RU2677725C1 - Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений - Google Patents

Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений Download PDF

Info

Publication number
RU2677725C1
RU2677725C1 RU2017135995A RU2017135995A RU2677725C1 RU 2677725 C1 RU2677725 C1 RU 2677725C1 RU 2017135995 A RU2017135995 A RU 2017135995A RU 2017135995 A RU2017135995 A RU 2017135995A RU 2677725 C1 RU2677725 C1 RU 2677725C1
Authority
RU
Russia
Prior art keywords
oil
piston
gas
measuring
tank
Prior art date
Application number
RU2017135995A
Other languages
English (en)
Inventor
Асгар Маратович Валеев
Ринат Закирович Ахметгалиев
Марсель Азатович Багаутдинов
Владимир Александрович Тимин
Original Assignee
Валеев Мурад Давлетович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валеев Мурад Давлетович filed Critical Валеев Мурад Давлетович
Priority to RU2017135995A priority Critical patent/RU2677725C1/ru
Application granted granted Critical
Publication of RU2677725C1 publication Critical patent/RU2677725C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технической задачей предлагаемого способа является обеспечение возможности измерения дебитов нефти, воды и газа при различных содержаниях свободного газа в измеряемой продукции, в том числе при его полном отсутствии. Способ включает поступление продукции нефтяной скважины в измерительную емкость с калиброванной частью, разделение ее на газовую и жидкую фазы, измерение дебита жидкости по скорости наполнения калиброванной части емкости и переключение потоков нефти и газа с помощью поршня. При этом поршень герметично размещают в калиброванной части емкости, в котором при достижении им верхнего крайнего положения под действием напора поступающей продукции открывается проходной канал, позволяющий далее поршню двигаться вниз под собственным весом, превышающим сопротивления его движению, и пропуская через себя измеряемую среду. При достижении им крайнего нижнего положения под действием силы тяжести поршня проходной канал перекрывается и поршень начинает движение вверх под напором поступающей снизу в измерительную емкость продукции скважины. При этом общий дебит продукции скважины рассчитывают по времени движения поршня от крайнего нижнего до крайнего верхнего положений и объему, описываемому поршнем за этот период. Количественный состав измеряемой продукции определяют путем отбора ее пробы по высоте калиброванной части измерительной емкости в пробоотборную камеру при достижении крайнего верхнего положения поршня в емкости, последующего ее слива из нижней точки камеры и замера объемов сливаемых нефти и воды, а также их плотности, при этом объем газовой фазы в продукции рассчитывают вычитанием объемов обеих жидкостей из всего внутреннего объема камеры. 3 ил.

