RU2676330C1 - Способ деконтаминации питательных сред для культивирования животных клеток in vitro - Google Patents

Способ деконтаминации питательных сред для культивирования животных клеток in vitro Download PDF

Info

Publication number
RU2676330C1
RU2676330C1 RU2018112057A RU2018112057A RU2676330C1 RU 2676330 C1 RU2676330 C1 RU 2676330C1 RU 2018112057 A RU2018112057 A RU 2018112057A RU 2018112057 A RU2018112057 A RU 2018112057A RU 2676330 C1 RU2676330 C1 RU 2676330C1
Authority
RU
Russia
Prior art keywords
decontamination
radiation
media
vitro
animal cells
Prior art date
Application number
RU2018112057A
Other languages
English (en)
Inventor
Эдие Миначетдиновна Плотникова
Рамзи Низамович Низамов
Андрей Иванович Никитин
Равиль Галиахметович Фазлиахметов
Альберт Николаевич Чернов
Зоя Геннадьевна Чурина
Андрей Иванович Самсонов
Ирина Александровна Архарова
Наиль Бариевич Садеков
Гюзель Рамзиевна Низамова
Original Assignee
федеральное государственное бюджетное научное учреждение "Федеральный центр токсикологической, радиационной и биологической безопасности" (ФГБНУ "ФЦТРБ-ВНИВИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное научное учреждение "Федеральный центр токсикологической, радиационной и биологической безопасности" (ФГБНУ "ФЦТРБ-ВНИВИ") filed Critical федеральное государственное бюджетное научное учреждение "Федеральный центр токсикологической, радиационной и биологической безопасности" (ФГБНУ "ФЦТРБ-ВНИВИ")
Priority to RU2018112057A priority Critical patent/RU2676330C1/ru
Application granted granted Critical
Publication of RU2676330C1 publication Critical patent/RU2676330C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к области медицины и биотехнологии и предназначено для культивирования животных клеток in vitro при производстве вирус-вакцин. Способ деконтаминации питательных сред для культивирования животных клеток in vitro состоит в том, что предварительно перед облучением питательные среды подвергают термической обработке путем нагревания до температуры 55-60°С в течение 25-30 мин, а облучение проводят в дозе (0,8-1,5)×10Гр гамма-лучами. Использование изобретения позволяет повысить эффективность деконтаминации питательных сред для культивирования животных клеток in vitro. 4 пр.

