RU2679860C1 - Способ обработки легкодеформируемых изделий - Google Patents

Способ обработки легкодеформируемых изделий Download PDF

Info

Publication number
RU2679860C1
RU2679860C1 RU2018119558A RU2018119558A RU2679860C1 RU 2679860 C1 RU2679860 C1 RU 2679860C1 RU 2018119558 A RU2018119558 A RU 2018119558A RU 2018119558 A RU2018119558 A RU 2018119558A RU 2679860 C1 RU2679860 C1 RU 2679860C1
Authority
RU
Russia
Prior art keywords
points
product
point
clouds
processing
Prior art date
Application number
RU2018119558A
Other languages
English (en)
Inventor
Владимир Федорович Филаретов
Дмитрий Александрович Юхимец
Александр Валерьевич Зуев
Антон Сергеевич Губанков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority to RU2018119558A priority Critical patent/RU2679860C1/ru
Application granted granted Critical
Publication of RU2679860C1 publication Critical patent/RU2679860C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1671Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems

Abstract

Изобретение относится к области обработки, а именно обрезки, технологических припусков, краев, заусенцев, легкодеформируемых изделий из металлов, конструкционных материалов, пластмасс и др. Способ включает произвольное закрепление изделия в пространстве и обработку рабочим инструментом многостепенного промышленного робота-манипулятора, снабженного системой управления, управляющей ЭВМ и системой технического зрения. При этом коррекция траекторий обработки выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения и эталонных CAD-моделей изделий. Изобретение позволяет сохранить заданную точность обработки припусков, краев, заусенцев тонкостенных изделий после их деформаций после фиксации в пространстве перед обработкой путем коррекции траекторий движения рабочего инструмента многостепенного промышленного робота-манипулятора при наличии заранее неизвестных смещений некоторых частей обрабатываемого изделия, произвольно закрепляемого в пространстве. 2 ил.