Description

Предлагаемое изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин.
Замер продукции нефтяных скважин в большинстве случаев производится автоматизированными групповыми замерными установками стационарного или передвижного типа. Известна установка для измерения нефти, газа и воды в продукции нефтяной скважины / патент RU №168317 U1. Установка для измерения продукции нефтяной скважины. Заявл. 21.07.2016. Опубл. 30.01.2017 /. Установка включает измерительную емкость с калиброванной частью, верхний и нижний датчики положения уровней жидкости, линии подачи продукции скважины в сепаратор, отвода газа и жидкости из него, а также трехходовой кран для переключения слива жидкости на отбор газа и наоборот. При достижении уровнем жидкости в измерительной емкости верхнего датчики блоком управления подается сигнал приводу трехходового крана на слив жидкости, а при достижении нижнего датчика - на отвод газа из верхней части измерительной емкости.
Известна также установка для определения дебита продукции скважины / Патент РФ №2133826. Установка для определения дебита продукции скважин. Заявл. 05.01.98 г. Опубл. 27.07.99 г. / Дебит воды определяется по известным плотностям нефти и воды и гидростатическому давлению столба жидкости в измерительном цилиндре. В момент достижения верхнего уровня в измерительной емкости датчики подают сигнал на переключение потока в другую емкость и измерение гидростатического давления, по которому определяется средняя плотность жидкости. По ранее известным плотностям нефти и воды рассчитывается содержание воды в объеме жидкости.
Однако приведенные аналоги имеют существенный недостаток, заключающийся в сложности проведения измерений при малом содержании свободного газа в поступающей в измерительную емкость продукции скважины. При полном отсутствии свободного газа в продукции измерение дебитов становится невозможным.
Известен способ определения дебитов нефти, попутного газа и воды / Патент RU №2504653 С1. Способ определения дебитов нефти, попутного газа и воды. Заявл. 30.07.2012 г. Опубл. 20.01.2014 г. /. Для измерения дебита жидкости производят заполнение продукцией скважины измерительной емкости, а после достижения максимального уровня водонефтяной смеси производят закрытие входного крана измерительной емкости и выдержку во времени для сепарации свободного газа из жидкости. После определения дебита водонефтяной смеси по скорости заполнения и объему сепарированной жидкости производят постепенный отбор газовой фазы из верхней части измерительной емкости компрессором через понижающий до атмосферного давления редуктор. Компрессор при этом закачивает отбираемый газ в коллектор скважины. Откачку газа производят до тех пор, пока давление в измерительной емкости не снизится до атмосферного значения. Газовый фактор рассчитывается по производительности компрессора и времени его работы.
Однако применение компрессора осложнено в связи с изменением давления нагнетания газа в коллектор, изменяющегося в широких диапазонах даже в пределах одного месторождения нефти.
Известен способ измерения дебита газа, основанный на определении скорости заполнения поочередно двух измерительных емкостей и их последующего опорожнения / Патент РФ №2082107. Способ определения количества нефти, газа и воды в продукции скважин. Заявл. 18.05.95 г. Опубл. 20.06.97 г. /. По времени заполнения емкостей определяется дебит водонефтяной смеси, а по скорости опорожнения емкостей определяют дебит свободной газовой фазы. Недостаток устройства состоит в том, что при измерениях в жидкости, заполняющей цилиндрическую емкость, присутствуют диспергированные водная и газовая фазы в виде капель и пузырей, что приводит к значительной погрешности измерений. Кроме того, в нефтяной фазе остается достаточное количество растворенного попутного газа, который не выходит из нефти при рабочем давлении (обычно давлении напорного коллектора) и поэтому не может быть учтено в расчетах газового фактора нефти или дебита газа.
Наиболее близким по технической сущности к предлагаемому техническому решению является способ измерения дебитов нефти и попутного газа нефтяных скважин / патент RU №2439316 С2. Заявл. 05.04.2010. Опубл. 10.01.2012 /, включающий поступление добываемой продукции из колонны насосно-компрессорных труб в сепаратор и разделение в нем газа и нефти. Далее осуществляют последовательный отбор из сепаратора нефти и газа с замером их количества с помощью поплавка и трехходового переключателя потоков по времени соответственно наполнения и опорожнения измерительной части сепаратора. Переключение потоков нефти и газа осуществляется за счет повышения давления на каждую из сторон двустороннего поршня переключателя потока при запирании поплавком выходов нефти и газа из сепаратора в верхнем и нижнем концах вертикальной перфорированной трубы.
Недостаток способа состоит в том, что при повышении давления в сепараторе происходит сжатие газовой фазы и задержка срабатывания переключателя потока. Это, в свою очередь, приводит к значительной погрешности измерения времени налива и слива нефти, а также достоверности проводимых измерений.
Кроме того, недостатком способа является невозможность проведения измерений при малых количествах попутного нефтяного газа или его отсутствии в жидкости, например, при замерах продукции высокообводненных скважин. Малые количества попутного нефтяного газа приводят к значительному росту периода измерения его расхода, измеряемому многими часами, а при полном отсутствии свободного газа в жидкости - к потере работоспособности установки и невозможности замера дебитов нефти и воды из-за отсутствия возможности опорожнения измерительной емкости от жидкости после ее заполнения.
Технической задачей предлагаемого способа является обеспечение возможности измерения дебитов нефти, воды и газа при различных содержаниях свободного газа в измеряемой продукции, в том числе при его полном отсутствии.
