RU2676691C1 - Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию - Google Patents

Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию Download PDF

Info

Publication number
RU2676691C1
RU2676691C1 RU2018126203A RU2018126203A RU2676691C1 RU 2676691 C1 RU2676691 C1 RU 2676691C1 RU 2018126203 A RU2018126203 A RU 2018126203A RU 2018126203 A RU2018126203 A RU 2018126203A RU 2676691 C1 RU2676691 C1 RU 2676691C1
Authority
RU
Russia
Prior art keywords
catalyst
deactivation
temperature
testing
oligomerization
Prior art date
Application number
RU2018126203A
Other languages
English (en)
Inventor
Андрей Геннадиевич Попов
Андрей Владимирович Ефимов
Елена Евгеньевна Князева
Даниил Александрович Федосов
Ирина Игоревна Иванова
Сергей Евгеньевич Кузнецов
Валентина Дмитриевна Мирошкина
Андрей Владимирович Клейменов
Original Assignee
Акционерное общество "Газпромнефть - Московский НПЗ" (АО "Газпромнефть-МНПЗ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Газпромнефть - Московский НПЗ" (АО "Газпромнефть-МНПЗ") filed Critical Акционерное общество "Газпромнефть - Московский НПЗ" (АО "Газпромнефть-МНПЗ")
Priority to RU2018126203A priority Critical patent/RU2676691C1/ru
Application granted granted Critical
Publication of RU2676691C1 publication Critical patent/RU2676691C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке устойчивости к дезактивации в каталитических реакциях. Предварительно проводят нагрев цеолитного катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, после чего осуществляют процесс каталитической олигомеризации под давлением в три стадии. На первой и третьей стадиях процесс ведут при 380-450°С, а на второй стадии при 450-600°С. Предложены параметры проведения упомянутых трех стадий. После проведения первой и третьей стадии определяют значения степени конверсии, и по разности между полученными значениями оценивают устойчивость тестируемого катализатора к дезактивации. Изобретение обеспечивает возможность проведения экспресс-тестирования, позволяющего за несколько часов оценить устойчивость к дезактивации тестируемого образца. 3 з.п. ф-лы, 1 табл., 9 пр.