Description

Изобретение относится к области обработки (обрезки технологических припусков, краев, заусенцев) легко деформируемых изделий из металлов, конструкционных материалов, пластмасс и др.
Известен способ определения положения крупногабаритной детали для ее последующей обработки, который включает первичную фиксацию детали на металлорежущем станке, измерение 2D координат шести точек на заготовке с помощью оптической головки, сравнение этих координат с теоретическими 3D координатами на CAD модели заготовки, усреднение и минимизация ошибок для получения координат заготовки в системе координат металлорежущего станка, уточнение положения заготовки в CAD/CAM системе и генерирование скорректированной программы обработки (см. CN 1446666 (A), МПК B23Q15/00, 08.10.2003).
Известен также способ автоматической обработки криволинейных поверхностей, в котором металлообрабатывающий станок обрабатывает металлическую заготовку сложной формы, 3D измерительная головка одновременно считывает трехмерные координаты заготовки, эти координаты передаются и сохраняются измерительной программой, задаются параметры обработки для выполнения сравнения, программа обработки формируется после совпадения трехмерных координат, полученных от 3D измерительной головки, с заданными параметрами обработки (см. CN 102615552 (A), МПК B23Q15/00, 01.08.2012).
Общим недостатком двух описанных выше способов является то, что для работы в реальном масштабе времени им требуется отслеживать траекторию реза с помощью сенсора, а для этого она должна четко выделяться на заготовке. Однако при использовании охлаждающей жидкости (при лезвийной обработке) или при гидроабразивной резке получение необходимых координат точек реза будет происходить с большой ошибкой и временными задержками, так как любые системы технического зрения очень чувствительны к непрерывно изменяющимся изображениям, обработка которых требует затрат времени. В результате скорость выполнения технологических операций и их точность значительно снижаются.
Известно устройство слежения за траекторией в реальном масштабе времени при лазерной сварке с помощью робота, которое содержит программируемый логический контроллер, робот, устройство управления лазерной сваркой и сенсор, содержащий видеокамеру и устройство для обработки видеоданных. Сенсор расположен на устройстве лазерной сварки, он получает данные о положении и форме заготовки с помощью видеокамеры и корректирует траекторию движения устройства для лазерной сварки в реальном масштабе времени (см. CN 204413407 (U), МПК B23K26/21, 24.06.2015).
Это устройство является наиболее близким к предлагаемому изобретению. Недостатком этого устройства является его сварочная специфика. Для качественной сварки видеосистема всегда должна точно определять изображение стыка свариваемых изделий, а при обработке гибких изделий какие-либо стыки или линии могут вообще отсутствовать. Также для использования прототипа предполагается точная и жесткая фиксация изделия в рабочей зоне робота, а фиксация гибких изделий выполняется неточно и, более того, могут происходить неизвестные деформации. В результате, обработка таких неточно закрепленных и деформированных изделий будет выполнена с браком.
Задачей изобретения является устранение указанного выше недостатка и, в частности, сохранение заданной точности обработки (резки) краев (припусков, заусенцев) тонкостенных изделий после их деформаций после фиксации в пространстве перед обработкой.
Технический результат изобретения заключается в коррекции траекторий движения рабочего инструмента (лазера, гидроабразивного резака и др.) многостепенных манипуляторов при наличии заранее неизвестных смещений некоторых частей обрабатываемых изделий, произвольно закрепляемых в пространстве. При этом коррекция траекторий обработки выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения (СТЗ) и эталонных CAD-моделей изделий.
Поставленная задача решается тем, что способ обработки легко деформируемых изделий, включающий произвольное закрепление в пространстве и обработку рабочим инструментом многостепенного промышленного робота-манипулятора, снабженного системой управления, управляющей ЭВМ и системой технического зрения отличается тем, что в управляющую ЭВМ загружают CAD-модель изделия в виде исходного облака точек, кроме того, посредством системы технического зрения получают трехмерную модель зафиксированного в рабочей зоне робота-манипулятора обрабатываемого изделия с учетом деформации его краев в виде второго облака точек, после этого сближают геометрические центры исходного и полученного облаков точек, выполняют предварительное совмещение этих двух облаков точек с помощью стандартного метода ICP (Iterative Closest Points) итерационного поиска ближайших точек, и оценивают качество совмещения указанных облаков точек в виде среднеквадратичного расстояния между точками в парах ближайших точек двух облаков, при этом если это среднеквадратичное расстояние превышает заранее заданное, характеризующее ошибку совмещения облаков, то отбрасывают определенное количество пар точек с наибольшими расстояниями между ними и повторяют совмещение указанных двух облаков с помощью метода ICP, добиваясь более точного совмещения недеформированных