum based on dual-plate generator–collector currents in a microtrench
D’Orazio et al. Electrochemistry and chemical sensors
Søpstad et al. Chloride and pH determination on a wireless, flexible electrochemical sensor platform
Abdullah et al. Potentiostats for protein biosensing: Design considerations and analysis on measurement characteristics
Chen et al. Multiwalled carbon nanotubes/reduced graphene oxide nanocomposite electrode for electroanalytical determination of bisphenol A, 8-hydroxy-2’-deoxyguanosine and hydroquinone in urine
CN105784814A (zh) 一种基于浓差电池原理的传感器
Majeed et al. Electroanalytical techniques in biosciences: conductometry, coulometry, voltammetry, and electrochemical sensors
Cha et al. Problems associated with the miniaturization of a voltammetric oxygen sensor: chemical crosstalk among electrodes
Honeychurch et al. The chronoamperometric and voltammetric behaviour of glutathione at screen-printed carbon micro-band electrodes modified with cobalt phthalocyanine
Liang et al. A novel cloth-based multiway closed bipolar electrochemiluminescence biosensor for accurate detection of uric acid
Lu et al. A bipolar electrochemiluminescence sensing platform based on pencil core and paper reservoirs
RU2682568C1 (ru) Способ определения концентрации пероксида водорода в растворе
Punter-Villagrasa et al. Amperometric and impedance monitoring systems for biomedical applications
Bhaiyya et al. Smartphone integrated 3D-printed standalone electrochemiluminescence platform for cholesterol detection
US10830726B2 (en) Electrochemical pH sensor comprising a phenolic compound using hydrogen bonding of the hydroxyl group to sulphur atoms of the phenolic compound