RU2677018C1 - Камера сгорания газотурбинного двигателя - Google Patents

Камера сгорания газотурбинного двигателя Download PDF

Info

Publication number
RU2677018C1
RU2677018C1 RU2017129611A RU2017129611A RU2677018C1 RU 2677018 C1 RU2677018 C1 RU 2677018C1 RU 2017129611 A RU2017129611 A RU 2017129611A RU 2017129611 A RU2017129611 A RU 2017129611A RU 2677018 C1 RU2677018 C1 RU 2677018C1
Authority
RU
Russia
Prior art keywords
combustion chamber
damping
wall
cavities
cooling
Prior art date
Application number
RU2017129611A
Other languages
English (en)
Inventor
Ян ПЕТЕРССОН
Ульф РАДЕКЛИНТ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52358714&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2677018(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Application granted granted Critical
Publication of RU2677018C1 publication Critical patent/RU2677018C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • F02K1/827Sound absorbing structures or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Камера (10) сгорания газотурбинного двигателя (1) содержит внутреннюю стенку (22), наружную стенку (25) и пространство (28) между внутренней стенкой (22) и наружной стенкой (25), множество демпфирующих полостей (30) для демпфирования термоакустических вибраций в газообразных продуктах сгорания, по меньшей мере один канал (50) охлаждения для охлаждающей среды, движущейся снаружи внутреннего объема (V) в тепловом контакте с внутренней стенкой (22). Внутренняя стенка (22) ограничивает внутренний объем (V) камеры (10) сгорания, через который газообразные продукты сгорания движутся от топливной форсунки (2) к газовой турбине (3) газотурбинного двигателя (1). Каждая демпфирующая полость (30) сообщается с внутренним объемом (V) через по меньшей мере одно демпфирующее отверстие (40) во внутренней стенке (22) и содержит по меньшей мере одно продувочное отверстие (60), сообщающееся с каналом (50) охлаждения для продувки части охлаждающей среды через демпфирующие полости (30) во внутренний объем (V). Множество демпфирующих полостей (30) и канал (50) охлаждения выполнены в указанном пространстве (28) и проходят от указанной внутренней стенки (22) к указанной наружной стенке (25). Изобретение направлено на создание камеры сгорания для газовых турбин, имеющей стенку, которая составляет единое целое с демпфирующими устройствами для демпфирования термоакустических вибраций в газообразных продуктах сгорания внутри камеры сгорания, и систему охлаждения, расходующую минимальное количество охлаждающей среды. 2 н. и 13 з.п. ф-лы, 9 ил.