частей изделия, причем если новое среднеквадратичное расстояние опять будет превышать заданное, то отбрасывают следующие пары точек с наибольшими расстояниями между ними, при этом процедуру повторяют, пока очередное среднеквадратичное расстояние не станет меньше заданного, далее строят сечения двух поверхностей, образованных двумя уже совмещенными облаками точек, плоскостями, проходящими через базовые точки траектории обработки изделия, перпендикулярно этой траектории, выполняют фильтрацию точек в каждом сечении, затем на полученных сечениях - плоскостях ищут участки изделия, имеющие деформацию, и переносят базовые точки траектории движения инструмента с облака точек, соответствующего CAD-модели, на облако точек, соответствующее деформированному изделию, путем поиска в каждом сечении такой точки деформированного изделия, которая находится от точки, соответствующей началу деформированного участка, на расстоянии, равном расстоянию вдоль сечения CAD-модели от точки начала деформации до базовой точки траектории движения инструмента.
Сопоставительный анализ признаков заявляемого способа с признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».
При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.
Признак «…в управляющую ЭВМ загружают CAD-модель изделия в виде исходного облака точек …» обеспечивает автоматическую подготовку эталонной CAD-модели изделия к последующей обработке.
Признак «…посредством системы технического зрения получают трехмерную модель зафиксированного в рабочей зоне робота-манипулятора обрабатываемого изделия с учетом деформации его краев в виде второго облака точек…» обеспечивает получение трехмерной модели зафиксированного обрабатываемого изделия.
Признак «…сближают геометрические центры исходного и полученного облаков точек, выполняют предварительное совмещение этих двух облаков точек с помощью стандартного метода ICP (Iterative Closest Points) итерационного поиска ближайших точек, и оценивают качество совмещения указанных облаков точек в виде среднеквадратичного расстояния между точками в парах ближайших точек двух облаков, если это среднеквадратичное расстояние превышает заранее заданное, характеризующее ошибку совмещения облаков, то отбрасывают определенное количество пар точек с наибольшими расстояниями между ними и повторяют совмещение указанных двух облаков с помощью метода ICP, добиваясь более точного совмещения недеформированных частей изделия, причем если новое среднеквадратичное расстояние опять будет превышать заданное, то отбрасывают следующие пары точек с наибольшими расстояниями между ними, эта процедура повторяется до тех пор, пока очередное среднеквадратичное расстояние не станет меньше заданного…» обеспечивает автоматическое совмещение недеформированных частей исходного и полученного с помощью СТЗ облаков точек.
Признак «…строят сечения двух поверхностей, образованных двумя уже совмещенными облаками точек, плоскостями, проходящими через базовые точки траектории обработки изделия, перпендикулярно этой траектории, выполняют фильтрацию точек в каждом сечении, затем на полученных сечениях - плоскостях ищут участки изделия, имеющие деформацию, и переносят базовые точки траектории движения инструмента с облака точек, соответствующего CAD-модели, на облако точек, соответствующее деформированному изделию, путем поиска в каждом сечении такой точки деформированного изделия, которая находится от точки, соответствующей началу деформированного участка, на расстоянии, равном расстоянию вдоль сечения CAD-модели от точки начала деформации до базовой точки траектории движения инструмента…» обеспечивает автоматическое формирование траектории и программы движения рабочего инструмента многостепенного манипулятора при обработке деформированных после закрепления краев изделий.
На фиг. 1 схематически показан многостепенной манипулятор, выполняющий операции обработки тонкостенного изделия, край которого деформирован после фиксации этого изделия в пространстве. На фиг. 2 показано, как происходит перенос одной базовой точки линии обработки с эталонной CAD-модели на деформированный участок закрепленного тонкостенного изделия.
На чертежах введены следующие обозначения: CAD - эталонная трехмерная модель изделия; 1 – тонкостенное изделие, при закреплении которого в пространстве произошла деформация (отгибание) его края; 2 - рабочий инструмент (лазер, устройство для гидроабразивного реза и др.); 3 - многостепенной манипулятор; 4 - система управления манипулятора; 5 – управляющая ЭВМ; 6 - система технического зрения; T - траектория обработки на эталонной CAD-модели, представляющая собой интерполяционную кривую, проходящую через базовые точки; T* - траектория обработки после деформаций изделия; Sr – точка на границе недеформированной и деформированной части изделия в секущей плоскости Pr;
Figure 00000001
,
Figure 00000002
– базовые точки на участках сдеформированного изделия и его CAD-модели, через которые выполняется интерполяция траекторий T* и T соответственно; LCAD r – длина исследуемого участка изделия.
