RU2677590C1 - Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена - Google Patents

Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена Download PDF

Info

Publication number
RU2677590C1
RU2677590C1 RU2017143444A RU2017143444A RU2677590C1 RU 2677590 C1 RU2677590 C1 RU 2677590C1 RU 2017143444 A RU2017143444 A RU 2017143444A RU 2017143444 A RU2017143444 A RU 2017143444A RU 2677590 C1 RU2677590 C1 RU 2677590C1
Authority
RU
Russia
Prior art keywords
microcirculation
value
heating
level
seconds
Prior art date
Application number
RU2017143444A
Other languages
English (en)
Inventor
Дмитрий Александрович Куликов
Алексей Андреевич Глазков
Полина Александровна Глазкова
Юлия Александровна Ковалева
Илья Алексеевич Барсуков
Александр Васильевич Древаль
Дмитрий Алексеевич Рогаткин
Original Assignee
Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) filed Critical Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского)
Priority to RU2017143444A priority Critical patent/RU2677590C1/ru
Application granted granted Critical
Publication of RU2677590C1 publication Critical patent/RU2677590C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Изобретение относится к медицине, а именно к эндокринологии, и предназначено для выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена. Способ включает в себя оценку уровня кожной микроциркуляции крови с функциональной пробой с помощью метода лазерной допплеровской флоуметрии на руке и математический расчет показателей оценки микроциркуляции на основании полученных данных. Функциональная проба представляет собой тепловую пробу, при этом обследуемый принимает сидячее положение, руки кладет на горизонтальную поверхность перед собой ладонями вниз таким образом, что предплечья располагаются на уровне сердца. На тыльной поверхности предплечья одной из рук на 4 см проксимальнее лучезапястного сустава по срединной линии фиксируют датчик для измерения кожной микроциркуляции с нагревательным элементом. В течение одной минуты проводят регистрацию базового уровня микроциркуляции при температуре нагревательного элемента в 32-32,4°С. На 61-й секунде исследования включают нагрев до 41,8-42,2°С со скоростью нагрева 2°С в секунду, при этом температуру нагревательного элемента 41,8-42,2°С поддерживают постоянной до конца пробы. Останавливают регистрацию через 120 секунд после включения нагрева, в результате получают значения показателя микроциркуляции за период регистрации уровня кожной микроциркуляции крови. После чего рассчитывают наклон функции линейной регрессии показателя микроциркуляции, умноженного на 10, за 120 секунд проведения нагревания:
Figure 00000015
,
где Sl - наклон функции линейной регрессии; t - конкретный момент времени; I - значение показателя микроциркуляции в конкретный момент времени;
Figure 00000016
- среднее арифметическое значение времени за оцениваемый период;
Figure 00000017
- среднее арифметическое значение показателя микроциркуляции за оцениваемый период; n61, n180 - числовые значения, отражающие количество измерений, произведенных по 61-ю и 180-ю секунды регистрации соответственно, которые вычисляют по формуле nt=t⋅ν, где t - время от начала исследования в секундах, a ν - количество измерений в секунду. Полученное значение параметра Sl подставляют в формулу
Figure 00000018
,
где Р - вероятность наличия у пациента микроциркуляторных нарушений, и по величине параметра Р, значение которого составляет от минимального - 0 до максимального - 1, оценивают у пациента вероятность наличия нарушений микроциркуляции. Изобретение обеспечивает повышение точности исследования, его информативности, простоты в осуществлении, а также позволяет дать количественную объективную экспресс-оценку состояния кожной микроциркуляции у пациентов с сахарным диабетом. 2 пр.