Description

Область техники
Изобретение относится к камере сгорания для газовой турбины и к газотурбинному двигателю, содержащему такую камеру сгорания.
Предшествующий уровень техники
Термоакустические эффекты, связанные с динамикой горения, относятся к хорошо известному сложному явлению, которое довольно часто встречается в современных камерах сгорания газовых турбин с малым выходом загрязняющих веществ. Присущая неустойчивость процесса горения является источником динамических термоакустических вибраций в газообразных продуктах сгорания, что может быть вызвано нежелательным взаимодействием высвобождения тепла и акустики окружающей среды. Вследствие влияния энергии, вовлеченной в процесс горения, высокие динамические уровни могут быть критичными, и при взаимодействии с акустической структурой это может привести к повреждению окружающей структуры камеры сгорания. Указанное явление должно быть подавлено, что может быть достигнуто разными способами, например, сведением к минимуму акустического взаимодействия с источником, изменением спектра акустической частоты, смещением собственных частот структуры или внедрением пассивных демпфирующих устройств для получения допустимых динамических уровней.
Подавление (низкочастотной) неустойчивости горения в камере сгорания часто обеспечивают посредством использования резонаторов Гельмгольца. Демпфирующая способность этого акустического устройства достигается посредством создания акустической полости за отверстием в стенке камеры сгорания.
Заданную частоту, т.е. частоту, которая должна быть подавлена устройством, определяют с помощью геометрических параметров полости, а именно:
- объем Vc полости;
- площадь A поперечного сечения демпфирующего отверстия между полостью и камерой сгорания;
- длина L демпфирующего отверстия между полостью и камерой сгорания.
Согласно хорошо известной теории резонаторов Гельмгольца вышеуказанные параметры связаны с частотой f, которая должна быть подавлена и пропорциональна корню квадратному из отношения между площадью A и произведением объема Vc на длину L, т.е.:
f ~ корень квадратный (A / Vc × L).
Длина L связана с толщиной стенок, разделяющих резонатор Гельмгольца и камеру сгорания (обычно от 2 мм до 4 мм), а площадь A демпфирующих отверстий не может быть выше верхнего предела, зависящего от технологических ограничений, в частности, конструктивных требований к стенкам, разделяющим резонатор Гельмгольца и камеру сгорания. Стандартные значения диаметра демпфирующих отверстий составляют 0,5 - 4 мм. Следовательно, вышеуказанное отношение показывает, что единственная практическая возможность подавления средних и высоких частот f состоит в использовании небольших устройств Гельмгольца, т.е. устройств Гельмгольца, отличающихся небольшими значениями объема Vc. Однако эти устройства едва ли возможно внедрить из-за ограничений в отношении существующих способов изготовления. В качестве варианта используют так называемые перфорированные трубы или мягкие стенки.
Со ссылкой на фиг. 1 и 2 мягкие стенки получают с помощью большого числа близко расположенных отверстий 40a во внутренней стенке 22a камеры сгорания, находящейся на расстоянии от наружной стенки 25a камеры 1 сгорания. Близко расположенные отверстия 40a распределены в одной и той же акустической полости 30a, находящейся между внутренней стенкой 22a и наружной стенкой 25a. Такое устройство, обычно изготавливаемое сваркой, позволяет подавлять частоты в интервале, значения которого зависят от размера, пространства, глубины полости и длины отверстий и от скорости движения воздуха через эти отверстия.
Первый недостаток связан с необходимостью обеспечения потока охлаждающей среды, в частности, сжатого воздуха, вдоль полости 30a. Поскольку стенки камеры сгорания подвергают воздействию горячего газа, они должны охлаждаться, и с этой целью в полость 30a поступает значительный поток охлаждающего воздуха с низкой скоростью. Однако из-за наличия нескольких сотен отверстий, соединенных с холодной стороной, т.е. с полостью 30a, где движется охлаждающий воздух, существует риск всасывания горячего газа в полость 30a. Этот риск связан с различными изменениями тангенциального и/или осевого давления на внутренней стенке 22a камеры сгорания. Для устранения этой проблемы может потребоваться чрезмерное количество охлаждающего воздуха.
Кроме того, демпфирующая способность в некоторых случаях может основываться главным образом на высокой скорости течения воздуха через демпфирующие отверстия, т.е. подходе, который требует много охлаждающего воздуха и, таким образом, сильно ограничивает количество отверстий, которое должно использоваться. Поскольку количество отверстий прямо пропорционально степени акустического затухания, этот подход может привести к недостаточному демпфированию неустойчивости горения.
Кроме того, для внедрения технических решений, сходных с вышеописанным решением, сложно подтвердить правильность количественных оценок, вытекающих из термоакустических теорий мягких стенок, в контексте камеры сгорания газовой турбины, т.е. мягкой стенки, работающей в горячей/холодной окружающей среде при высоком давлении на выходе.
В любом случае выбор конструкции в настоящее время ограничен существующими способами изготовления, используемыми для демпфирующих сегментов, по той причине, что практически невозможно или экономически нецелесообразно выполнять в отдельных полостях части стенки до тысячи отверстий.
Другие решения, включающие в себя изготовление ограниченного количества демпфирующих элементов на внутренней стенке камеры сгорания, представлены в документах US 2015/020498, US 2006/059913 и US 2009/094985, однако они не обеспечивают оптимальный компромисс между требованиями к демпфированию и охлаждению.
Вышеуказанные недостатки показывают, что вышеописанное устройство, рассматриваемое как приемлемый компромисс между требованиями к акустическому демпфированию, требованиями к охлаждению и существующими технологиями изготовления, не является оптимальным решением.
Желательно создать новую конструкцию для стенок камеры сгорания газовых турбин, которая эффективно обеспечивает требуемую степень акустического демпфирования и охлаждения стенки.
Раскрытие изобретения
Задачей изобретения является создание камеры сгорания для газовых турбин, позволяющей подавлять частоты в широком диапазоне, включая средние и высокие частоты.
Другой задачей изобретения является создание камеры сгорания для газовых турбин, имеющей стенку, которая составляет единое целое с демпфирующими устройствами для демпфирования термоакустических вибраций в газообразных продуктах сгорания внутри камеры сгорания, и систему охлаждения, расходующую минимальное количество охлаждающей среды.
Для решения вышеуказанных задач согласно независимым пунктам формулы изобретения обеспечена камера сгорания для газовой турбины и газовая турбина, содержащая такую камеру сгорания. Зависимые пункты описывают преимущественные усовершенствования и модификации изобретения.
По первому аспекту изобретения камера сгорания для газовой турбины содержит:
- внутреннюю стенку, ограничивающую внутренний объем камеры сгорания, через который газообразные продукты сгорания движутся от топливной форсунки к газовой турбине газотурбинного двигателя;