Решение поставленной технической задачи достигается тем, что в известном способе измерения дебитов нефти, воды и попутного нефтяного газа, включающем поступление продукции нефтяной скважины в измерительную емкость с калиброванной частью, разделение ее на газовую и жидкую фазы, измерение дебита жидкости по скорости наполнения калиброванной части емкости и переключение потоков нефти и газа с помощью поршня, согласно изобретению, в калиброванной части емкости герметично размещают поршень, в котором при достижении им верхнего крайнего положения под действием напора поступающей продукции открывается проходной канал, позволяющий далее поршню двигаться вниз под собственным весом, превышающим сопротивления его движению, и пропуская через себя измеряемую среду, а при достижении им крайнего нижнего положения под действием силы тяжести поршня проходной канал перекрывается и поршень начинает движение вверх под напором поступающей снизу в измерительную емкость продукции скважины, при этом общий дебит продукции скважины рассчитывают по времени движения поршня от крайнего нижнего до крайнего верхнего положений и объему, описываемому поршнем за этот период, а количественный состав измеряемой продукции определяют путем отбора ее пробы по высоте калиброванной части измерительной емкости в пробоотборную камеру при достижении крайнего верхнего положения поршня в емкости, последующего ее слива из нижней точки камеры и замера объемов сливаемых нефти и воды, а также их плотности, при этом объем газовой фазы в продукции рассчитывают вычитанием объемов обеих жидкостей из всего внутреннего объема камеры.
На рис. 1, 2 и 3 представлены схемы реализации способа.
Измерительная емкость 1 подключена к коллектору 2 скважины с помощью входной 3 и выходной 4 линий через задвижки 5 и 6, между которыми в коллекторе 2 установлена разрывная задвижка 7. В верхней и нижней точках измерительной емкости установлены патрубки 8 для отвода продукции скважины и 9 для ввода продукции. Внутри измерительной емкости 1 герметично размещен поршень 10 с выполненным внутри центральным проходным каналом 11. Внутри канала 11 размещены направляющая втулка 12 с отверстиями, шток 13 с конусообразным запорным элементом 14.
К измерительной емкости 1 (рис. 1 и 2) с помощью полых перемычек 15 закреплена труба 16, в которую герметично по всей высоте входит пробоотборная камера 17 с отверстиями 18, совпадающими по вертикали с отверстиями 19 перемычек 15 в измерительной емкости 1. В верхнюю часть трубы 16 герметично входит ось камеры 17 с наружным указательным флажком 20 положения камеры 17 относительно трубы 16. Труба 16 в нижней части имеет сливной кран 21. В верхней и нижней частях емкости 1 размещены упоры 22 и 23 крайних положений поршня 10. Верхняя перемычка 15 соединена с емкостью 1 таким образом, что при крайнем верхнем положении поршня 10 эта перемычка располагается непосредственно под нижним торцом поршня 10 и сообщается с полостью емкости 1. Нижняя перемычка 15 располагается непосредственно над упором 23. В нижнюю часть емкости 1 входит линия с краном 24 для периодического удаления из емкости шлама.
Упоры 22 и 23 крайних положений поршня 10 имеют электрические контакты (на рисунках не показаны), фиксирующие положения поршня для расчета общего дебита продукции скважины с помощью программы блока управления 25.
Способ осуществляется следующим образом.
На рис. 1 показан цикл движения поршня 10 вверх с перекрытым каналом 11 конусной частью 14 штока 13. Поступающая в измерительную емкость 1 продукция скважины через задвижку 5, линию 3 и патрубок 9 под собственным напором перемещает поршень 10 с перекрытым каналом 11 вверх. В течение всего этого цикла происходит накопление поступающей продукции в подпоршневой зоне измерительной емкости, и чем больше общий дебит скважины, тем меньше промежуток времени ее заполнения. По времени движения поршня 10 от нижней до верхней мертвой точек, а также величине объема, описываемого поршнем за это время, программой рассчитывается общий дебит продукции скважины. В цикле движения поршня 10 вверх поступившая ранее в надпоршневую область продукция будет вытесняться поршнем 10 в коллектор 2 через патрубок 8, линию 4 и открытую задвижку 6.
При достижении поршнем 10 крайнего верхнего положения патрубок 8 заставит шток 13 переместиться вниз, открыв канал 11. После этого поршень 10 начнет падать вниз (рис. 3) под собственным весом, преодолевая сопротивления в паре трения «поршень - цилиндр измерительной емкости 1».
В период падения поршня 10 поступающая в измерительную емкость 1 через патрубок 9 продукция скважины проходит в надпоршневую область через канал 11 и отверстия направляющей втулки 12. В этом цикле движения поршня измерения не производятся.
Дойдя до крайнего нижнего положения поршня 10, запорный элемент 14 упрется в патрубок 9 и за счет силы тяжести поршня переместится вверх относительно поршня 10 и перекроет центральный проходной канал 11. Далее под напором поступающей в емкость 1 продукции поршень 10 начнет перемещаться вверх и циклы будут повторяться.
Масса поршня 10 подбирается с расчетом преодоления сопротивлений трения при его падении. В обоих циклах движения поршня 10 расположение пробоотборной камеры 17 в трубе 16 устанавливается таковым, что отверстия 18 камеры не совпадают с отверстиями 19 перемычек 15 во избежание входа жидкости из емкости 1 в камеру 17.
Для определения количественного состава продукции, входящей в подпоршневую область измерительной емкости 1 при достижении поршнем 10 крайнего верхнего положения производят поворот пробоотборной камеры 17 вокруг своей оси до совпадения отверстий 18 и 19. Поворот камеры 17 с помощью наружного флажка 20 производят на короткое время, достаточное для массообмена в полости камеры 17 и получения распределения газа, нефти и воды в ней, аналогичного распределению этих фаз в измерительной емкости 1 согласно закону о сообщающихся сосудах. После этого камеру вновь поворачивают на прежний угол для отсечения отобранного объема продукции от полости емкости 1. Период открытия и последующего закрытия камеры 17 непродолжителен и может составить всего 2…3 секунды. Далее производят слив под атмосферным давлением продукции скважины из камеры 17 в измерительный сосуд для замера объемов нефти, воды, а также их плотности. При этом в период слива жидкость дегазируется, и небольшое количество свободного нефтяного газа отводится в атмосферу.
По измеренным объемам нефти и воды рассчитывается также объем газа, отобранного в камеру 17, путем вычитания измеренных объемов жидкостей из полного объема камеры 17.
Рассчитанные, таким образом, соотношения объемов нефти, газа и воды будут полностью соответствовать аналогичным соотношениям в калиброванной части емкости 1 благодаря отборам измеряемых сред в камеру 17 из емкости 1 сразу с нескольких уровней.
Располагая общим дебитом продукции скважины по полученному соотношению фаз, легко рассчитываются объемные дебиты скважины нефти, газу и воде. Объемные дебиты нефти и воды переводятся в массовые дебиты по измеренным плотностям жидкостей, отобранных из камеры 17.
Технико-экономическим преимуществом предлагаемого способа является возможность измерения дебитов нефти, газа и воды при любом содержании свободного газа в продукции скважины, а также простота и высокая точность замеров благодаря применению объемных методов измерения параметров.