Description

Изобретение относится к медицине, а именно к эндокринологии, и предназначено для выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена. Оценку микроциркуляции проводят неинвазивным методом оценки микроциркуляции с использованием тепловой функциональной пробы на руке.
Нарушения углеводного обмена, в частности сахарный диабет, в силу высокого темпа распространения занимают особое место в ряду пандемий хронических заболеваний. По данным Всемирной организации здравоохранения (ВОЗ) 422 миллиона человек во всем мире страдают от СД, это заболевание является одной из основных причин слепоты, почечной недостаточности, инфарктов, инсультов и ампутаций нижних конечностей. По прогнозам ВОЗ к 2030 году диабет станет 7-й причиной смерти во всем мире (http://www.who.int). Широкое распространение, рост заболеваемости, частое развитие серьезных осложнений делают диабет одной из наиболее актуальных проблем современной медицины.
Нарушения микроциркуляции являются основным звеном патогенеза развития сосудистых осложнений СД, которые являются одной из лидирующих причин смертности и инвалидизации в мире. В большинстве случаев, для оценки эффективности лечения и определения тактики дальнейшей терапии врачи ориентируются на уровень гликемии, однако, очевидно, что наибольший ущерб здоровью приносит не гипергликемия как таковая, а ее осложнения, в частности сосудистые. Таким образом, при выборе и оценке терапии необходимо обращать внимание не только на показатели гликемии и имеющиеся на данный момент осложнения, но и на дополнительные объективные параметры, позволяющие дать оценку развития и прогрессирования осложнений.
Рутинной процедурой, позволяющей косвенно судить о состоянии микроциркуляции, является осмотр глазного дна офтальмологом. Метод субъективен и выявляет микроциркуляторные изменения уже после манифестации осложнений, не позволяя проводить их раннюю диагностику (Verma A. et al., Does neuronal damage precede vascular damage in subjects with type 2 diabetes mellitus and having no clinical diabetic retinopathy? Ophthalmic research. 2012;47(4):202-7. doi: 10.1159/000333220.) что, в итоге, не дает в полной мере реализовать возможности оценки микроциркуляторных нарушений у пациентов для более эффективного контроля заболевания.
Альтернативной локализацией для оценки состояния микроциркуляторной сети может быть наиболее доступный для этого орган - кожа (Nilsson G.E. et al., Laser-Doppler methods for the assessment of microcirculatory blood flow. Transactions of the Institute of Measurement and Control. 1982;4(2):109-12. doi: 10.1177/014233128200400206.; Holowatz L.A. et al., The human cutaneous circulation as a model of generalized microvascular function. Journal of Applied Physiology). Существует множество методов оценки кожного кровотока. Известно, что исследование базовой микроциркуляции имеет очень большую вариабельность даже у одного индивидуума и не может быть использовано для объективной оценки микроциркуляции, однако применение функциональных проб, которые позволяют оценить изменение микроциркуляции при воздействии внешних стимулов, существенно повышает информативность исследования.
Так, из уровня техники известен способ оценки микроангиопатии при помощи капилляроскопии ногтевого валика в покое и после функциональных проб (Патент РФ №2559640). Метод заключается в проведении капилляроскопии в покое с последующей оценкой структурных изменений состояния капилляров, дополнительно проводят капилляроскопию и оксигенометрию с четырьмя функциональными пробами с воздействием физических факторов на исследуемую конечность - окклюзия манжетой, проба с Холодовым воздействием, проба с тепловым воздействием, проба с поднятием конечности вверх, и после каждой из проб определяют показатель оксигенации SaCO2 и время восстановления показателей капилляроскопии t до исходных значений. Полученные данные позволяют диагностировать стадию микроангиопатии.
Недостатком данного способа является большое время проведение исследования (30-45 минут), что делает способ тяжелореализуемым в рутинной клинической практике. Также в патенте авторы указывают в качестве обследуемых только пациентов с диабетом 1 типа, тогда как большая часть больных сахарным диабетом - это пациенты с диабетом 2 типа. Остается непонятным, возможно ли применять этот способ для пациентов с сахарным диабетом 2 типа.
Другим перспективным подходом является использование метода лазерной допплеровской флоуметрии для выявления микроциркуляторных нарушений кожи. Данный метод основан на зондировании ткани лазерным излучением, регистрации отраженного сигнала и анализе происходящего допплеровского сдвига частоты излучения, рассеянного при взаимодействии с исследуемой тканью. Анализируемая глубина ткани составляет в среднем около 1 мм (для диапазона от зеленой до инфракрасной длины волны толщина зондируемого слоя может составлять от 0,5 до 2 мм).
Наиболее близким по назначению и по технической сущности к заявляемому является способ выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена (Патент РФ №2547800, опубл. 10.04.2015 г.), принятый нами за прототип. В данном способе оценку микроциркуляции проводят методом лазерной допплеровской флоуметрии с использованием комбинированных функциональных проб - постурально-тепловой на ноге и постурально-тепловой на руке. В ходе исследования производят нагрев датчика до 42±1°С и изменение положения тела обследуемого. Далее производится математический обсчет полученных показателей микроциркуляции. Способ позволяет выявить микроциркуляторные нарушения у пациентов с нарушениями углеводного обмена. Способ отличается простотой, точностью, неинвазивностью, является относительно недорогим и простым в использовании.