- множество демпфирующих полостей для демпфирования термоакустических вибраций в газообразных продуктах сгорания, причем каждая демпфирующая полость сообщается с внутренним объемом через, по меньшей мере, одно демпфирующее отверстие во внутренней стенке;
- по меньшей мере один канал охлаждения для охлаждающей среды, движущейся снаружи внутреннего объема в тепловом контакте с внутренней стенкой, причем каждая демпфирующая полость содержит по меньшей мере одно продувочное отверстие, сообщающееся с каналом охлаждения для продувки части охлаждающей среды через демпфирующие полости во внутренний объем.
Согласно изобретению установление оптимальной комплексной акустической геометрии обеспечивает отделение каждой демпфирующей полости, позволяя использовать меньшее количество охлаждающего воздуха, поскольку каждая полость имеет только уменьшенное количество отверстий, т.е. только отверстий, необходимых для подавления нежелательных частот. В частности, можно изготавливать полости, имеющие только одно соответствующее отдельное отверстие. Это можно обеспечить посредством использования технологий аддитивного производства, что также позволяет значительно легче и быстрее проверять и подтверждать различные концепции демпфирования.
Преимущественно, это техническое решение требует только небольшого продувочного потока в каждой полости. Конвекционное охлаждение стенки поддерживают в отдельном канале между демпфирующими полостями. Через продувочные отверстия продувают только небольшое количество воздуха от конвекционного охлаждающего потока.
Согласно поясняющему варианту осуществления изобретения каждая демпфирующая полость ограничена внутренней стенкой и, по меньшей мере, стенкой полости, причем продувочное отверстие обеспечено в стенке полости.
Преимущественно, продувочное отверстие не обеспечивают на внутренней стенке, тем самым определяя демпфирующие полости, которые должны быть расположены между каналом для охлаждающей среды и внутренним объемом камеры сгорания. Это позволяет отделить главный поток охлаждающей среды от вторичного потока охлаждающей среды, движущегося в демпфирующие полости в целях продувки.
Согласно другому поясняющему варианту осуществления изобретения камера сгорания дополнительно содержит наружную стенку и пространство, в частности, кольцевое пространство, между внутренней стенкой и наружной стенкой, множество демпфирующих полостей и канал охлаждения обеспечены в указанном пространстве. Преимущественно, множество демпфирующих полостей и канал охлаждения расположены в пространстве между внутренней и наружной стенками камеры сгорания, изолированном от газообразных продуктов горения, движущихся по камере сгорания.
Согласно другому поясняющему варианту осуществления изобретения множество демпфирующих полостей проходит от указанной внутренней стенки к указанной наружной стенке. Это также позволяет обеспечить соответствие демпфирующих полостей по тепловым параметрам наружной стенке камеры сгорания с целью повышения их механической прочности.
Согласно другим возможным поясняющим вариантам осуществления изобретения демпфирующие полости расположены в один или более рядов. В частности, по одному из этих возможных вариантов множество демпфирующих полостей расположено с образованием множества рядов, проходящих в продольном направлении, параллельно направлению главного течения газообразных продуктов сгорания во внутреннем объеме. В таких или других вариантах может быть обеспечен по меньшей мере один канал охлаждения между парой рядов демпфирующих полостей. Это позволяет изолировать простым и эффективным образом демпфирующие полости от каналов охлаждения с охлаждающей средой, движущейся в направлении, параллельном главному направлению течения газообразных продуктов сгорания внутри камеры сгорания. В частности, по другим возможным поясняющим вариантам осуществления изобретения продувочные отверстия могут быть расположены под отрицательным углом относительно охлаждающей среды, движущейся в канале охлаждения. Таким образом, может быть образован пылеуловитель, затрудняющий перемещение пыли или других твердых частиц из канала охлаждения в направлении демпфирующих полостей и камеры сгорания.
По другому возможному поясняющему варианту осуществления изобретения секция канала охлаждения имеет секцию, сужающуюся в направлении движения охлаждающей среды внутри канала охлаждения. Согласно изобретению могут быть обеспечены другие формы канала охлаждения. Таким образом, можно управлять общим эффектом охлаждения вдоль канала охлаждения. Могут быть обеспечены специальные технические решения для сосредоточения эффекта охлаждения на известных горячих участках камеры сгорания.
По другому возможному поясняющему варианту осуществления изобретения одна или более демпфирующих полостей содержат две боковые стенки полости в тепловом контакте с охлаждающей средой. Таким образом, например, третья боковая стенка полости может находиться в контакте с другой стенкой камеры сгорания, в частности, с наружной стенкой. Таким образом, демпфирующие полости могут соответствовать по тепловым параметрам наружной стенке камеры сгорания с целью повышения механической прочности.
По еще одному возможному поясняющему варианту осуществления изобретения одна или более демпфирующих полостей содержат три боковые стенки полости в тепловом контакте с охлаждающей средой. Таким образом, демпфирующие полости могут находиться в тепловом контакте с каналом охлаждения по всем стенкам полости, которые не совмещены с внутренней стенкой камеры сгорания. Это техническое решение может обеспечить улучшенное охлаждение в вариантах выполнения, где используют демпфирующие полости большего размера с несколькими отверстиями в полости.
По второму аспекту изобретения газотурбинный двигатель содержи топливную форсунку, газовую турбину и вышеописанную камеру сгорания между топливной форсункой и газовой турбиной.
Газовая турбина согласно изобретению позволяет достигнуть таких же преимуществ, как описано выше со ссылкой на лопатку ротора.
Краткое описание чертежей
Определенные выше аспекты и другие аспекты изобретения понятны из примеров варианта осуществления, которые описаны далее и поясняются со ссылкой на примеры вариантов осуществления. Далее приведено подробное описание изобретения со ссылкой на примеры варианта осуществления, до которых изобретение не ограничено.
На фиг. 1 схематично показана часть газотурбинного двигателя, содержащего камеру сгорания, вид в продольном разрезе;
на фиг. 2 - часть II на фиг. 1 по существующему уровню техники, увеличенный вид;
на фиг. 3 - часть II на фиг. 1 согласно варианту осуществления изобретения, увеличенный вид;
на фиг. 4 - часть камеры сгорания на фиг. 3, вид в разрезе по линии III-III на фиг. 3;
на фиг. 5 - часть камеры сгорания на фиг. 3 и 4, вид в разрезе по окружной поверхности IV-IV на фиг. 4;
на фиг. 6 - часть камеры сгорания согласно другому варианту осуществления изобретения, вид в аксонометрии;
фиг. 7, 8 и 9 - соответственно, три схематичных проекции на плоскость участков камеры сгорания согласно трем соответствующим вариантам осуществления изобретения.
Варианты осуществления изобретения
