RU2680298C1 - Платформа выдвижная для лётных испытаний оптоэлектронных систем - Google Patents

Платформа выдвижная для лётных испытаний оптоэлектронных систем Download PDF

Info

Publication number
RU2680298C1
RU2680298C1 RU2018114469A RU2018114469A RU2680298C1 RU 2680298 C1 RU2680298 C1 RU 2680298C1 RU 2018114469 A RU2018114469 A RU 2018114469A RU 2018114469 A RU2018114469 A RU 2018114469A RU 2680298 C1 RU2680298 C1 RU 2680298C1
Authority
RU
Russia
Prior art keywords
monoblock
rack
brackets
arm
optoelectronic
Prior art date
Application number
RU2018114469A
Other languages
English (en)
Inventor
Владимир Николаевич Тихонов
Юрий Владимирович Кряжев
Original Assignee
Акционерное общество "Лётно-исследовательский институт имени М.М. Громова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" filed Critical Акционерное общество "Лётно-исследовательский институт имени М.М. Громова"
Priority to RU2018114469A priority Critical patent/RU2680298C1/ru
Application granted granted Critical
Publication of RU2680298C1 publication Critical patent/RU2680298C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C7/00Structures or fairings not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Изобретение относится к летным испытаниям авиационных оптоэлектронных систем. Платформа выдвижная для летных испытаний оптоэлектронных систем при установке на самолет, имеющий грузовую рампу и створки хвостового отсека, содержит моноблок (1) с комплектом оптоэлектронной аппаратуры, стойку (2), установленную на торце грузовой рампы (23), рычажный механизм выдвижения параллелограммного типа с гидроприводом, включающим рычаг-подвес, выполненный в виде изогнутой балки (4), рычаг-стабилизатор (5), гидроцилиндр (6), подключенный через трубопроводы к гидропульту (7) с ручным гидронасосом (8) и гидронасосной станции (9). Рычаг-подвес шарнирно связан с кронштейнами на стойке (2) и кронштейнами на верхней поверхности силового кожуха моноблока (1), рычаг-стабилизатор (5) шарнирно связан с кронштейнами на верней части стойки (2) и кронштейнами наклонной стойки (3) силового кожуха. Изобретение позволяет расширить угол обзора контролируемого пространства, повышает надежность, устойчивость, точность измерений и целеуказания. 1 з.п. ф-лы, 5 ил.