Недостатком данного способа является длительность проведения исследования - без учета времени адаптации к температурным условиям помещения время проведения проб составляет 26 минут, что делает данный способ малоперспективным для широкого клинического применения. Кроме того, исследование микроциркуляции предпочтительно проводить на фоне отмены гиполипидемических и некоторых антигипертензивных препаратов, что также является трудноосуществимыми и может повлечь за собой риск ухудшения состояния пациентов. Также в указанном способе измерение микроциркуляции проводят на тыльной поверхности кисти руки на 4 см дистальнее лучезапястного сустава, а данная область отличается большой индивидуальной вариабельностью толщины рогового слоя кожи, что может снизить точность измерения.
Таким образом, существует потребность в разработке новых методик, позволяющих выявлять системные микроциркуляторные нарушения у пациентов с нарушениями углеводного обмена на основании несложных и доступных диагностических проб и приборов. Эта потребность является крайне актуальным вопросом современной диабетологии.
Техническим результатом способа является повышение точности, информативности, простоты осуществления, доступности для широкого применения в поликлинических условиях врачами общей практики, в том числе в качестве скринингового метода оценки микроцирокуляторных нарушений. Данный способ позволяет дать количественную объективную экспресс-оценку состояния кожной микроциркуляции у пациентов с сахарным диабетом.
Этот технический результат достигается тем, что в предлагаемом способе оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена, включающем в себя оценку уровня кожной микроциркуляции крови с функциональной пробой с помощью метода лазерной допплеровской флоуметрии на руке, и математический расчет показателей оценки микроциркуляции на основании полученных данных, отличие состоит в том, что фунциональная проба представляет собой тепловую пробу, при этом обследуемый принимает сидячее положение, руки кладет на горизонтальную поверхность перед собой ладонями вниз таким образом, что предплечья располагаются на уровне сердца; на тыльной поверхности предплечья одной из рук на 4 см проксимальнее лучезапястного сустава по срединной линии фиксируют датчик для измерения кожной микроциркуляции с нагревательным элементом, в течение одной минуты проводят регистрацию базового уровня микроциркуляции при температуре нагревательного элемента в 32-32,4°С, на 61-ой секунде исследования включают нагрев до 41,8-42,2°С со скоростью нагрева 2°С в секунду, при этом температуру нагревательного элемента 41,8-42,2°С поддерживают постоянной до конца пробы, останавливают регистрацию через 120 секунд после включения нагрева, в результате получают значения показателя микроциркуляции за период регистрации уровня кожной микроциркуляции крови, после чего рассчитывают наклон функции линейной регрессии показателя микроциркуляции, умноженного на 10, за 120 секунд проведения нагревания:
Figure 00000001
,
где
Figure 00000002
- наклон функции линейной регрессии;
t - конкретный момент времени;
I - значение показателя микроциркуляции в конкретный момент времени;
Figure 00000003
- среднее арифметическое значение времени за оцениваемый период;
Figure 00000004
- среднее арифметическое значение показателя микроциркуляции за оцениваемый период;
n61, n180 - числовые значения, отражающие количество измерений, произведенных по 61-ю и 180-ю секунды регистрации соответственно, которые вычисляют по формуле nt=t*ν, где t - время от начала исследования в секундах, a ν - количество измерений в секунду,
полученное значение параметра
Figure 00000002
подставляют в формулу
Figure 00000005
,
где Р - вероятность наличия у пациента микроциркуляторных нарушений, и по величине параметра Р, значение которого составляет от минимального - 0 до максимального - 1, оценивают у пациента вероятность наличия нарушений микроциркуляции.
Способ осуществляют следующим образом.
Обследование проводят в помещении при температуре 21-24°С. Если обследуемый подвергся смене температурного режима (приход из улицы в помещение), в течение 15 минут до исследования ожидают адаптацию пациента к температурным условиям помещения, в это время обследуемый должен находиться в спокойном состоянии. Если пациент курит, необходимо отказаться от курения за 5 часов до исследования.
Для исследования по предлагаемому способу мы использовали прибор ЛАКК-02, однако измерения могут быть проведены на любом приборе, действие которого основано на оптических методах изучения микроциркуляции, при наличии нагревательного элемента с возможностью регулировки уровня температуры и скорости нагрева. Исследование может быть выполнено как на правой, так и на левой руке при условии отсутствия поражения магистральных сосудов и нервов исследуемой конечности, но предпочтительным является выбор рабочей руки (правой для правшей и левой для левшей, соответственно). В разделе описания, касающемся осуществления способа, приведено описание пробы на правой руке, пробу на левой руке выполняют аналогично.