Заявленный способ включает два этапа. На первом выполняют совмещение облака точек, полученного из эталонной CAD-модели изделия, с облаком точек закрепленного с деформацией отсканированного СТЗ изделия. На втором этапе выполняют перенос базовых точек траектории обработки изделия из эталонного облака на модель закрепленного с деформацией изделия, полученную с помощью СТЗ. Далее через эти перенесенные базовые точки выполняют интерполяцию траектории T*.
Последовательность операций, реализующих заявляемый способ, описывается ниже.
Вначале из базы данных выбирают CAD - эталонную трехмерную модель обрабатываемого изделия, задаваемую в виде облака точек D с требуемой плотностью этих точек, и вводят ее в управляющую ЭВМ 5. В этом облаке также содержатся базовые точки
Figure 00000003
(r =
Figure 00000004
) траектории Т.
Затем с помощью системы 6 технического зрения сканируют закрепленное тонкостенное изделие 1 и его координаты запоминают в управляющей ЭВМ 5 в виде облака точек M. Если система 6 технического зрения не может сканировать крупногабаритное тонкостенное изделие 1 одним кадром, то обеспечивают перемещение системы 6 технического зрения относительно изделия и делают несколько кадров, которые затем совмещают в управляющей ЭВМ 5, формируя единое облако М. Далее координаты каждой точки облака М, заданные в системе координат СТЗ, пересчитывают в управляющей ЭВМ 5 в систему координат многостепенного манипулятора 3.
После этого трехмерную модель закрепленного (возможно с деформацией) изделия, полученную в виде облака точек М, в управляющей ЭВМ 5 сопоставляют с передвигаемым облаком точек D исходной (недеформированной) трехмерной CAD-модели этого изделия и, соответственно, с базовыми точками траектории обработки, заданной на этой CAD-модели. При этом для сопоставления (совмещения) двух указанных трехмерных моделей используют типовую процедуру компьютерной графики. Для этого выполняют локализацию заданного объекта в трехмерной сцене, применяя универсальный метод ICP (Iterative Closest Points) совмещения двух трехмерных моделей, представленных в виде облаков точек, которые являются входными данными для работы этого метода.
Математически задачу совмещения двух облаков точек с помощью метода ICP формулируют в виде:
Figure 00000005
, (1)
Figure 00000006
, (2)
где E – ошибка совмещения облаков точек;
Figure 00000007
- квадрат расстояния между точками в k-ой паре ближайших точек из облаков D и M;
Figure 00000008
и
Figure 00000009
– точки из облаков D и M, соответственно;
Nd, Nm - количество точек в облаках D и M, соответственно, которое может быть различным;
T(a, D) – функция трансформации облака точек D в облако точек M;
a – параметр функции трансформации;
a* – оптимальный параметр функции трансформации, который минимизирует функционал (1).
Для определенности передвигаемым облаком является облако D и Nm ≤ Nd.
Как видно из (1) и (2), задача совмещения двух облаков точек формулируется как задача минимизации среднеквадратичного расстояния между точками в парах ближайших точек этих облаков. При этом в параметр a функции T(a, D) входят элементы матрицы поворота и вектора смещения. Последовательность выполнения ICP на каждой итерации состоит из следующих шагов.
Для каждой точки
Figure 00000008
, ищется ближайшая точка
Figure 00000009
. Облака точек M и D при их построении часто содержат различное количество точек. При этом одной точке одного облака может соответствовать несколько ближайших к ней точек другого облака. В этом случае для одной точки одного облака формируется столько пар точек сколько ближайших к ней точек расположено в другом облаке, то есть Nd ≤ Nk.
Затем выполняется новый расчет параметра a функции T(a, D) с помощью известных способов численной оптимизации. После этого преобразование T(a, D) с новым параметром a применяется к облаку точек D. На следующем шаге с помощью выражения (1) рассчитывается ошибка E совмещения указанных облаков точек и сравнивается с предельным значением. Если полученное значение E для совмещаемых облаков точек М и D становится меньше предельного значения, то расчеты прекращаются. В противном случае указанные выше шаги расчетов продолжаются.
Рассмотренная выше процедура позволяет относительно легко и точно совмещать трехмерные модели отсканированных изделий с их эталонными CAD-моделями, если при фиксации этих изделий не происходит деформаций. Но, если деформации присутствуют, то качество этого совмещения значительно снижается. В частности, при совмещении облака деформируемого изделия с облаком эталонной CAD-модели с помощью типового метода ICP среднеквадратичное отклонение всех пар ближайших точек облаков может оставаться в допустимых пределах, а расстояния между некоторыми точками моделей могут значительно возрастать.
Для более точного совмещения двух облаков предлагается вначале с помощью метода ICP точно совместить недеформированные участки. Для совмещения двух облаков точек недеформированных участков изделий учитывают только те пары точек, которые находятся на этих участках. В этом случае, применяя выражение (1), вместо Nk следует использовать
Figure 00000010
, которое соответствует количеству пар точек, соответствующих недеформированным участкам модели; где round() – округление до целого числа, η – доля пар ближайших точек с наибольшими расстояниями между ними (они находятся на деформированном участке), которые пока не учитываются при работе метода ICP. Особенности определения Nkn будут пояснены ниже.