Description

Область техники
Изобретение относится к авиационной технике, а именно, к выдвижным самолетным платформам и может быть использовано для летных испытаний оптоэлектронных систем.
Уровень техники
Известно устройство-платформа с контейнером оборудованным радаром, датчиками обнаружения целей, аппаратурой фотографирования и определения координат целей, размещенная на транспортном самолете Lockheed С-130, патент US №5927648, 27.07.1999 г. B64C 7/00.
Однако, в процессе выдвижения в полете контейнера с аппаратурой требуется открытие двери грузового отсека, что приводит к его разгерметизации, что и ограничивает высоту полета самолета по условиям жизнеобеспечения операторов платформы и экипажа самолета;
- контейнер с аппаратурой, напрямую не связанный с наиболее жесткими частями самолета (центроплан, грузовая рампа) и находящийся в непосредственно в потоке, подвергающийся большим аэродинамическим нагрузкам, испытывает повышенный уровень вибраций по сравнению с устройством, закрепленным на грузовой рампе и находящимся в аэродинамической тени створок грузового люка.
Известна система - платформа выдвижная с оптоэлектронным устройством на самолете для дистанционного обнаружения целей, включающая раму, винтовой механизм выдвижения с электроприводом, две направляющие колонки, защитные створки для оптики. Оптоэлектронное устройство закреплено на подвижной платформе и перемещается из убранного положения в выдвинутое и обратно. При этом в убранном положении датчик закрывается защитными створками с помощью отдельного электропривода, патент US №9493229, 15.11.2016 г., B64D 47/02.
Однако, в этой системе - платформе, наиболее близкой к предлагаемой, вследствие указанного размещения на винтовом приводе платформы, не связанной непосредственно с жесткими частями каркаса самолета, возникает самовозбуждение вибрации от прямого воздействия воздушного потока, что препятствует повышению точности измерений оптоэлектронного датчика, а также требует отдельного сложного устройства защиты оптики от разлетающихся частиц при взлете-посадке в виде створок с отдельным электропроводом.
Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в расширении углов обзора контролируемого пространства, повышении надежности работы, повышении устойчивости и точности измерений и целеуказания, повышении эксплуатационной стойкости при установке на самолет, имеющий грузовую рампу и створки хвостового отсека, выдвижной платформы для летных испытаний оптоэлектронных систем.
Существенные признаки.
Для достижения технического результата в платформе выдвижной для летных испытаний оптоэлектронных систем при установке на самолет, имеющий грузовую рампу и створки хвостового отсека, содержащей механизм выдвижения с приводом, оптоэлектронное устройство, закрепленное на подвижной платформе, перемещаемой из убранного положения в выдвинутое и обратно, дополнительно введены выдвижной моноблок, состоящий из этажерки приборной с оптоэлектронными системами, включая элементы подсистем, обеспечивающих работоспособность оптоэлектронных систем, силового кожуха - прямой призматической формы, с наклонной стойкой, размещенной в задней зоне верхней поверхности силового кожуха моноблока, и с кронштейнами подвески, со скругленной передней гранью с клиновыми упорами для фиксации моноблока в нижнем - рабочем положении и фиксирующим зубом с помощью замка для фиксации моноблока в верхнем-транспортном положении. Механизм выдвижения выполнен в виде механизма параллелограммного типа, связанного с гидроприводом для вертикального выдвижения моноблока, содержит стойку, установленную на торце грузовой рампы, выполненную с кронштейнами для установки клиновых пазов внизу стойки, гидроцилиндр, систему рычагов подвески, состоящую из рычага-подвеса и рычага-стабилизатора. Рычаг-подвес установлен под рычагом-стабилизатором, кронштейны рычага-подвеса в количестве двух штук шарнирно соединены с кронштейнами, установленными в средней части стойки. Два других кронштейна рычага-подвеса со стороны моноблока шарнирно соединены с двумя кронштейнами на верхней поверхности силового кожуха моноблока. Два кронштейна рычага-стабилизатора со стороны стойки шарнирно соединены с кронштейнами, установленными на верхней части стойки, кронштейны рычага-стабилизатора со стороны моноблока шарнирно соединены с кронштейнами на наклонной стойке. Действующие длины рычага-подвеса и рычага-стабилизатора равны, а центры шарниров рычага подвеса и рычага-стабилизатора находятся соответственно на одной вертикали, как на стойке, так и на моноблоке. При этом выполняются условия работы параллелограммного рычажного механизма и обеспечивается, таким образом, плоско-параллельное вертикальное перемещение моноблока.