Далее приведено подробное описание вышеупомянутых и других особенностей изобретения. Различные варианты осуществления описаны со ссылками на чертежи, на которых одни и те же ссылочные обозначения использованы для одних и тех же элементов. Показанные варианты предназначены для пояснения, а не для ограничения изобретения.
На фиг. 1 схематично показана часть газотурбинного двигателя 1 согласно примеру, вид в разрезе.
В общем, схематическое изображение на фиг. 1 также можно использовать для описания газотурбинного двигателя согласно известному уровню техники. В частности, часть II на фиг. 1 можно представить увеличенными изображениями на фиг. 2 и 3, соответственно, показывающими известное решение, описанное выше, и решение согласно изобретению, подробно описанное далее.
Газотурбинный двигатель 1 (не показан целиком) последовательно содержит секцию компрессора (не показана), топливную форсунку 2, камеру 10 сгорания и газовую турбину 3, которые, в общем, расположены последовательно. Во время работы газотурбинного двигателя 1 воздух сжимается в секции компрессора и поступает в секцию сгорания, включающую в себя топливную форсунку 2 и камеру 10 сгорания. Сжатый воздух, выходящий из компрессора, поступает в топливную форсунку 2, где он смешивается с газообразным или жидким топливом. Далее топливовоздушная смесь сгорает, и газообразные продукты сгорания поступают из камеры 10 сгорания в секцию 1 газовой турбины для преобразования энергии рабочего газа в полезную мощность. Газообразные продукты сгорания протекают по камере 10 сгорания в главном продольном направлении X, ориентированном от топливной форсунки 2 к газовой турбине 3.
Секция сгорания, топливная форсунка 2 и газовая турбина 3 не являются конкретным объектом изобретения и, следовательно, в дальнейшем приведено только описание камеры 10 сгорания.
Со ссылкой на фиг. 3, 4 и 5 камера 10 сгорания согласно изобретению содержит внутреннюю стенку 22, ограничивающую внутренний объем V камеры 10 сгорания, через которую газообразные продукты сгорания движутся от топливной форсунки 2 к газовой турбине 3 газотурбинного двигателя 1 в главном продольном направлении X. Камера 10 сгорания дополнительно содержит наружную стенку 25 и кольцевое пространство 28 между внутренней стенкой 22 и наружной стенкой 25. Пространство 28 продолжается кольцеобразно вокруг внутреннего объема V камеры 10 сгорания.
В пространстве 28 расположено множество демпфирующих полостей 30 для демпфирования термоакустических вибраций в газообразных продуктах сгорания, причем каждая демпфирующая полость 30 сообщается с внутренним объемом V через, по меньшей мере, одно демпфирующее отверстие 40 во внутренней стенке 22. Каждая демпфирующая полость 30 представляет собой резонатор Гельмгольца, имеющий следующие основные геометрические параметры:
- объем Vc демпфирующей полости,
-площадь поперечного A сечения демпфирующего отверстия 40,
- длину L демпфирующего отверстия 40.
Каждую демпфирующую полость 30 можно использовать для подавления частоты f термоакустических вибраций в газообразных продуктах сгорания внутри объема V, причем частота f пропорциональна корню квадратному из отношения площади A к произведению объема Vc на длину L, т.е.:
f ~ корень квадратный (A / Vc × L).
Каждая демпфирующая полость 30 ограничена внутренней стенкой 22 и наружной стенкой 25 камеры 10 сгорания и, по меньшей мере, двумя боковыми стенками 42, 43 полости, проходящими от внутренней стенки 22 до наружной стенки 25 перпендикулярно продольному направлению X.
Две боковые стенки 42, 43 полости проходят в продольном направлении X от топливной форсунки 2 к газовой турбине 3 таким образом, что, по меньшей мере, часть демпфирующих полостей 30 расположена в, по меньшей мере, один ряд 31, проходящий параллельно продольному направлению X. На частичном виде на фиг. 5 показаны два ряда 31, но согласно изобретению в пространстве 28 может быть обеспечено любое количество рядов 31. В частности, согласно возможному варианту осуществления в пространстве 28 вокруг продольного направления X может быть распределено множество рядов 31 на равном расстоянии друг от друга.
Пространство 28 дополнительно содержит по меньшей мере один канал 50 охлаждения, также продолжающийся от указанной внутренней стенки 22 к указанной наружной стенке 25. В варианте на фиг. 3, 4 и 5 обеспечено множество каналов 50 охлаждения. Каждый канал 50 охлаждения расположен между каждой парой соседних рядов 31 демпфирующих полостей 30. Внутри канала 50 охлаждения движется охлаждающая среда снаружи внутреннего объема V, но в тепловом контакте с внутренней стенкой 22. Охлаждающая среда является частью сжатого воздуха от секции компрессора, которая обходит топливную форсунку 2 и направляется непосредственно в пространство 28. По другому возможному варианту осуществления изобретения можно использовать другую охлаждающую среду.
Каждая демпфирующая полость 30 содержит по меньшей мере одно продувочное отверстие 60, сообщающееся с каналом 50 охлаждения, для продувки части охлаждающей среды через демпфирующие полости 30 во внутренний объем V. Продувочное отверстие 60 расположено в одной или обеих стенках 42, 43 полости.
Продувочные отверстия 60 имеют меньшие размеры по отношению к демпфирующим отверстиям 40, причем их нижний предельный размер зависит от необходимости препятствования забиванию этих отверстий, например, твердыми частицами.
Продувочные отверстия 60 расположены под отрицательным углом относительно охлаждающей среды, движущейся в канале 50 охлаждения, таким образом, что может быть образован пылеуловитель, затрудняющий перемещение пыли или других твердых частиц из канала охлаждения в направлении демпфирующих полостей 30 и объема V камеры сгорания.
Согласно другим возможным вариантам осуществления изобретения обеспечено множество схем геометрического расположения демпфирующих полостей 30 и каналов 50 охлаждения. Например, демпфирующие полости 30 могут располагаться не рядами, а в шахматном порядке или ступенями или по любой другой схеме.
В частности, по варианту на фиг. 6 демпфирующие полости 30 могут не продолжаться от внутренней стенки 22 до наружной стенки 25, а содержать третьи боковые стенки 44 полости в тепловом контакте с охлаждающей средой и на расстоянии от наружной стенки 25. В таком варианте выполнения третьи боковые стенки 44 полости проходят параллельно продольному направлению X и содержат множество продувочных отверстий 60, и отдельная демпфирующая полость содержит больше одного демпфирующего отверстия 40. Канал 50 охлаждения находится в контакте с тремя боковыми стенками 42, 43, 44 полости.
Посредством комбинаций варианта выполнения на фиг. 3, 4 и 5 с вариантом выполнения на фиг. 6 можно получить другие варианты выполнения (не показаны), например, согласно изобретению можно обеспечить одну или несколько демпфирующих полостей 30 с одиночным демпфирующим отверстием 40 и с продувочными отверстиями 60 на двух боковых стенках 42, 43 полости (подобно варианту выполнения на фиг. 3, 4 и 5), но с каналом 50 охлаждения в контакте с тремя боковыми стенками 42, 43, 44 полости (подобно варианту выполнения на фиг. 6).