Указанное выше сопоставление двух недеформированных областей выполняют в управляющей ЭВМ 5 следующим образом.
1) Вначале для уменьшения количества итераций метода ICP сближают геометрические центры облаков точек M и D, являющиеся точками, координаты которых, определяются средним арифметическим соответствующих координат всех точек каждого из облаков M и D. Для этого формируют новое облако
Figure 00000011
, которое отличается от облака D только тем, что координаты всех его точек смещаются в пространстве и находятся по формуле:
Figure 00000012
2) Обеспечивают предварительное совмещение двух облаков M и
Figure 00000013
точек с помощью типового метода ICP.
3) Если после предварительного совмещения облаков M и
Figure 00000014
выполняется неравенство E > Emax, где Emax - допустимая величина среднеквадратического отклонения, то в выражении (1) Nk заменяется на Nkn и совмещение двух облаков повторяют с помощью метода ICP уже с меньшим количеством пар ближайших точек. При этом отбрасывают пары точек с наибольшими расстояниями между ними (количество отбрасываемых пар индивидуально для каждого конкретного изделия и определяется эмпирически).
4) Если после повторного совмещения по-прежнему справедливо неравенство E > Emax, то процедуру, указанную в предыдущем пункте, повторяют с возрастанием значения
Figure 00000015
на величину
Figure 00000016
:
Figure 00000017
, где p = 0, 1, 2… – номер итерации использования метода совмещения облаков точек.
Очередную итерацию совмещения двух облаков начинают из положения, достигнутого на предыдущей итерации. Это уменьшает количество итераций метода ICP. Указанные выше действия повторяют до тех пор, пока не будет выполняться неравенство E < Emax, то есть пока не совместятся недеформированные участки и будут окончательно выявлены края изделия, которые подверглись деформации при его закреплении.
После совмещения недеформированных областей облаков точек происходит перенос базовых точек траектории Т движения рабочего инструмента, заданной на CAD-модели изделия, на трехмерную модель изделия, закрепленного в рабочей зоне манипулятора с деформацией его края. Перенос базовых точек траектории Т выполняется следующим образом.
Вначале строится R секущих плоскостей Pr (r =
Figure 00000004
), проходящих через базовые точки
Figure 00000003
(r =
Figure 00000004
) траектории Т движения инструмента, заданной на CAD-модели изделия (оно представляется облаком точек D), и перпендикулярные касательным к исходной траектории в этих базовых точках, где R – количество базовых точек траектории Т. Затем на каждой секущей плоскости Pr строятся две линии, определяемые массивами
Figure 00000018
и
Figure 00000019
точек, соответствующих сечениям плоскостью Pr поверхностей изделия, задаваемых облаками
Figure 00000013
и M. Указанные точки сечений являются проекциями на плоскости Pr точек этих облаков, находящихся вблизи от каждой из Pr.
Для снижения влияния погрешностей построения сечений на процесс переноса базовых точек траектории T, каждый из наборов точек
Figure 00000020
и
Figure 00000021
предварительно фильтруется, например, с помощью способа скользящего среднего. После фильтрации от шумов получаются новые массивы
Figure 00000022
и
Figure 00000023
.
Для поиска точки Sr на границе недеформированной и деформированной частей изделия в каждой секущей плоскости Pr выполняется расчет расстояний
Figure 00000024
между точками сечения
Figure 00000025
и ближайшими к ним точками сечения
Figure 00000026
, где NSM количество точек в массиве
Figure 00000025
. Если все меньше малой величины ζ, то считается, что на данном сечении деформации изделия отсутствуют и в качестве базовой точки траектории Т принимается точка
Figure 00000028
. Если существуют точки, для которых
Figure 00000029
то двигаясь по сечению
Figure 00000030
от точки
Figure 00000031
ищется точка Sr, начиная с которой будет выполняться условие
Figure 00000032
.
Затем рассчитывается расстояние LCADr от точки Sr до точки
Figure 00000002
вдоль сечения
Figure 00000033
, например, по формуле:
Figure 00000034
,
где t, ic - индексы точек Sr и
Figure 00000035
, соответственно, в сечении
Figure 00000036
, t > ic.
После этого от точки Sr в сечении
Figure 00000037
откладывается расстояние LCADr вдоль этого сечения и на сечении
Figure 00000038
формируется точка
Figure 00000001
, которая будет соответствовать базовой точке траектории Т* движения инструмента при обработке изделия с деформированным краем (см. фиг. 2). Аналогично переносятся остальные базовые точки и формируется вся траектория Т* обработки.
После завершения указанной процедуры управляющая ЭВМ 5 включает режущий рабочий инструмент 2 (лазер, устройства гидроабразивного реза и др.) и система управления 4 многостепенного манипулятора 3 задает необходимый режим движения этого инструмента, обеспечивая обработку сдеформированного изделия 1 по полученной траектории Т* с требуемой точностью.
Реализация предложенного способа обработки легко деформируемых изделий не вызывает принципиальных затруднений, поскольку в качестве системы технического зрения 6 могут быть использованы типовые СТЗ (оптические и(или) лазерные сканеры, стереокамеры и др.).