Исполнительный гидроцилиндр гидропривода соединен кронштейном на стойке и с кронштейном на рычаге-подвесе и подключен через трубопроводы к гидропульту с ручным гидронасосом, распределительной арматурой и контрольными приборами, и гидронасосной станции. Кроме того, элементы подсистем, обеспечивающие работоспособность оптоэлектронных систем, содержат: систему термостатирования, включающую установленные в гермоотсеке панель управления вентиляторами, подключенную к трем вентиляторам для подачи воздуха из грузоотсека в блоки оптоэлектронной системы через коллектор с обратными клапанами, шланг, проходящий через гермоввод из герметичного грузового отсека в негерметичный хвостовой и входящий через подвижный угловой проходник на силовом кожухе в коллектор, находящийся внутри моноблока. Внутренний коллектор связан гибкими трубопроводами с блоками оптоэлектронной системы, во внутреннем коллекторе установлен датчик температуры, на этажерке приборной установлены датчики вибраций и линейных нагрузок. Все датчики, установленные в моноблоке, связаны с блоком регистрации, установленном в герметичном грузовом отсеке.
На боковой створке в хвостовом отсеке установлены концевые выключатели, соединенные с панелью сигнализации на гидропульте. В верхней и нижней частях стойки установлены концевые выключатели, соединенные с панелью сигнализации на гидропульте.
Более того, два клиновых упора, установленные в верхней части передней поверхности силового кожуха моноблока, выполнены с возможностью введения их при рабочем положении в клиновые пазы на кронштейнах внизу стойки. При этом с помощью гидроцилиндра клиновые упоры, введенные в клиновые пазы, дожимаются с помощью гидроцилиндра для фиксирования моноблока в рабочем положении, совместно образуя жесткую силовую схему, объединенную с жесткой частью каркаса - грузовой рампой самолета, за счет усилия-подтяга.
Для фиксации моноблока в верхнем - транспортном положении на силовом кожухе моноблока установлен фиксирующий зуб, входящий в зацепление с ним подпружиненный крюк-замок, размещенный на кронштейне стойки, связанный тросовым приводом с рычагом управления замком. Моноблок выполнен с возможностью расположения его в транспортном положении в верхней части стойки и удерживания замком (крюком), связанным тросовым приводом. Моноблок в транспортном положении находится внутри закрытого створками грузового отсека и удерживается размещенным на стойке замком (крюком), связанным тросовым приводом с рычагом управления на гидропульте.
Установленные в гермоотсеке: гидронасосная станция, гидропульт, блок виброизмерений, блок вентиляторов, видеорегистратор, соединены с устройствами, размещенными в негерметичном хвостовом отсеке посредством электропроводки, троса управления замком, шлангом подачи воздуха в моноблок, трубопроводами подачи гидравлической жидкости, которые проведены через герметичные вводы в гермостенке, установленной между отсеками.
Дополнительно моноблок при взлет-посадке и хранении на стоянке защищает оптику от разлетающихся частиц.
Таким образом, за счет включения моноблока в общую силовую схему с каркасом самолета и прижатия расклинивающих упоров, расположенных на силовом каркасе моноблока, к клиновым пазам на стойке платформы, жестко связанной с одной из наиболее жестких и прочных частей каркаса самолета-грузовой рампе, достигается повышение жесткости.
Моноблок с оптоэлектронной системой, содержащей хрупкие оптические элементы, в транспортном положении и при хранении на стоянке находится внутри хвостового отсека самолета и защищен закрытыми створками грузового люка от разлетающихся частиц при взлете-посадке и несанкционированного доступа при хранении на стоянке.