Обследуемый принимает сидячее положение, руки кладет на горизонтальную поверхность перед собой ладонями вниз таким образом, что предплечья располагаются на уровне сердца. На тыльной поверхности предплечья правой руки на 4 см проксимальнее лучезапястного сустава по срединной линии фиксируют датчик для измерения кожной микроциркуляции с нагревательным элементом. В течение одной минуты проводят регистрацию базового уровня микроциркуляции при температуре нагревательного элемента в 32-32,4°С. На 61-й секунде исследования включают нагрев до 41,8-42,2°С со скоростью 2°С в секунду. Температуру нагревательного элемента в 41,8-42,2°С поддерживают до конца пробы, останавливают регистрацию через 120 секунд после включения нагрева. В результате получают ряд значений показателя микроциркуляции за весь период регистрации уровня кожной микроциркуляции крови, с 1-й по 60-ю секунду исследования (базовая микроциркуляция), с 61-й секунды по 180-ю - до конца регистрации (тепловая проба).
После чего рассчитывают наклон функции линейной регрессии показателя микроциркуляции, умноженного на 10, за две минуты проведения нагревания:
Figure 00000006
,
где
Figure 00000007
- наклон функции линейной регрессии;
t - конкретный момент времени;
I - значение показателя микроциркуляции в конкретный момент времени;
Figure 00000008
- среднее арифметическое значение времени за оцениваемый период;
Figure 00000009
- среднее арифметическое значение перфузии показателя микроциркуляции за оцениваемый период;
n61, n180 - числовые значения, отражающие количество измерений, произведенных по 61-ю и 180-ю секунды исследования соответственно, которые вычисляют по формуле nt=t*ν, где t - время от начала исследования в секундах, a ν - количество измерений в секунду (для комплекса ЛАКК-02 ν=20 изм./с),
Полученное значение параметра
Figure 00000007
подставляют в формулу
Figure 00000010
,
где Р - вероятность наличия у пациента микроциркуляторных нарушений. По величине параметра Р, значение которого составляет от минимального - 0 до максимального - 1, оценивают у пациента вероятность наличия нарушений микроциркуляции.
Локализация исследования обусловлена особенностью иннервации волосистой части кожи: наличие медленных С-волокон, которые, по мнению многих авторов, могут поражаться на самых ранних стадиях СД. Также исследования участка кожи, расположенного именно на предплечье позволяет минимизировать индивидуальную вариабельность толщины рогового слоя кожи и добиться максимальной точности исследования.
Выбор режима «сверхбыстрый нагрев» - со скоростью 2°С в секунду - обусловлен данными наших предыдущих исследований, демонстрирующих, что при увеличении скорости нагрева информативность пробы не уменьшается, что позволило существенно сократить общее время исследования.
Датчик нагревают именно до 41,8-42,2°С, поскольку известно, что это воздействие, субъективно не являясь сильно болезненным для обследуемого, в норме вызывает активацию ноцицептивных волокон. Таким образом, лишь нагрев до 41,8-42,2°С позволяет оценить дисфункцию этого типа нервных волокон, которые, как известно, поражаются при СД в рамках развития диабетической нейропатии.
Такой параметр, как наклон функции линейной регрессии перфузии в зависимости от времени позволяет оценивать скорость и силу реакции сосудистого русла на нагрев до 41,8-42,2°С.
Проведение исследования на группе из 15 здоровых добровольцев, со средним возрастом 22,4±2,4 года и 14 пациентов с СД 2 типа возрастом 62,1±10 лет показало, что предлагаемый способ обладает чувствительностью 92,8% и специфичностью 93,3%.
Пример 1. Пациент А, 69 лет, сахарный диабет 2 типа, пролиферативная диабетическая ретинопатия, диабетическая нейропатия дистальный тип сенсомоторная форма, диабетическая нефропатия ХБП (С3А2), стаж заболевания 12 лет. Пациент обследован предлагаемым способом. По результатам проведения тепловой пробы на правой руке значение параметра Sl, характеризующего наклон функции линейной регрессии перфузии в зависимости от времени, составило 0,31. Вероятность наличия нарушений микроциркуляции, согласно формуле P=1/(1+e(7.97*Sl-5.24)), составила 0,94 (94%).
Дополнительное обследование с проведением постурально-тепловых проб на нижних и верхних конечностях способом выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена (Патент РФ №2547800, опубл. 10.04.2015 г.) подтвердило наличие микроциркуляторных нарушений у пациента (Irel1=1,6 для ноги, Irel2=2,7 для руки (нормы Irel1>3,7 для ноги; Irel2>3,5 для руки).
Пример 2. Пациентка Б., 25 лет, сахарный диабет 1 типа, гастродуоденит, стаж заболевания 3 года. Пациент обследован вышеописанным способом. По результатам проведения тепловой пробы на руке значение параметра Sl, характеризующего наклон функции линейной регрессии перфузии в зависимости от времени, составило 1,2. Согласно формуле P=1/(1+e(7.97*Sl-5.24) ), составила 0,013 (1,3%).
Дополнительное обследование с проведением постурально-тепловых проб на нижних и верхних конечностях способом выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена (Патент РФ №2547800, опубл. 10.04.2015 г.) подтвердило отсутствие микроциркуляторных нарушений у пациентки Irel1=4,1 для ноги, Irel2=3,7 для руки (нормы Irel1>3,7 для ноги; Irel2>3,5 для руки).
Таким образом, заявленный способ прост в осуществлении, позволяет объективно и количественно выявлять микроциркуляторные нарушения у пациентов с сахарным диабетом. Исследование проводится менее, чем за 2 5 минуты, что делает данный способ крайне перспективным для клинического применения, как в условиях стационара, так и на уровне поликлинического звена. Использование сверхбыстрого нагрева задействует регуляторные механизмы, что позволяет получать достоверную информацию о микроциркуляции у пациентов данной категории. Предлагаемый способ легковоспризводим и не вызывает выраженного дискомфорта у пациентов.