Claims (1)

  1. Способ обработки легкодеформируемого изделия, включающий его произвольное закрепление в пространстве и обработку рабочим инструментом многостепенного промышленного робота-манипулятора, снабженного системой управления, управляющей ЭВМ и системой технического зрения, отличающийся тем, что в управляющую ЭВМ загружают CAD-модель изделия в виде исходного облака точек, при этом посредством системы технического зрения получают трехмерную модель зафиксированного в рабочей зоне робота-манипулятора обрабатываемого изделия с учетом деформации его краев в виде второго облака точек, сближают геометрические центры исходного и полученного облаков точек, выполняют предварительное совмещение этих двух облаков точек с помощью стандартного метода итерационного поиска ближайших точек ICP и оценивают качество совмещения указанных облаков точек в виде среднеквадратичного расстояния между точками в парах ближайших точек двух облаков, при этом при превышении среднеквадратичным расстоянием заранее заданного, характеризующего ошибку совмещения облаков, отбрасывают пары точек с наибольшими расстояниями между ними и повторяют совмещение указанных двух облаков с помощью метода ICP для более точного совмещения недеформированных частей изделия, причем при превышении новым среднеквадратичным расстоянием заданного отбрасывают следующие пары точек с наибольшими расстояниями между ними и процедуру повторяют, пока очередное среднеквадратичное расстояние не станет меньше заданного, строят сечения двух поверхностей, образованных двумя совмещенными облаками точек, плоскостями, проходящими через базовые точки траектории обработки изделия, перпендикулярно этой траектории, выполняют фильтрацию точек в каждом сечении, на полученных сечениях ищут участки изделия, имеющие деформацию, и переносят базовые точки траектории движения инструмента с облака точек, соответствующего CAD-модели, на облако точек, соответствующее деформированному изделию, путем поиска в каждом сечении такой точки деформированного изделия, которая находится от точки, соответствующей началу деформированного участка, на расстоянии, равном расстоянию вдоль сечения CAD-модели от точки начала деформации до базовой точки траектории движения инструмента.
RU2018119558A 2018-05-29 2018-05-29 Способ обработки легкодеформируемых изделий RU2679860C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119558A RU2679860C1 (ru) 2018-05-29 2018-05-29 Способ обработки легкодеформируемых изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119558A RU2679860C1 (ru) 2018-05-29 2018-05-29 Способ обработки легкодеформируемых изделий