Вместо механизма вертикального перемещения с винтовым приводом (в прототипе), в предлагаемом устройстве использовано устройство вертикального перемещения (выдвижения) моноблока с оптоэлектронной системой с использованием гидроцилиндра, а также для обеспечения повышенной жесткости установки моноблока с оптоэлектронной системой необходимой для обеспечения стабильности ее работы и повышения точности измерений при летных испытаниях применены клиновидные упоры, расположенные на силовом кожухе моноблока. Под действием гидроцилиндра клиновые упоры моноблока входят в клиновые пазы, расположенные на стойке и за счет усилия подтяга гидроцилиндром образуют жесткую силовую схему, объединяющую моноблок с жесткой частью каркаса самолета-грузовой рампой.
Сущность изобретения поясняется чертежами, где:
на фиг. 1 представлена структурная схема платформы выдвижной, размещенной в хвостовом отсеке фюзеляжа самолета;
на фиг. 2 - установка гидроцилиндра на стойке;
на фиг. 3 - установка концевого выключателя для контроля крайнего нижнего положения моноблока на стойке;
на фиг. 4 - установка клинового упора, входящий в клиновый паз;
на фиг. 5 - установка замка.
На фиг. 1 представлена структурная схема платформы выдвижной размещенной в хвостовом отсеке фюзеляжа самолета, в составе моноблока с оптоэлектронной аппаратурой и системы выдвижения, позволяющей размещать моноблок как в верхнем (транспотном),так и в нижнем (рабочем) положении, в этом случае после выдвижения моноблок выходит за пределы обводов хвостовой части фюзеляжа, а также подсистем, обеспечивающих и контролирующих работу оптоэлектронной аппаратуры, в том числе обдува блоков оптоэлектронной аппаратуры, контроля и регистрации действующих вибраций, линейных нагрузок, температуры, видеорегистрации.
Предлагаемая платформа выдвижная (фиг. 1) содержит моноблок с комплектом оптоэлектронной аппаратуры (1), состоящим из этажерки приборной, в силовом кожухе, выполненного в форме - прямой призмы с закругленной передней гранью и с наклонной стойкой (3), размещенной в задней зоне верхней поверхности силового кожуха моноблока, стойку (2), установленную на торце грузовой рампы (23), рычажный механизм выдвижения параллелограмного типа с гидроприводом, включающим рычаг-подвес, выполненный в виде изогнутой балки (4), рычаг-стабилизатор (5), гидроцилиндр (6), подключенный через трубопроводы к гидропульту (7) с ручным гидронасосом (8) и гидронасосной станции (9). Рычаг-подвес (4) шарнирно связан с кронштейнами на стойке (2) и кронштейнами на верхней поверхности силового кожуха моноблока (1), рычаг-стабилизатор (5), шарнирно связан с кронштейнами на верней части стойки (2) и кронштейнами наклонной стойки (3) силового кожуха. В совокупности кинаматика рычагов обеспечивает заданную траекторию движения моноблока при его выдвижении вниз (рабочее положение) или вверх (транспортное) положение. Движеие вниз ограничивется клиновыми упорами, а подъем вверх ограничивается фиксирующзим замком. Рычаг-подвес (4) установлен под рычагом-стабилизатором (5), кронштейны рычага-подвеса (4) в количестве двух штук шарнирно соединены с кронштейнами, установленными в средней части стойки (2). Два других кронштейна рычага-подвеса со стороны моноблока шарнирно соединены с двумя кронштейнами на верхней поверхности силового кожуха моноблока. Кронштейны рычага-стабилизатора со стороны стойки шарнирно соединены с кронштейнами, установленными на верхней части стойки (2), кронштейны рычага-стабилизатора со стороны моноблока шарнирно соединены с кронштйенами на стойке, установленной в задней зоне верхней поверхности силового кожуха моноблока. Действующие длины рычага-подвеса и рычага-стабилизатора равны, а центры шарниров рычага подвеса и рычага-стабилизатора находятся соответственно на одной вертикали, как на стойке, так и на моноблоке, при этом выполняются условия работы параллелограмного рычажного механизма и обеспечивается, таким образом, плоско-параллельное вертикальное перемещение моноблока. Гидроцилиндр (6) шарнирно установлен на кронштейнах в основании стойки (2)и на рычаге-подвесе (4). Посредством выдвижения или уборки штока гидроцилиндра, рычаг-подвес поворачивается, поднимая или опуская соединенный с ним