Канал 50 охлаждения также может отличаться от прямолинейной формы, показанной на фиг. 4 и 5. Например, по возможному варианту (не показан) канал 50 охлаждения имеет часть, сужающуюся в направлении движения охлаждающей среды внутри канала 50 охлаждения. Могут быть обеспечены другие формы канала охлаждения для регулирования общего эффекта охлаждения в канале охлаждения.
Охлаждающая среда в канале 50 охлаждения движется, главным образом, в продольном направлении, т.е. параллельно продольному направлению X, от первого продольного конца до второго продольного конца канала 50 охлаждения.
Согласно возможному варианту осуществления изобретения канал (каналы) 50 охлаждения и демпфирующие полости 30 обеспечены в камере 10 сгорания по всей ее продольной протяженности в направлении X и по всей ее окружной протяженности вокруг направления X.
Согласно другому возможному варианту осуществления изобретения только уменьшенная секция камеры 10 сгорания, ограниченная по ее продольной протяженности в направлении X и по ее окружной протяженности вокруг направления X, содержит каналы 50 охлаждения и демпфирующие полости 30. Например, каналы 50 охлаждения и демпфирующие полости 30 могут быть обеспечены только в одной или более секциях, где требования к демпфированию термоакустических вибраций и/или охлаждению являются особо жесткими.
В частности, со ссылкой на три возможных варианта осуществления изобретения, на фиг. 7, 8 и 9 соответственно показаны три различных схемы геометрического расположения демпфирующих полостей 30 и каналов 50 охлаждения по внутренней стенке 22. Каждая из демпфирующих полостей 30 на фиг. 7, 8 и 9 может быть сходной с любой из демпфирующих полостей на фиг. 3 - 6. На фиг. 7 демпфирующие полости 30 распределены по матричной схеме, включающей в себя множество рядов и колонок, соответственно параллельных и перпендикулярных продольному направлению X. Каждая демпфирующая полость 30 расположена на расстоянии от других полостей в обоих направлениях, параллельном и перпендикулярном продольному направлению X. На фиг. 8 демпфирующие полости 30 расположены в шахматном порядке. В обоих вариантах выполнения на фиг. 7 и 8 каналы 50 охлаждения окружают каждую демпфирующую полость 30, как описано со ссылкой на вариант выполнения на фиг. 6. На фиг. 9 использованы ряды демпфирующих полостей 30, сходных с вариантом выполнения на фиг. 3 - 5, но с тем отличием, что ряды на фиг. 9 непараллельны продольному направлению X. Каналы 50 охлаждения между рядами демпфирующих полостей 30, соответственно, также непараллельны продольному направлению X.
Множество других различных форм можно получить, например, посредством использования технологии аддитивного производства вместо сварки.
В частности, боковую стенку 42 и/или 43 полости и/или третьи боковые стенки 44 полости и/или стенки множества каналов 50 охлаждения можно изготовить с помощью технологий аддитивного производства, например, посредством селективного лазерного плавления, селективного лазерного спекания, электроннолучевого плавления, селективного теплового спекания или электронно-лучевого процесса формирования предметов произвольной формы. В частности, технические решения, использующие лазеры (например, селективное лазерное плавление, селективное лазерное спекание), позволяют получать очень тонкие структуры и геометрии с элементами уменьшенного размера.
Посредством использования технологии аддитивного производства можно получить оптимальную (сложную) акустическую форму, а также обеспечить разъединение каждого демпфирующего отверстия на холодной стороне, что создает возможность использования меньшего количества охлаждающего воздуха, поскольку каждая полость содержит только одно отверстие. В каждой полости необходим только небольшой поток продувочного воздуха. Конвекционное охлаждение стенки поддерживают в отдельном канале между демпфирующими полостями, где выпускают только небольшое количество воздуха. За счет поддержания основного охлаждающего потока прямолинейным и отбора воздуха под отрицательным углом для этих очень маленьких отверстий может быть образован уловитель пыли. Главный канал также может быть сужающимся, если необходимо поддерживать конвективный теплообмен вдоль сегмента демпфирования стенки камеры сгорания. Сегмент демпфирования может соответствовать по тепловым параметрам другим частям камеры сгорания для поддержания механической целостности.
Что касается геометрии в целом, важно, что каналы 50 охлаждения отделены от демпфирующих полостей таким образом, что конвекционная охлаждающая среда главным образом движется в каналах, отделенных от демпфирующих полостей. Конвекционное охлаждение, прежде всего, основано на главном течении охлаждающей среды внутри каналов 50, т.е. снаружи демпфирующих полостей 30, даже если в целях продувки обеспечено небольшое течение охлаждающей среды через продувочные отверстия 60 и демпфирующие отверстия 40.
В секциях камеры 10 сгорания, где обеспечены каналы 50 охлаждения и демпфирующие полости 30, движение охлаждающей среды внутри каналов 50 охлаждения главным образом является продольным, в то время как незначительная часть охлаждающей среды поступает в демпфирующие полости 30 через продувочные отверстия 60 и во внутренний объем V через демпфирующие отверстия 40.
Преимуществом является то, что демпфирующие полости дополнительно обеспечивают подвод охлаждающего воздуха для охлаждения внутренней стенки 22, на которую воздействует зона высокотемпературного горения.
Демпфирующие полости 30, в частности, могут быть расположены рядом с местом высвобождения тепла объемом камеры сгорания, т.е. рядом с фронтом пламени. Они могут быть расположены в передней панели или жаровой трубе. Они также или дополнительно могут быть расположены рядом с местом, где возникают наибольшие флуктуации собственной частоты.
Вся стенка, окружающая объем камеры сгорания, может быть снабжена множеством демпфирующих полостей.
В области, где имеются демпфирующие полости, эти полости могут быть расположены в виде полного кольца, снабженного демпфирующими полостями.
В частности, посредством использования технологии аддитивного производства можно изготавливать кольцевые сегменты, в которых все стенки получают с помощью процесса аддитивного производства. Кольцевые сегменты прикрепляют к замкнутому кольцу, например, посредством сварки. Небольшую камеру сгорания можно изготавливать в виде полного кольца, цилиндрического компонента, без деления на сегменты.
Форма «объема Гельмгольца» может быть произвольной, например, шаровидной, конической, прямоугольной, ячеистой и т.д. Форма отверстий может быть круглой или овальной и т.д.
Демпфирующие полости, т.е. «объем Гельмгольца», могут располагаться на различном расстоянии друг от друга. Различные демпфирующие полости могут быть расположены вместе или на расстоянии друг от друга в направлении касательной или осевом направлении.
Преимуществом является наличие, по меньшей мере, 1000 демпфирующих полостей в одной камере сгорания.
Кроме того, могут быть внедрены варианты выполнения без конкретных каналов 50 охлаждения (как показано на фиг. 5), но с множеством демпфирующих полостей, каждая из которых находится на расстоянии от другой, причем охлаждающий воздух будет течь между различными демпфирующими полостями.