Description

Заявленное изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке их устойчивости к дезактивации в каталитических процессах.
Из уровня техники известны способы определения устойчивости катализаторов к дезактивации путем разработки подробной математической модели, описывающей работу катализатора. Далее экспериментально определяются параметры, необходимые для численного решения математических уравнений. После этого модель может быть использована для предсказания работы катализатора в тех или иных условиях.
Разработана математическая модель, описывающая работу катализатора гидроочистки с оценку его устойчивости к дезактивации путем проведения сложных математических расчетов (L.E. Kallinikos, G.D.B., N.G. Papayannakos, Study of the catalyst deactivation in an industrial gasoil HDS reactor using a mini-scale laboratory reactor. Fuel, 2008. 87: p. 2444-2449.).
Недостатком данного подхода является то, что для подтверждения правильности математической модели необходимо провести сравнение расчетных результатов с реальными показателями, достигнутыми в пилотных или промышленных реакторах. Кроме того, известный метод рекомендован только для катализаторов процесса гидроочистки.
Известны способы определения устойчивости катализаторов к дезактивации путем исследования свежего и дезактивированного образцов катализатора. Дезактивированный образец получают либо в реальных условиях промышленных испытаниях, либо подвергают специальной процедуре ускоренной дезактивации.
Например, известен способ тестирования скорости дезактивации катализаторов Фишера-Тропша и их предшественников. Согласно известному способу скорость дезактивации вычисляют с помощью линейно-регрессионного анализа конверсии СО в процентах от времени работы в течение от 24 часов до 160 часов (RU 2603136, 2016)..
Известный способ является продолжительным и трудоемким и предназначен для тестирования только катализаторов Фишера-Тропша.
Известна оценка устойчивости к дезактивации катализаторов риформинга, предусматривающая осуществление ускоренной дезактивации. Для ускорения процесса дезактивации предложено проводить процесс коксообразования за счет сочетания высокой нагрузки по сырью и повышенной температуры реакции риформинга. (Н.М. Островский, Кинетика дезактивации катализаторов: Математические модели и их применение, Наука, 2001).
Известный способ пригоден для тестирования катализаторов риформинга, но не дает корректных результатов для катализаторов, используемых в реакциях олигомеризации.
В уровне техники не обнаружена известность способов тестирования устойчивости к дезактивации катализаторов высокотемпературной олигомеризации олефинов.
Задачей настоящего изобретения является разработка надежного способа экспресс-тестирования устойчивости к дезактивации цеолитных катализаторов олигомеризации олефинов в бензиновую фракцию.
Поставленная задача решается предложенным способом тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию, который заключается в предварительном нагреве катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, и последующем осуществлении процесса каталитической олигомеризации под давлением в три этапа. Причем на первом этапе в реактор подают сжиженную бутан-бутиленовую фракцию в потоке газа-носителя в течение 85-95 минут при температуре 380-450°С с отбором проб на анализ, по результатам которого определяют степень конверсии (К0), на втором этапе поднимают температуру в реакторе до 450-600°С и производят подачу в реактор при установленной температуре сжиженной бутан-бутиленовой фракции под давлением в потоке газа-носителя в течение 175-185 минут, на третьем этапе вновь снижают температуру до 380-450°С и при установленной температуре подают сжиженную бутан-бутиленовую фракцию под давлением в потоке газа-носителя в течение 85-95 минут с отбором газовой и жидкой проб на анализ, по результатам которого определяют степень конверсии (К1), после чего вычисляют разность ΔК=К01, при этом чем ниже полученное значение ΔК, тем выше устойчивость катализатора к дезактивации.
Предпочтительно, процесс олигомеризации проводят под давлением 0,3-2,0 МПа, при расходе бутан-бутиленовой фракции 5-50 мл/ч, расходе метана 5-50 мл/мин.
Предпочтительно, тестированию подвергают катализатор с размером частиц 0,25-0,5 мм.
Предпочтительно, в качестве газа-носителя используют метан.
Техническим результатом изобретения является обеспечение возможности проведения надежного экспресс-тестирования катализаторов олигомеризации, позволяющего за несколько часов эксперимента осуществить сравнительную оценку устойчивости к дезактивации различных цеолитных катализаторов олигомеризации.
Следует заметить, что в настоящее время на практике для выбора катализатора олигомеризации, обладающего лучшей устойчивостью к дезактивации в данном процессе, осуществляют олигомеризацию олефинов в бензиновую фракцию в реальных условиях олигомеризации до заданной степени дезактивации катализатора, что занимает не менее нескольких недель тестирования.
Надежность предлагаемого способа проверена на большинстве используемых цеолитных катализаторах олигомеризации. Для испытанных катализаторов экспериментально определены параметры проведения ускоренного процесса олигомеризации, в котором на поверхности катализатора образуются коксовые отложения, свойства которых аналогичны свойствам коксовых отложений, образующихся в реальных условиях проведения процесса. Нами было обнаружено, что для различных типов цеолитов, используемых в качестве катализаторов олигомеризации, заявленные параметры (температура и время) поэтапной дезактивации, при которых реализуются процессы образования легкого кокса, представленного полиалифатическими углеводородами, и тяжелого кокса, представленного поликондесироваными ароматическими соединениями, находятся при близких значениях параметров. Проведение предварительных экспериментов на ряде цеолитов позволило нам выбрать параметры предложенного способа тестирования, являющиеся существенными для возможности реализации назначения изобретения с достижением заявленного результата.
Ниже представлены примеры определения устойчивости к дезактивации цеолитных катализаторов олигомеризации, содержащие цеолиты различных структурных типов и связующее (оксид алюминия), заявленным способом тестирования.
Длительность одного экспресс-анализа не превышает 8 часов.
Пример 1.
1.1 Загрузка катализатора
В реактор загружают 0,6 см3 катализатора олигомеризации, содержащего в качестве активного компонента цеолит структуры MFI и в качестве связующего оксид алюминия. Для испытаний используют фракцию 0,25-0,5 мм. Затем реактор герметизируют, опрессовывают азотом при давлении 2 МПа.
1.2 Предобработка
Устанавливают расход метана 100 мл/мин и продувают реактор в течение 10 минут. Затем повышают давление в реакторе до 1,5 МПа за счет потока метана, после чего снижают расход метана до 10 мл/мин. Устанавливают нагрев реактора до 380°С со скоростью 15°/мин и нагрев испарителя до 200°С, устанавливают температуру в сепараторе на уровне 15°С.После достижения температуры в реакторе 380°С выдерживают катализатор в токе метана в течение 15 минут.
1.3 Определение начальной активности катализатора
Устанавливают расход сжиженного ББФ 10 мл/ч. (и продолжают подавать 10 мл/мин метана, который выступает в качестве внутреннего стандарта). Корректируют температуру в слое катализатора, если из-за его разогрева температура в слое изменится более чем на 1°С по сравнению с целевым значением 380°С. Через 90 минут после начала подачи ББФ отбирают пробу олигомеризата и анализируют с помощью хроматографического анализа олигомеризат и газовые продукты. По результатам анализа определяют начальную степень конверсии (К0).
После отбора газовой и жидкой проб и начала их анализа отключают подачу ББФ и увеличивают расход метана до 100 мл/мин. Увеличивают температуру в реакторе до 550°С, после чего снижают расход метана до 10 мл/мин.
1.4 Ускоренная дезактивация катализатора в жестких условиях Устанавливают расход сжиженного ББФ 10 мл/ч. Выдерживают катализатор в условиях ускоренной дезактивации в течение 180 мин.
Затем отключают подачу ББФ и увеличивают расход метана до 100 мл/мин. Снижают температуру в реакторе до 380°С, после чего снижают расход метана до 10 мл/мин.
1.5 Определение активности катализатора после ускоренной дезактивации Устанавливают расход сжиженного ББФ 10 мл/ч. Корректируют температуру в слое катализатора, если из-за его разогрева температура в слое изменится более чем на 1°С по сравнению с целевым значением 380°. Через 90 минут после начала подачи ББФ отбирают пробу олигомеризата и анализируют с помощью хроматографического анализа олигомеризат и газовые продукты. По результатам анализа определяют степень конверсии дезактивированного катализатора (K1).
Показатели процесса представлены в таблице 1.
Пример 2.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры MOR.
Показатели процесса представлены в таблице 1.
Пример 3.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры ВЕА.
Показатели процесса представлены в таблице 1.
Пример 4.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры FAU. Показатели процесса представлены в таблице 1.
Пример 5.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве инертного газа используют гелий.
Показатели процесса представлены в таблице 1.
Пример 6.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что определение активности катализатора до и после ускоренной дезактивации проводят при температуре 450°С, а ускоренную дезактивацию - при 600°С.
Показатели процесса представлены в таблице 1.
Пример 7.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что стадию ускоренной дезактивации проводят при 450°С. Показатели процесса представлены в таблице 1.
Пример 8.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что процесс проводили при давлении 0,3 МПа, расходе бутан-бутиленовой фракции 5 мл/ч, расходе метана 50 мл/мин.
Показатели процесса представлены в таблице 1.
Пример 9.
Тестирование катализатора ведут как в примере 1, отличие состоит в том, что процесс проводили при давлении 2,0 МПа, расходе бутан-бутиленовой фракции 50 мл/ч, расходе метана 5 мл/мин.
Показатели процесса представлены в таблице 1.
Приведенные примеры 1-9 подтверждают, что заявленный способ тестирования позволяет быстро и точно провести сравнение стабильности работы различных цеолитных катализаторов в процессе олигомеризации олефинов. Результаты проведенного тестирования позволяют выбрать наиболее эффективный катализатор для данного процесса, который обладает приемлемой степенью конверсии и наибольшей устойчивостью к дезактивации.
Figure 00000001