моноблок. Для фиксации моноблока (1) в нижнем (рабочем) положении в верхней части передней поверхности силового кожуха моноблока установлены два клиновых упора (10), входящих в соответствующие клиновые пазы, размещенные на кронштейнах (11) (фиг. 3, 4) в нижней части стойки (2), фиг. 2. Для фиксации моноблока (1) в верхнем (транспортном) положении на силовом кожухе моноблока предусмотрен фиксирующий зуб (13), фиг. 5, размещенный в верней части передней поверхности силового кожуха моноблока и входящий в зацепление с подпружиненным крюком 26 замка (12), фиг. 5. Для контроля крайних нижнего и верхнего положений моноблока на стойке (2) установлены концевые выключатели, (фиг 3, 4) (21) и (22), соединенные с сигнальными лампами, расположенными на гидропульте (7). Одновременно при достижении моноблоком крайних положений через электропанель гидропульта подается сигнал на отключение гидронасосной станции (9). Для видеофиксации процессов выдвижения и уборки моноблока установлены две видеокамеры (19), обеспечивающие видеонаблюдение и видеозапись в боковой и фронтальной плоскостях. В гермоотсеке видеозапись осуществляется на видеорегистраторе (20). Для отключения замка, удерживающего моноблок (1) в транспортном положении при переводе его в рабочее положение, предусмотрен тросовой механизм управления замком (14), соединяющий рычаг управления замком, размещенном на гидропульте (7) с подпружиненным крюком замка (12).
Для обеспечения работы блоков оптоэлектронной аппаратуры предусмотрено поддержание заданной температуры в моноблоке путем подачи воздуха от блока вентиляторов (15) с помощью шланга (16). Для контроля уровня вибраций и перегрузок, действующих на блоки оптоэлектронной аппаратуры, в моноблоке в контрольных точках установлены вибродатчики и датчики линейных нагрузок, выдающие сигналы на блок регистрации (18). Коммуникации, соединяющие устройства находящиеся в гермоотсеке с устройствами, размещенными в негерметичном хвостовом отсеке (электропроводка, трос управления (14) замком (12), шланг подачи воздуха в моноблок (16), трубопроводы (17) подачи гидравлической жидкости от гидропульта (7) в гидроцилиндр (6) проходят через герметичные вводы в гермостенке (25).
Платформа выдвижная функционирует следующим образом.
В транспортном положении, при хранении на стоянке платформа выдвижная находится внутри хвостового отсека и защищена от разлетающихся частиц при взлете-посадке и несанкционированного доступа на стоянке. При этом моноблок (1) удерживается крюком замка (12).
Выдвижение моноблока (1) происходит следующим образом: при открытой створке (24) хвостового отсека с помощью тросового механизма (14) открывается замок (12), удерживающий моноблок в транспортном положении, затем с помощью гидропривода производится выдвижение моноблока в рабочее положение, при достижении которого клиновые упоры (10) (две штуки) на моноблоке (1) входят в клиновые пазы (11) на стойке(2), жестко закрепленной на торце грузовой рампы (23) и расклиниваются усилием гидроцилиндра (6), образуя жесткую связь моноблока с каркасом самолета. При достижении моноблоком рабочего положения гидропривод автоматически отключается.
Для обеспечения работы блоков оптоэлектронной аппаратуры предусмотрено обеспечение заданной температуры в моноблоке путем подачи воздуха от блока вентиляторов (15) через шланг (16), обеспечен контроль уровня вибраций и перегрузок, действующих на блоки оптоэлектронной аппаратуры, причем в моноблоке в контрольных точках установлены вибродатчики и датчики линейных нагрузок, выдающие сигналы на блок регистрации (19). Коммуникации, соединяющие устройства, находящиеся в гермоотсеке с устройствами, размещенными в негерметичном хвостовом отсеке (электропроводка, трос управления замком, шланг подачи воздуха (16) в моноблок, трубопроводы (17) подачи гидравлической жидкости в гидроцилиндр (6)) проходят через герметичные вводы в гермостенке (25).
Уборка моноблока осуществляется в следующем порядке: с помощью гидропривода моноблок поднимается вверх и занимает транспортное положение, при этом автоматически срабатывает замок, удерживающий моноблок в транспортном положении, и отключается гидропривод. Створки (24) хвостового отсека закрываются.