Claims (20)

1. Камера (10) сгорания газотурбинного двигателя (1), содержащая:
– внутреннюю стенку (22), ограничивающую внутренний объем (V) камеры (10) сгорания, через который газообразные продукты сгорания движутся от топливной форсунки (2) к газовой турбине (3) газотурбинного двигателя (1);
– наружную стенку (25) и пространство (28) между внутренней стенкой (22) и наружной стенкой (25);
– множество демпфирующих полостей (30) для демпфирования термоакустических вибраций в газообразных продуктах сгорания, причем каждая демпфирующая полость (30) сообщается с внутренним объемом (V) через по меньшей мере одно демпфирующее отверстие (40) во внутренней стенке (22);
– по меньшей мере один канал (50) охлаждения для охлаждающей среды, движущейся снаружи внутреннего объема (V) в тепловом контакте с внутренней стенкой (22), причем каждая демпфирующая полость (30) содержит по меньшей мере одно продувочное отверстие (60), сообщающееся с каналом (50) охлаждения для продувки части охлаждающей среды через демпфирующие полости (30) во внутренний объем (V);
причем множество демпфирующих полостей (30) и канал (50) охлаждения выполнены в указанном пространстве (28), при этом указанное множество демпфирующих полостей (30) проходит от указанной внутренней стенки (22) к указанной наружной стенке (25).
2. Камера (10) сгорания по п. 1, в которой каждая демпфирующая полость (30) ограничена внутренней стенкой (22) и по меньшей мере боковой стенкой (42, 43, 44) полости, причем продувочное отверстие (60) выполнено в стенке (42) полости.
3. Камера (10) сгорания по п. 1 или 2, в которой пространство (28) проходит кольцеобразно вокруг внутреннего объема (V) камеры (10) сгорания.
4. Камера (10) сгорания по п. 1, или 2, или 3, в которой по меньшей мере часть демпфирующих полостей (30) расположены в по меньшей мере один ряд (31).
5. Камера (10) сгорания по п. 4, в которой множество демпфирующих полостей (30) расположено с образованием множества рядов (31), проходящих в продольном направлении (X), параллельно направлению главного течения газообразных продуктов сгорания во внутреннем объеме (V).
6. Камера (10) сгорания по п. 5, в которой по меньшей мере один канал (50) охлаждения расположен между по меньшей мере парой указанных рядов (31) демпфирующих полостей (30).
7. Камера (10) сгорания по п. 6, в которой продувочное отверстие (60) расположено под отрицательным углом относительно движения охлаждающей среды в канале (50) охлаждения.
8. Камера (10) сгорания по любому из пп. 1 – 7, в которой секция канала (50) охлаждения имеет секцию, сужающуюся в направлении движения охлаждающей среды внутри канала (50) охлаждения.
9. Камера (10) сгорания по любому из пп. 1 – 8, в которой по меньшей мере одна из демпфирующих полостей (30) содержит две боковые стенки (42, 43) полости в тепловом контакте с охлаждающей средой.
10. Камера (10) сгорания по любому из пп. 1 – 9, в которой по меньшей мере одна из демпфирующих полостей (30) содержит три боковые стенки (42, 43, 44) полости в тепловом контакте с охлаждающей средой.
11. Камера (10) сгорания по любому из пп. 1 – 10, в которой демпфирующие полости (30) распределены по матричной схеме, включающей в себя множество рядов и колонок.
12. Камера (10) сгорания по любому из пп. 1 – 11, в которой множество демпфирующих полостей (30) расположено в шахматном порядке.
13. Камера (10) сгорания по любому из пп. 4 – 12, в которой множество демпфирующих полостей (30) расположено с образованием множества рядов (31), проходящих в продольном направлении (X), которое непараллельно направлению главного течения газообразных продуктов сгорания во внутреннем объеме (V).
14. Камера (10) сгорания по любому из пп. 2 – 13, в которой боковые стенки (42, 43, 44) полости и/или стенки множества каналов (50) охлаждения выполнены с помощью процесса аддитивного изготовления.
15. Газотурбинный двигатель (1), содержащий топливную форсунку (2), газовую турбину (3) и камеру (10) сгорания по любому из пп. 1 – 14 между топливной форсункой (2) и газовой турбиной (3).
RU2017129611A 2015-01-23 2015-10-14 Камера сгорания газотурбинного двигателя RU2677018C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15152337.0 2015-01-23
EP15152337.0A EP3048370A1 (en) 2015-01-23 2015-01-23 Combustion chamber for a gas turbine engine
PCT/EP2015/073755 WO2016116176A1 (en) 2015-01-23 2015-10-14 Combustion chamber for a gas turbine engine