Claims (11)

  1. Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена, включающий в себя оценку уровня кожной микроциркуляции крови с функциональной пробой с помощью метода лазерной допплеровской флоуметрии на руке, и математический расчет показателей оценки микроциркуляции на основании полученных данных, отличающийся тем, что функциональная проба представляет собой тепловую пробу, при этом обследуемый принимает сидячее положение, руки кладет на горизонтальную поверхность перед собой ладонями вниз таким образом, что предплечья располагаются на уровне сердца; на тыльной поверхности предплечья одной из рук на 4 см проксимальнее лучезапястного сустава по срединной линии фиксируют датчик для измерения кожной микроциркуляции с нагревательным элементом, в течение одной минуты проводят регистрацию базового уровня микроциркуляции при температуре нагревательного элемента в 32-32,4°С, на 61-й секунде исследования включают нагрев до 41,8-42,2°С со скоростью нагрева 2°С в секунду, при этом температуру нагревательного элемента 41,8-42,2°С поддерживают постоянной до конца пробы, останавливают регистрацию через 120 секунд после включения нагрева, в результате получают значения показателя микроциркуляции за период регистрации уровня кожной микроциркуляции крови, после чего рассчитывают наклон функции линейной регрессии показателя микроциркуляции, умноженного на 10, за 120 секунд проведения нагревания:
  2. Figure 00000011
    ,
  3. где Sl - наклон функции линейной регрессии;
  4. t - конкретный момент времени;
  5. I - значение показателя микроциркуляции в конкретный момент времени;
  6. Figure 00000012
    - среднее арифметическое значение времени за оцениваемый период;
  7. Figure 00000013
    - среднее арифметическое значение показателя микроциркуляции за оцениваемый период;
  8. n61, n180 - числовые значения, отражающие количество измерений, произведенных по 61-ю и 180-ю секунды регистрации соответственно, которые вычисляют по формуле nt=t⋅ν, где t - время от начала исследования в секундах, a ν - количество измерений в секунду,
  9. полученное значение параметра Sl подставляют в формулу
  10. Figure 00000014
  11. где Р - вероятность наличия у пациента микроциркуляторных нарушений, и по величине параметра Р, значение которого составляет от минимального - 0 до максимального - 1, оценивают у пациента вероятность наличия нарушений микроциркуляции.
RU2017143444A 2017-12-12 2017-12-12 Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена RU2677590C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017143444A RU2677590C1 (ru) 2017-12-12 2017-12-12 Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017143444A RU2677590C1 (ru) 2017-12-12 2017-12-12 Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена

Publications (1)

Publication Number Publication Date
RU2677590C1 true RU2677590C1 (ru) 2019-01-17

Family

ID=65025083

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017143444A RU2677590C1 (ru) 2017-12-12 2017-12-12 Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена

Country Status (1)

Country Link
RU (1) RU2677590C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693451C1 (ru) * 2018-05-25 2019-07-02 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ "ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ЦИТОЛОГИИ И ГЕНЕТИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК" (ИЦиГ СО РАН) Способ определения вазоконстрикторной микроциркуляторной сосудистой реактивности на инсулин
RU2737717C1 (ru) * 2020-06-09 2020-12-02 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) Способ определения фактора риска сердечно-сосудистых событий с помощью оценки кожной микроциркуляции

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474379C2 (ru) * 2011-05-04 2013-02-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Государственный университет - учебно-научно-производственный комплекс" (ФГОУ ВПО "Госуниверситет - УНПК") Способ диагностики функционального состояния системы микроциркуляции крови при вибрационной болезни
RU2547800C1 (ru) * 2013-12-27 2015-04-10 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) Способ выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474379C2 (ru) * 2011-05-04 2013-02-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Государственный университет - учебно-научно-производственный комплекс" (ФГОУ ВПО "Госуниверситет - УНПК") Способ диагностики функционального состояния системы микроциркуляции крови при вибрационной болезни
RU2547800C1 (ru) * 2013-12-27 2015-04-10 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) Способ выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER J. ABULARRAGE et al., Evaluation of the microcirculation in vascular disease, Journal of vascular surgery, Volume 42, Number 3, pp. 574-581. INGEMAR FREDRIKSSON, Quantitative Laser Doppler Flowmetry, Linköping Studies in Science and Technology Dissertations, No. 1269, Department of Biomedical Engineering Linköping University Linköping 2009, Printed in Linköping, Sweden, by LiU-Tryck Linköping, 2009, pp. 1-96. *
ГЛАЗКОВ А.А. и др. Разработка способа диагностики нарушений микроциркуляции крови у больных сахарным диабетом методом лазерной допплеровской флоуметрии, Альманах клинической медицины, Оригинальные статьи, N 31 2014, с. 7-10. *
ГЛАЗКОВ А.А. и др. Разработка способа диагностики нарушений микроциркуляции крови у больных сахарным диабетом методом лазерной допплеровской флоуметрии, Альманах клинической медицины, Оригинальные статьи, N 31 2014, с. 7-10. КОЗЛОВ В.И. и др. Лазерная допплеровская флоуметрия в оценке состояния и расстройств микроциркуляции крови, Российский университет дружбы народов ГНЦ лазерной медицины, Москва-2012, с. 1-32. CHRISTOPHER J. ABULARRAGE et al., Evaluation of the microcirculation in vascular disease, Journal of vascular surgery, Volume 42, Number 3, pp. 574-581. INGEMAR FREDRIKSSON, Quantitative Laser Doppler Flowmetry, Linköping Studies in Science and Technology Dissertations, No. 1269, Department of Biomedical Engineering Linköping University Linköping 2009, Printed in Linköping, Sweden, by LiU-Tryck Linköping, 2009, pp. 1-96. *
КОЗЛОВ В.И. и др. Лазерная допплеровская флоуметрия в оценке состояния и расстройств микроциркуляции крови, Российский университет дружбы народов ГНЦ лазерной медицины, Москва-2012, с. 1-32. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693451C1 (ru) * 2018-05-25 2019-07-02 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ "ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ЦИТОЛОГИИ И ГЕНЕТИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК" (ИЦиГ СО РАН) Способ определения вазоконстрикторной микроциркуляторной сосудистой реактивности на инсулин
RU2737717C1 (ru) * 2020-06-09 2020-12-02 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) Способ определения фактора риска сердечно-сосудистых событий с помощью оценки кожной микроциркуляции