Claims (8)

1. Платформа выдвижная для летных испытаний оптоэлектронных систем при установке на самолет, имеющий грузовую рампу и створки хвостового отсека, содержащая механизм выдвижения с приводом, оптоэлектронное устройство, закрепленное на подвижной платформе, перемещаемой из убранного положения в выдвинутое и обратно, отличающаяся тем, что дополнительно введены выдвижной моноблок, состоящий из этажерки приборной с оптоэлектронными системами, включая элементы подсистем, обеспечивающих работоспособность оптоэлектронных систем, силового кожуха - прямой призматической формы, с наклонной стойкой, размещенной в задней зоне верхней поверхности силового кожуха моноблока, и с кронштейнами подвески, со скругленной передней гранью с клиновыми упорами для фиксации моноблока в нижнем - рабочем положении и фиксирующим зубом с помощью замка для фиксации моноблока в верхнем-транспортном положении, а механизм выдвижения выполнен в виде механизма параллелограммного типа, связанного с гидроприводом для вертикального выдвижения моноблока, содержит стойку, установленную на торце грузовой рампы, выполненную с кронштейнами для установки клиновых пазов внизу стойки, гидроцилиндра, систему рычагов подвески, состоящую из рычага-подвеса и рычага-стабилизатора, рычаг-подвес установлен под рычагом - стабилизатором, кронштейны рычага-подвеса в количестве двух штук шарнирно соединены с кронштейнами, установленными в средней части стойки; два других кронштейна рычага-подвеса со стороны моноблока шарнирно соединены с двумя кронштейнами на верхней поверхности силового кожуха моноблока; два кронштейна рычага-стабилизатора со стороны стойки шарнирно соединены с кронштейнами, установленными на верхней части стойки, кронштейны рычага-стабилизатора со стороны моноблока шарнирно соединены с кронштейнами на наклонной стойке, действующие длины рычага-подвеса и рычага-стабилизатора равны, а центры шарниров рычага-подвеса и рычага-стабилизатора находятся соответственно на одной вертикали как на стойке, так и на моноблоке, при этом выполняются условия работы параллелограммного рычажного механизма и обеспечивается, таким образом, плоско-параллельное вертикальное перемещение моноблока;
исполнительный гидроцилиндр гидропривода соединен кронштейном на стойке и с кронштейном на рычаге-подвесе и подключен через трубопроводы к гидропульту с ручным гидронасосом и гидронасосной станции;
при этом элементы подсистем, обеспечивающие работоспособность оптоэлектронных систем, содержат: систему термостатирования, включающую установленные в гермоотсеке панель управления вентиляторами, подключенную к трем вентиляторам для подачи воздуха из грузоотсека в блоки оптоэлектронной системы через коллектор с обратными клапанами, шланг, проходящий через гермоввод из герметичного грузового отсека в негерметичный хвостовой и входящий через подвижный угловой проходник на силовом кожухе в коллектор, находящийся внутри моноблока, внутренний коллектор связан гибкими трубопроводами с блоками оптоэлектронной системы, во внутреннем коллекторе установлен датчик температуры, на этажерке приборной установлены датчики вибраций и линейных нагрузок, все датчики, установленные в моноблоке, связаны с блоком регистрации, установленном в герметичном грузовом отсеке;
на боковой створке в хвостовом отсеке установлены концевые выключатели, соединенные с панелью сигнализации на гидропульте, в верхней и нижней частях стойки установлены концевые выключатели, соединенные с панелью сигнализации на гидропульте;
два клиновых упора, установленных в верхней части передней поверхности силового кожуха моноблока, выполнены с возможностью введения их при рабочем положении в клиновые пазы на кронштейнах внизу стойки, при этом с помощью гидроцилиндра клиновые упоры, введенные в клиновые пазы, дожимаются с помощью гидроцилиндра для фиксирования моноблока в рабочем положении, совместно образуя жесткую силовую схему, объединенную с жесткой частью каркаса - грузовой рампой самолета, за счет усилия-подтяга;
для фиксации моноблока в верхнем - транспортном положении на силовом кожухе моноблока установлен фиксирующий зуб, входящий в зацепление с ним подпружиненный крюк-замок, размещенный на кронштейне стойки, связанный тросовым приводом с рычагом управления замком, а моноблок выполнен с возможностью расположения его в транспортном положении в верхней части стойки и удерживания замком, связанным тросовым приводом.
2. Платформа выдвижная по п. 1, отличающаяся тем, что установленные в гермоотсеке: гидронасосная станция, гидропульт, блок виброизмерений, блок вентиляторов, видеорегистратор, соединены с устройствами, размещенными в негерметичном хвостовом отсеке посредством электропроводки, троса управления замком, шлангом подачи воздуха в моноблок, трубопроводами подачи гидравлической жидкости, которые проведены через герметичные вводы в гермостенке, установленной между отсеками;
при взлет-посадке и хранении на стоянке дополнительно моноблок защищает оптику от разлетающихся частиц.
RU2018114469A 2018-04-19 2018-04-19 Платформа выдвижная для лётных испытаний оптоэлектронных систем RU2680298C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018114469A RU2680298C1 (ru) 2018-04-19 2018-04-19 Платформа выдвижная для лётных испытаний оптоэлектронных систем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018114469A RU2680298C1 (ru) 2018-04-19 2018-04-19 Платформа выдвижная для лётных испытаний оптоэлектронных систем