Publications (1)

Publication Number Publication Date
RU2677018C1 true RU2677018C1 (ru) 2019-01-15

Family

ID=52358714

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017129611A RU2677018C1 (ru) 2015-01-23 2015-10-14 Камера сгорания газотурбинного двигателя

Country Status (6)

Country Link
US (1) US10788211B2 (ru)
EP (2) EP3048370A1 (ru)
CN (1) CN107208893B (ru)
CA (1) CA2974574C (ru)
RU (1) RU2677018C1 (ru)
WO (1) WO2016116176A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371709B2 (en) 2020-06-30 2022-06-28 General Electric Company Combustor air flow path

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054608B1 (fr) * 2016-07-29 2020-06-26 Safran Panneau acoustique pour une turbomachine et son procede de fabrication
EP3438540A1 (en) * 2017-07-31 2019-02-06 Siemens Aktiengesellschaft A burner including an acoustic damper
US11187413B2 (en) * 2017-09-06 2021-11-30 Raytheon Technologies Corporation Dirt collector system
JP6543756B1 (ja) * 2018-11-09 2019-07-10 三菱日立パワーシステムズ株式会社 燃焼器部品、燃焼器、ガスタービン及び燃焼器部品の製造方法
US11242822B2 (en) * 2018-12-14 2022-02-08 Rohr, Inc. Structured panel with multi-panel structure(s)
DE102019205540A1 (de) * 2019-04-17 2020-10-22 Siemens Aktiengesellschaft Resonator, Verfahren zur Herstellung eines solchen sowie mit einem solchen versehene Brenneranordnung
FR3095673B1 (fr) * 2019-05-03 2021-04-16 Safran Aircraft Engines Grille d’inverseur de poussée incluant un traitement acoustique
JP7393262B2 (ja) * 2020-03-23 2023-12-06 三菱重工業株式会社 燃焼器、及びこれを備えるガスタービン
EP3974723B1 (en) * 2020-09-23 2023-08-30 Ansaldo Energia Switzerland AG Gas turbine for power plant comprising a damping device
EP3995237A1 (de) * 2020-11-05 2022-05-11 Siemens Energy Global GmbH & Co. KG Bestrahlungsstrategie für die additive herstellung eines bauteils und entsprechendes bauteil
CN115076729B (zh) * 2021-03-12 2023-09-26 中国航发商用航空发动机有限责任公司 燃烧室及燃烧室吸声效果的验证方法
US11905842B2 (en) 2021-12-16 2024-02-20 General Electric Company Partition damper seal configurations for segmented internal cooling hardware

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655361A (en) * 1994-09-14 1997-08-12 Mitsubishi Jukogyo Kabushiki Kaisha Sound absorbing apparatus for a supersonic jet propelling engine
RU2219439C1 (ru) * 2002-09-03 2003-12-20 Андреев Анатолий Васильевич Камера сгорания
US20060059913A1 (en) * 2004-09-21 2006-03-23 Siemens Aktiengesellschaft Combustion chamber for a gas turbine with at least two resonator devices
RU2340784C2 (ru) * 2003-05-30 2008-12-10 Дженерал Электрик Компани Демпфер детонации для двигателей импульсной детонации (варианты)
US20090094985A1 (en) * 2007-09-14 2009-04-16 Siemens Power Generation, Inc. Non-Rectangular Resonator Devices Providing Enhanced Liner Cooling for Combustion Chamber
US20150020498A1 (en) * 2013-07-19 2015-01-22 Reinhard Schilp Cooling cover for gas turbine damping resonator