Similar Documents

Publication Publication Date Title
Meyer et al. Impaired 0.1-Hz vasomotion assessed by laser Doppler anemometry as an early index of peripheral sympathetic neuropathy in diabetes
Stirban Microvascular dysfunction in the context of diabetic neuropathy
Comerota et al. Tissue (muscle) oxygen saturation (StO2): a new measure of symptomatic lower-extremity arterial disease
Pritchard et al. Corneal markers of diabetic neuropathy
Alam et al. A review of methods currently used for assessment of in vivo endothelial function
Wilson et al. Detection of microvascular impairment in type I diabetics by laser Doppler flowmetry
Hodges et al. Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation
RU2547800C1 (ru) Способ выявления микроциркуляторных нарушений у больных с нарушениями углеводного обмена
WO2015147796A1 (en) Methods and apparatus for assessing vascular health
Tomešová et al. Differences in skin microcirculation on the upper and lower extremities in patients with diabetes mellitus: relationship of diabetic neuropathy and skin microcirculation
Sahli et al. Assessment of toe blood pressure is an effective screening method to identify diabetes patients with lower extremity arterial disease
Agarwal et al. Comparative reproducibility of dermal microvascular blood flow changes in response to acetylcholine iontophoresis, hyperthermia and reactive hyperaemia
Credeur et al. Vasoreactivity before and after handgrip training in chronic heart failure patients
RU2677590C1 (ru) Способ оценки микроциркуляторных нарушений у больных с нарушениями углеводного обмена
Argarini et al. Optical coherence tomography: a novel imaging approach to visualize and quantify cutaneous microvascular structure and function in patients with diabetes
Liguori et al. Microneurographic evaluation of sympathetic activity in small fiber neuropathy
Fredriksson et al. Vasomotion analysis of speed resolved perfusion, oxygen saturation, red blood cell tissue fraction, and vessel diameter: novel microvascular perspectives
WO2019146738A1 (ja) ストレス状態の検出方法、及び、ストレス検出装置
Fata Overview of ankle brachial index (ABI) values on diabetes mellitus type 2 in Blitar
RU2559640C1 (ru) Способ диагностики микроангиопатии у больных сахарным диабетом
Pettersen et al. Validation of a novel ultrasound Doppler monitoring device (earlybird) for detection of microvascular circulatory changes
Ogbuehi et al. Evaluation of the intraocular pressure measured with the ocular response analyzer
Bandini et al. Modelling of thermal hyperemia in the skin of type 2 diabetic patients
Dhavalikar et al. Effect of skin temperature on nerve conduction velocity and reliability of temperature correction formula in Indian females
Winocour et al. Altered Hand Skin Blood Flow in Type 1 (Insulin‐dependent) Diabetes Mellitus

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191213