Publications (1)

Publication Number Publication Date
RU2680298C1 true RU2680298C1 (ru) 2019-02-19

Family

ID=65442646

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018114469A RU2680298C1 (ru) 2018-04-19 2018-04-19 Платформа выдвижная для лётных испытаний оптоэлектронных систем

Country Status (1)

Country Link
RU (1) RU2680298C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2116666C1 (ru) * 1995-10-18 1998-07-27 Летно-исследовательский институт им.М.М.Громова Комплекс бортовых траекторных измерений
RU8812U1 (ru) * 1998-02-05 1998-12-16 Государственный научный центр Российской Федерации "Летно-исследовательский институт им.М.М.Громова" Летно-испытательный комплекс самолетов и бортового оборудования
RU2134911C1 (ru) * 1996-09-13 1999-08-20 Летно-исследовательский институт им.М.М.Громова Система предупреждения столкновения летательных аппаратов при летных испытаниях
US9493229B2 (en) * 2012-11-30 2016-11-15 Airbus Operations (S.A.S.) Retractable equipment system including a device optimized for driving protection flaps
US20170001706A1 (en) * 2007-10-17 2017-01-05 1281329 Alberta Ltd. Aircraft based non-dedicated special mission pod mounting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2116666C1 (ru) * 1995-10-18 1998-07-27 Летно-исследовательский институт им.М.М.Громова Комплекс бортовых траекторных измерений
RU2134911C1 (ru) * 1996-09-13 1999-08-20 Летно-исследовательский институт им.М.М.Громова Система предупреждения столкновения летательных аппаратов при летных испытаниях
RU8812U1 (ru) * 1998-02-05 1998-12-16 Государственный научный центр Российской Федерации "Летно-исследовательский институт им.М.М.Громова" Летно-испытательный комплекс самолетов и бортового оборудования
US20170001706A1 (en) * 2007-10-17 2017-01-05 1281329 Alberta Ltd. Aircraft based non-dedicated special mission pod mounting apparatus
US9493229B2 (en) * 2012-11-30 2016-11-15 Airbus Operations (S.A.S.) Retractable equipment system including a device optimized for driving protection flaps

Similar Documents

Publication Publication Date Title
US11242128B2 (en) Aircraft based non-dedicated special mission pod mounting apparatus
US20220042830A1 (en) Modular, palletized system for a deployable sensor
RU2680298C1 (ru) Платформа выдвижная для лётных испытаний оптоэлектронных систем
CN112179634A (zh) 一种基于无人发射车的水上迫降试验装置及方法
CN103253378B (zh) 一种框架与飞机的接合方法
CN103158886B (zh) 一种登机设备的运行方法
CN102991717B (zh) 一种具有密封装置的登机桥
CN102991723B (zh) 一种登机桥操纵方法
CN103253377B (zh) 一种与飞机弯曲对接的方法
CN103010480B (zh) 一种遮篷装置展开方法
CN102991701A (zh) 一种框架与飞机的对接方法
CN102963542A (zh) 一种可供乘客通过的通道
CN102991716B (zh) 一种遮篷装置的展开方法
CN102991720B (zh) 一种乘客通道
CN102991722A (zh) 一种乘客通道操纵方法
CN103144778B (zh) 一种可弯曲元件
CN102991708A (zh) 一种登机桥架设方法
CN103224034B (zh) 一种包括可变形框架的对接装置
CN102991718B (zh) 一种用于遮篷装置的对接框架
CN102975864B (zh) 一种密封装置
CN103171771B (zh) 一种输运装置的操作方法
CN102963541A (zh) 一种密封装置的对接方法
CN102991704A (zh) 一种输运装置的对接方法
CN102991721A (zh) 一种对接框架
CN102991719A (zh) 一种用于登机桥的遮篷装置