Claims (1)

  1. Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений, включающий поступление продукции нефтяной скважины в измерительную емкость с калиброванной частью, разделение ее на газовую и жидкую фазы, измерение дебита жидкости по скорости наполнения калиброванной части емкости и переключение потоков нефти и газа с помощью поршня, отличающийся тем, что в калиброванной части емкости герметично размещают поршень, в котором при достижении им верхнего крайнего положения под действием напора поступающей продукции открывается проходной канал, позволяющий далее поршню двигаться вниз под собственным весом, превышающим сопротивления его движению, и пропуская через себя измеряемую среду, а при достижении им крайнего нижнего положения под действием силы тяжести поршня проходной канал перекрывается и поршень начинает движение вверх под напором поступающей снизу в измерительную емкость продукции скважины, при этом общий дебит продукции скважины рассчитывают по времени движения поршня от крайнего нижнего до крайнего верхнего положений и объему, описываемому поршнем за этот период, а количественный состав измеряемой продукции определяют путем отбора ее пробы по высоте калиброванной части измерительной емкости в пробоотборную камеру при достижении крайнего верхнего положения поршня в емкости, последующего ее слива из нижней точки камеры и замера объемов сливаемых нефти и воды, а также их плотности, при этом объем газовой фазы в продукции рассчитывают вычитанием объемов обеих жидкостей из всего внутреннего объема камеры.
RU2017135995A 2017-10-10 2017-10-10 Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений RU2677725C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017135995A RU2677725C1 (ru) 2017-10-10 2017-10-10 Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017135995A RU2677725C1 (ru) 2017-10-10 2017-10-10 Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений

Publications (1)

Publication Number Publication Date
RU2677725C1 true RU2677725C1 (ru) 2019-01-21

Family

ID=65085016

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017135995A RU2677725C1 (ru) 2017-10-10 2017-10-10 Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений

Country Status (1)