Claims (4)

1. Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию, заключающийся в предварительном нагреве катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, с последующим осуществлением процесса каталитической олигомеризации под давлением в три этапа, причем на первом этапе в реактор подают сжиженную бутан-бутиленовую фракцию в потоке газа-носителя в течение 85-95 мин при температуре 380-450°С с отбором проб на анализ, по результатам которого определяют степень конверсии (К0), на втором этапе поднимают температуру в реакторе до 450-600°С и производят подачу в реактор при установленной температуре сжиженной бутан-бутиленовой фракции под давлением в потоке газа-носителя в течение 175-185 мин, на третьем этапе вновь снижают температуру до 380-450°С и при установленной температуре подают сжиженную бутан-бутиленовую фракцию под давлением в потоке газа-носителя в течение 85-95 мин с отбором газовой и жидкой проб на анализ, по результатам которого определяют степень конверсии (К1), после чего вычисляют разность ΔК=К01, при этом чем ниже полученное значение ΔК, тем выше устойчивость катализатора к дезактивации.
2. Способ по п. 1, характеризующийся тем, что процесс олигомеризации проводят под давлением 0,3-2,0 МПа при расходе бутан-бутиленовой фракции 5-50 мл/ч, расходе газа-носителя 5-50 мл/мин.
3. Способ по п. 1, характеризующийся тем, что тестированию подвергают катализатор с размером частиц 0,25-0,5 мм.
4. Способ по п. 1, характеризующийся тем, что в качестве газа-носителя используют метан.
RU2018126203A 2018-07-16 2018-07-16 Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию RU2676691C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018126203A RU2676691C1 (ru) 2018-07-16 2018-07-16 Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018126203A RU2676691C1 (ru) 2018-07-16 2018-07-16 Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию

Publications (1)

Publication Number Publication Date
RU2676691C1 true RU2676691C1 (ru) 2019-01-10

Family

ID=64958569

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018126203A RU2676691C1 (ru) 2018-07-16 2018-07-16 Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию

Country Status (1)

Country Link
RU (1) RU2676691C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749820A (en) * 1984-09-14 1988-06-07 Mobil Oil Corporation Integration of paraffin dehydrogenation with MOGD to minimize compression and gas plant separation
WO1994013599A1 (en) * 1992-12-10 1994-06-23 Neste Oy Process and reactor system for oligomerization of olefins
RU2184720C1 (ru) * 2001-08-24 2002-07-10 Попов Валерий Георгиевич Способ получения димеров и олигомеров олефинов
RU2644781C2 (ru) * 2016-07-20 2018-02-14 Акционерное общество "Газпромнефть - Московский НПЗ" (АО "Газпромнефть-МНПЗ") Способ получения бензиновых фракций углеводородов из олефинов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749820A (en) * 1984-09-14 1988-06-07 Mobil Oil Corporation Integration of paraffin dehydrogenation with MOGD to minimize compression and gas plant separation
WO1994013599A1 (en) * 1992-12-10 1994-06-23 Neste Oy Process and reactor system for oligomerization of olefins
RU2184720C1 (ru) * 2001-08-24 2002-07-10 Попов Валерий Георгиевич Способ получения димеров и олигомеров олефинов
RU2644781C2 (ru) * 2016-07-20 2018-02-14 Акционерное общество "Газпромнефть - Московский НПЗ" (АО "Газпромнефть-МНПЗ") Способ получения бензиновых фракций углеводородов из олефинов

Similar Documents

Publication Publication Date Title
Akah Application of rare earths in fluid catalytic cracking: A review
US7445936B2 (en) Process for small-scale testing of FCC catalysts
Al-Khattaf et al. Catalytic cracking of light crude oil to light olefins and naphtha over E-Cat and MFI: Microactivity test versus advanced cracking evaluation and the effect of high reaction temperature
Dupain et al. Aromatic gas oil cracking under realistic FCC conditions in a microriser reactor☆
Mier et al. Kinetic modeling of n-butane cracking on HZSM-5 zeolite catalyst
Slagtern et al. Cracking of cyclohexane by high Si HZSM-5
Lee et al. New approach for kinetic modeling of catalytic cracking of paraffinic naphtha
US20070137481A1 (en) Method to measure olefins in a complex hydrocarbon mixture
Alkhlel et al. Catalytic cracking of hydrocarbons in a CREC riser simulator using a Y-Zeolite-Based catalyst: assessing the catalyst/oil ratio effect
Thibault-Starzyk et al. Infrared spectroscopy
Wallenstein et al. Impact of rare earth concentration and matrix modification in FCC catalysts on their catalytic performance in a wide array of operational parameters
Browning et al. Detailed kinetic modelling of vacuum gas oil hydrocracking using bifunctional catalyst: A distribution approach
Chen et al. Reaction mechanism and kinetic modeling of hydroisomerization and hydroaromatization of fluid catalytic cracking naphtha
Falco et al. Accessibility in alumina matrices of FCC catalysts
Rawlence et al. FCC catalyst performance evaluation
Nadeina et al. Influence of hydrotreatment depth on product composition of fluid catalytic cracking process for light olefins production
Nazarova et al. A predictive model of catalytic cracking: Feedstock-induced changes in gasoline and gas composition
RU2676691C1 (ru) Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию
Young Fluid catalytic cracker catalyst design for nitrogen tolerance
de Klerk Properties of synthetic fuels from H-ZSM-5 oligomerization of Fischer–Tropsch type feed materials
Aguayo et al. Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons
Li et al. The effect of coke deposition on the deactivation of sulfated zirconia catalysts
JP4395366B2 (ja) Fcc触媒の小規模試験方法
Uzcátegui et al. Causes of deactivation of an amorphous silica-alumina catalyst used for processing of thermally cracked naphtha in a bitumen partial upgrading process
Belopukhov et al. Investigation of fluorine-promoted Pt-Re/Al2O3 catalysts in reforming of n-heptane