Publications (1)

Publication Number Publication Date
RU2679860C1 true RU2679860C1 (ru) 2019-02-13

Family

ID=65442578

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119558A RU2679860C1 (ru) 2018-05-29 2018-05-29 Способ обработки легкодеформируемых изделий

Country Status (1)

Country Link
RU (1) RU2679860C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2762693C1 (ru) * 2020-07-06 2021-12-22 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Способ повышения точности перемещений промышленного робота в процессе инкрементального формообразования

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148591A (en) * 1981-05-11 1992-09-22 Sensor Adaptive Machines, Inc. Vision target based assembly
US5380978A (en) * 1991-07-12 1995-01-10 Pryor; Timothy R. Method and apparatus for assembly of car bodies and other 3-dimensional objects
CN1446666A (zh) * 2003-03-20 2003-10-08 同济大学 大型工件的机加工寻位方法
CN102615552A (zh) * 2012-04-01 2012-08-01 杭州天扬机械有限公司 一种全自动五轴加工曲面的在线检测技术
RU2528923C2 (ru) * 2012-03-11 2014-09-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" Способ адаптивной обработки изделий на станках с чпу
RU2553171C2 (ru) * 2010-11-05 2015-06-10 К.М.С. С.П.А. Устройство для облегчения панелей или тонких пластин путем удаления материала
CN204413407U (zh) * 2015-01-28 2015-06-24 上海成途自动化工程有限公司 机器人激光焊接实时跟踪装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148591A (en) * 1981-05-11 1992-09-22 Sensor Adaptive Machines, Inc. Vision target based assembly
US5380978A (en) * 1991-07-12 1995-01-10 Pryor; Timothy R. Method and apparatus for assembly of car bodies and other 3-dimensional objects
CN1446666A (zh) * 2003-03-20 2003-10-08 同济大学 大型工件的机加工寻位方法
RU2553171C2 (ru) * 2010-11-05 2015-06-10 К.М.С. С.П.А. Устройство для облегчения панелей или тонких пластин путем удаления материала
RU2528923C2 (ru) * 2012-03-11 2014-09-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" Способ адаптивной обработки изделий на станках с чпу
CN102615552A (zh) * 2012-04-01 2012-08-01 杭州天扬机械有限公司 一种全自动五轴加工曲面的在线检测技术
CN204413407U (zh) * 2015-01-28 2015-06-24 上海成途自动化工程有限公司 机器人激光焊接实时跟踪装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2762693C1 (ru) * 2020-07-06 2021-12-22 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Способ повышения точности перемещений промышленного робота в процессе инкрементального формообразования

Similar Documents

Publication Publication Date Title
CN107127755B (zh) 一种三维点云的实时采集装置及机器人打磨轨迹规划方法
EP2981397B1 (en) A robot system and method for calibration
CN111152229B (zh) 3d机械视觉的机械手引导方法和装置
US20130060369A1 (en) Method and system for generating instructions for an automated machine
CN109202912A (zh) 一种基于单目深度传感器和机械臂配准目标轮廓点云的方法
CN112223294A (zh) 一种基于三维视觉的机械臂加工轨迹修正方法
Zhao et al. Accuracy analysis in mobile robot machining of large-scale workpiece
Filaretov et al. The automatization method of processing of flexible parts without their rigid fixation
CN112871587B (zh) 一种基于3d视觉引导的涂胶路径规划方法和涂胶系统
KR102096897B1 (ko) 3d 도면 파일을 이용하여 로봇 제어에 필요한 자동 티칭 시스템 및 티칭 방법
CN113146172A (zh) 一种基于多视觉的检测与装配系统及方法
JP2024508563A (ja) 自律型溶接ロボット
CN113554757A (zh) 基于数字孪生的工件轨迹三维重构方法及系统
RU2679860C1 (ru) Способ обработки легкодеформируемых изделий
Shah et al. An experiment of detection and localization in tooth saw shape for butt joint using KUKA welding robot
Zhou et al. Intelligent guidance programming of welding robot for 3D curved welding seam
CN115810133A (zh) 基于图像处理和点云处理的焊接控制方法及相关设备
CN111275758B (zh) 混合型3d视觉定位方法、装置、计算机设备及存储介质
Pachidis et al. Vision-based path generation method for a robot-based arc welding system
CN116604212A (zh) 一种基于面阵结构光的机器人焊缝识别方法和系统
CN115135466A (zh) 毛刺去除装置和控制系统
JP2778430B2 (ja) 視覚に基く三次元位置および姿勢の認識方法ならびに視覚に基く三次元位置および姿勢の認識装置
Filaretov et al. An new approach for automatization of cutting of flexible items by using multilink manipulators with vision system
Liska et al. Iterative refinement of hand-eye calibration
RU2679859C1 (ru) Способ автоматической обработки крупногабаритных тонкостенных изделий