Country Link
RU (1) RU2677725C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1627688A1 (ru) * 1988-05-20 1991-02-15 Октябрьский Филиал Всесоюзного Научно-Исследовательского И Проектно-Конструкторского Института Комплексной Автоматизации Нефтяной И Газовой Промышленности Устройство дл покомпонентного измерени продукции нефт ных скважин
RU2059067C1 (ru) * 1993-07-09 1996-04-27 Межрегиональное акционерное общество "Нефтеавтоматика" Устройство для измерения продукции скважины
RU2100596C1 (ru) * 1995-09-12 1997-12-27 Роберт Шакурович Муфазалов Установка для измерения и исследования продукции скважин
US7966892B1 (en) * 2010-08-09 2011-06-28 Halilah Sami O In line sampler separator
RU2439316C2 (ru) * 2010-04-05 2012-01-10 Общество с ограниченной ответственностью " Актуальные технологии нефтеотдачи " Способ измерения дебитов нефти и попутного газа нефтяных скважин
RU2504653C1 (ru) * 2012-07-30 2014-01-20 Марат Давлетович Валеев Способ определения дебитов нефти, попутного газа и воды

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1627688A1 (ru) * 1988-05-20 1991-02-15 Октябрьский Филиал Всесоюзного Научно-Исследовательского И Проектно-Конструкторского Института Комплексной Автоматизации Нефтяной И Газовой Промышленности Устройство дл покомпонентного измерени продукции нефт ных скважин
RU2059067C1 (ru) * 1993-07-09 1996-04-27 Межрегиональное акционерное общество "Нефтеавтоматика" Устройство для измерения продукции скважины
RU2100596C1 (ru) * 1995-09-12 1997-12-27 Роберт Шакурович Муфазалов Установка для измерения и исследования продукции скважин
RU2439316C2 (ru) * 2010-04-05 2012-01-10 Общество с ограниченной ответственностью " Актуальные технологии нефтеотдачи " Способ измерения дебитов нефти и попутного газа нефтяных скважин
US7966892B1 (en) * 2010-08-09 2011-06-28 Halilah Sami O In line sampler separator
RU2504653C1 (ru) * 2012-07-30 2014-01-20 Марат Давлетович Валеев Способ определения дебитов нефти, попутного газа и воды

Similar Documents

Publication Publication Date Title
US9114332B1 (en) Multiphase flow measurement apparatus utilizing phase separation
RU2504653C1 (ru) Способ определения дебитов нефти, попутного газа и воды
RU2299322C1 (ru) Способ измерения дебита продукции нефтяных скважин в системах герметизированного сбора
RU2661209C1 (ru) Способ измерения дебитов нефти, газа и воды нефтяной скважины
RU2396427C2 (ru) Способ определения обводненности продукции нефтяных скважин "охн++"
RU2552563C1 (ru) Переносной узел учета добываемой скважинной жидкости
RU2677725C1 (ru) Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений
RU2236584C1 (ru) Способ и устройство для измерения дебита нефти
RU168317U1 (ru) Установка для измерения продукции нефтяной скважины
RU2657321C1 (ru) Ковшовый счётчик количества жидкости и попутного нефтяного газа в протекающей газожидкостной смеси
RU2299321C2 (ru) Способ измерения дебита продукции нефтяных скважин в системах герметизированного сбора и устройство для его осуществления "мера-охн"
RU2733954C1 (ru) Способ измерения продукции нефтяной скважины
RU2658699C1 (ru) Способ измерения продукции нефтяной скважины
US20140366653A1 (en) Multiphase sample container and method
RU2340772C2 (ru) Способ определения обводненности продукции нефтяных скважин "охн+"
RU2131027C1 (ru) Устройство для измерения дебита нефтяных скважин
RU2823636C1 (ru) Способ измерения массового дебита сырой нефти и объема нерастворенного газа в продукции нефтяной скважины
CN108387292A (zh) 气井三相计量分离控制系统及油水界面计量方法
RU2779284C1 (ru) Способ измерения газового фактора нефти
US6736964B1 (en) Apparatus for separating mixed fluids and measuring quantity of component fluids
RU56614U1 (ru) Устройство отбора проб жидких продуктов из резервуара
RU194085U1 (ru) Устройство для измерения количества нефти, содержания воды и газа в продукции малодебитных скважин
US2936618A (en) Apparatus for measuring rate of flow and oil and water production of wells
RU2642094C1 (ru) Устройство для автоматической порционной выдачи жидкости
RU2695909C1 (ru) Способ определения обводненности продукции нефтедобывающей скважины

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20220318