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958194A (en) * 1951-09-24 1960-11-01 Power Jets Res & Dev Ltd Cooled flame tube
US4944362A (en) * 1988-11-25 1990-07-31 General Electric Company Closed cavity noise suppressor
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
EP1423645B1 (de) 2001-09-07 2008-10-08 Alstom Technology Ltd Dämpfungsanordnung zur reduzierung von brennkammerpulsationen in einer gasturbinenanlage
GB0425794D0 (en) * 2004-11-24 2004-12-22 Rolls Royce Plc Acoustic damper
EP1832812A3 (de) 2006-03-10 2012-01-04 Rolls-Royce Deutschland Ltd & Co KG Gasturbinenbrennkammerwand mit Dämpfung von Brennkammerschwingungen
GB0610800D0 (en) 2006-06-01 2006-07-12 Rolls Royce Plc Combustion chamber for a gas turbine engine
DE102006026969A1 (de) * 2006-06-09 2007-12-13 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
EP2116770B1 (en) 2008-05-07 2013-12-04 Siemens Aktiengesellschaft Combustor dynamic attenuation and cooling arrangement
US8490744B2 (en) * 2009-02-27 2013-07-23 Mitsubishi Heavy Industries, Ltd. Combustor and gas turbine having the same
ES2400267T3 (es) 2009-08-31 2013-04-08 Alstom Technology Ltd Dispositivo de combustión de una turbina de gas
EP2299177A1 (en) 2009-09-21 2011-03-23 Alstom Technology Ltd Combustor of a gas turbine
US8413443B2 (en) * 2009-12-15 2013-04-09 Siemens Energy, Inc. Flow control through a resonator system of gas turbine combustor
EP2385303A1 (en) 2010-05-03 2011-11-09 Alstom Technology Ltd Combustion Device for a Gas Turbine
US8931280B2 (en) * 2011-04-26 2015-01-13 General Electric Company Fully impingement cooled venturi with inbuilt resonator for reduced dynamics and better heat transfer capabilities
GB201113249D0 (en) * 2011-08-02 2011-09-14 Rolls Royce Plc A combustion chamber
CN103765107B (zh) * 2011-09-01 2016-05-04 西门子公司 用于燃气轮机设备的燃烧室
US9395082B2 (en) * 2011-09-23 2016-07-19 Siemens Aktiengesellschaft Combustor resonator section with an internal thermal barrier coating and method of fabricating the same
US9086017B2 (en) 2012-04-26 2015-07-21 Solar Turbines Incorporated Fuel injector with purged insulating air cavity
US8684130B1 (en) 2012-09-10 2014-04-01 Alstom Technology Ltd. Damping system for combustor
EP2762784B1 (en) 2012-11-30 2016-02-03 Alstom Technology Ltd Damping device for a gas turbine combustor
US9651258B2 (en) * 2013-03-15 2017-05-16 Rolls-Royce Corporation Shell and tiled liner arrangement for a combustor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655361A (en) * 1994-09-14 1997-08-12 Mitsubishi Jukogyo Kabushiki Kaisha Sound absorbing apparatus for a supersonic jet propelling engine
RU2219439C1 (ru) * 2002-09-03 2003-12-20 Андреев Анатолий Васильевич Камера сгорания
RU2340784C2 (ru) * 2003-05-30 2008-12-10 Дженерал Электрик Компани Демпфер детонации для двигателей импульсной детонации (варианты)
US20060059913A1 (en) * 2004-09-21 2006-03-23 Siemens Aktiengesellschaft Combustion chamber for a gas turbine with at least two resonator devices
US20090094985A1 (en) * 2007-09-14 2009-04-16 Siemens Power Generation, Inc. Non-Rectangular Resonator Devices Providing Enhanced Liner Cooling for Combustion Chamber
US20150020498A1 (en) * 2013-07-19 2015-01-22 Reinhard Schilp Cooling cover for gas turbine damping resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371709B2 (en) 2020-06-30 2022-06-28 General Electric Company Combustor air flow path

Also Published As

Publication number Publication date
US20180010798A1 (en) 2018-01-11
CA2974574C (en) 2019-05-28
EP3240971B2 (en) 2024-01-03
WO2016116176A1 (en) 2016-07-28
EP3240971B1 (en) 2020-02-12
CN107208893A (zh) 2017-09-26
CA2974574A1 (en) 2016-07-28
EP3048370A1 (en) 2016-07-27
CN107208893B (zh) 2020-05-22
EP3240971A1 (en) 2017-11-08
US10788211B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
RU2677018C1 (ru) Камера сгорания газотурбинного двигателя
KR101574980B1 (ko) 가스 터빈 연소기를 위한 감쇠 장치
US6964170B2 (en) Noise reducing combustor
EP1001221B1 (en) Gas turbine combustor cooling structure
KR20130132654A (ko) 가스 터빈 엔진용 연소기 및 가스 터빈
US11204166B2 (en) Burner including an acoustic damper
EP2693121B1 (en) Near-wall roughness for damping devices reducing pressure oscillations in combustion systems
JPH06221562A (ja) ガスタービン燃焼器
JP2010043851A (ja) コンタードインピンジメントスリーブ孔
US20170175577A1 (en) Systems and methods for increasing heat transfer using at least one baffle in an impingement chamber of a nozzle in a turbine
JP6934359B2 (ja) 燃焼器及びその燃焼器を備えるガスタービン
JP2012159259A (ja) 音響装置及びそれを備えた燃焼器
JP6100295B2 (ja) 燃料ノズル、これを備えた燃焼器及びガスタービン
US11840994B2 (en) Multipoint fuel injection device
KR20150085394A (ko) 가스터빈의 연소기 및 이를 포함하는 가스터빈 및 이의 냉각방법
CN112066414B (zh) 燃烧室、燃气轮机以及抑制振荡燃烧的方法
KR20190110114A (ko) 가스 터빈 연소기의 공명 흡음 장치 및 이것을 구비한 가스 터빈 연소기 및 가스 터빈
KR101557453B1 (ko) 가스터빈의 이중벽 슬리브 냉각구조를 구비한 라이너 및 그 냉각방법
JP2015090073A (ja) ガスタービン燃焼器
JP5762481B2 (ja) 燃料ノズル、これを備えた燃焼器及びガスタービン
JP5357631B2 (ja) 燃料ノズル、これを備えた燃焼器及びガスタービン
CN117190242A (zh) 航空发动机燃烧室、帽罩的声衬孔设计方法及航空发动机