Description

Изобретение относится к биотехнологии и может быть использовано при производстве вирус вакцин.
Известен способ деконтаминации питательных сред с использованием антибиотиков - бензилпенициллина, стрептомицина и канамицина по 100 Ед/мл (см. кн. Животная клетка в культуре // Методы и применение в биотехнологии / Под общ. ред. проф. Дьяконова Л.П. - М.: Издательство "Спутник+", 2009. - с. 423).
Известен также способ деконтаминации перевиваемых линий клеток ПГ-80 и СПЭВ с использованием ПАВ (этоний) в дозе 7,5 мкг/мл с тетрациклином (50 мкг/мл) и канамицином (250 мкг/мл).
Общим недостатком указанных способов деконтаминации питательных сред и культур клеток является, во-первых, токсичность используемых деконтаминантов (антибиотиков) для культур клеток и, во-вторых, привыкание к известным антибиотикам, что ведет к снижению эффективности их применения.
Между тем из области радиационной микробиологии известно бактерицидное действие ионизирующих излучений. Последующие исследования радиобиологов показали возможность практического использования бактерицидного действия радиации для стерилизации различных изделий медицинского назначения.
Стерилизация (деконтаминация), проводимая с помощью ионизирующего излучения, получила название радиационной или лучевой стерилизации. Ввиду того, что лучевая деконтаминация проводится без высокой температуры, она была названа также холодной стерилизацией.
Благодаря высокой проникающей способности гамма - излучения радиоактивных изотопов и других видов ионизирующего излучений, оказалось возможными стерилизовать медицинскую продукцию (лекарственные средства, шприцы, кетгут, шовный материал, посуду, сыворотки крови, питательные среды и т.д.) в промышленных масштабах. Используемые для радиационной стерилизации дозы излучения рассчитаны на бактерицидной эффект, гарантирующий надежное обеспечение деконтаминации.
Действие ионизирующей радиации на живую клетку (животную, растительную, микробную) основано на разложении (радиолиз) молекул воды, содержащейся в живых клетках, на ионы H2O+ и H2O-, которые, расщепляясь на свободные радикалы Н- и ОН-, обладают высокой токсичностью. Последние, взаимодействия с живой клеткой, вызывают глубокие изменения (распад ДНК, нуклеиновых кислот, ферментов, полисахаридов, пептидов, аминокислот, липидов, белков), которые приводят к разрушению и гибели клетки, что дает возможность использования их для инактивации животных, растительных и микробных клеток.
Учитывая перспективность использования ионизирующих излучений в медицине, в 1960-1970 гг. были проведены радиомикробиологические исследования в этой области, результаты которых показали, что облучение питательных сред гамма-лучами в дозах 10-30 кГр обеспечивает абсолютную стерильность питательных сред (см. кн. М.А. Туманяна и Д.А. Каушанского "Радиационная стерилизация". - М.: Медицина, 1974. - С. 66-91).
Наиболее близким к предлагаемому является способ деконтаминации сухих питательных сред (среда 199, среда Игла, гидролизата лактоальбумина-ГЛА, версена, Дульбекко, трипсина) с использованием деконтаминанта физической природы - гамма-лучей в дозах (1,5-6,5)×104 Гр (см. статью И.Д. Сперанской "Радиационная стерилизация питательных сред" // Сб. научн. тр. ИЭМ им. Н.Ф. Гамалеи. - М., 1977. С. 67-68).
Несмотря на то, что питательные среды, простерилизованные (деконтаминированные) гамма-лучами, хотя и не утрачивали биологических свойств, необходимых для культур клеток, однако используемые для деконтаминации дозы гамма лучи очень высокие, а это приводит к увеличению времени облучения. Так, если мощность экспозиционной дозы излучения используемых радиационных установок не превышает 10 Р/мин, то для полной стерилизации питательных сред в дозах 1,5-60 кГр необходимо 14 часов непрерывного облучения, а это создает довольно серьезную как техническую задачу, так и радиационную опасность для обслуживающего персонала. Поэтому возникает необходимость поиска менее жестких условий облучения стерилизуемых (деконтаминируемых) питательных сред.
Известно, что одним из существенных факторов повышения эффективности радиостерилизации (радиодеконтаминации) является использование комбинированного радиационно-термического воздействие на микроорганизмы.
Так, на примере спорообразующего микроорганизма - возбудителя ботулизма (Cl. botulnus) установлено, что прогревание спор возбудителя резко повышает гибель микробных клеток (см. кн. М.А. Туманяна, Д.А. Каушанского - "Радиационная стерилизация". - М.: Медицина, 1974. - С. 30-31). Эти данные подтверждают гипотезу, согласно, который низкая температура снижает образование окисленных веществ и диффузию их к чувствительным участкам клетки, а предварительный нагрев питательных сред перед облучением может существенно снизить радиорезистентность бактерий, усиливая их бактерицидное действие.
Полученные данные позволяют предположить их синергетическое действие на фоне комбинированного воздействия - температуры и ионизирующего излучения. О действии губительных доз радиации в комбинации с температурным воздействием существует несколько гипотез. Согласно одной из них, нагревание приводит молекулы в состояние возбуждения, что усиливает действие радиации, облегчая денатурацию белков клетки; согласно другой - усиление действия радиации при одновременном нагревании объясняется проявлением кислородного эффекта, при этом кислород соединяется со свободными радикалами, образуя комплексы, смертельные для клеток (см. кн. M.A. Tumanjan. - Radiosterilisation of Meniral Products - IAEA, Vienna, 1967. - P. 199). Можно предположить, что при этом имеют место изменения химических реакций, которые возникают в клетке при повышении или понижении температуры, в результате которых образуются вещества, которые повреждают или защищают важные компоненты клетки, что способствует усилению действия радиации.
Вышеизложенное явилось основанием для проведения исследований по разработке способа деконтаминации питательных сред для культивирования клеток in vitro с использованием комбинированного термо-радиационного метода обработки питательных сред.
Задачей изобретения является разработка способа, обеспечивающего эффективную деконтаминацию питательных сред, используемых в биотехнологии для культивирования клеток животных in vitro с целью получения на них вирус - вакцин и позволяющего снизить дозы, время облучения и обеспечить радиационную безопасность обслуживающего персонала.
Поставленная задача решается тем, что в способе деконтаминации питательных сред для культивирования животных клеток in vitro, предусматривающим облучение их гамма-лучами, предварительно перед облучением питательные среды подвергают термической обработке путем нагрева до температуры 55-60°С в течение 25-30 мин, а облучение проводят в дозе (0,8-1,5)×103 Гр. Способ осуществляют следующим образом.
Питательные среды различного состава (безбелковые: синтетические 199, минимальные - MEM), белковые: гидролизат лактоальбумина - ГЛА, сыворотка крупного рогатого скота - (СКРС), наиболее часто применяемые в биотехнологии для культивирования животных клеток in vitro с целью изготовления на их основе вирусвакцин, разливают во флаконы по 100-200 см3, и предварительно перед облучением подвергают термическому воздействию путем нагревания в сушильном шкафу или на водяной бане до температуры 55-60°С в течение 25-30 мин. По истечении указанной экспозиции подогретые питательные среды подвергают облучению в дозах (0,8-1,5)×103 Гр путем облучения на гамма установке "Исследователь" с источником излучения 60Со при мощности дозы излучения 3,45×102 А/кг. Подвергнутые комбинированному термо-радиационному воздействию питательные среды проверяют на стерильность путем высева их на бактериологические среды: мясопептонный бульон - МПБ и мясопептонный агар - МПА в количестве 0,5 мл, посевы культивируют в течение 7 сут, проводя ежедневные просмотры посевов, регистрируя количество выросших колоний на бактериологических средах.
Степень деконтаминации подвергнутых термо-радиационному воздействию питательных сред определяют по наличию или отсутствию роста микроорганизмов в бактериологических средах.
Способ деконтаминации питательных сред для культивирования животных клеток in vitro иллюстрируется следующими примерами.
Пример 1. Определение оптимальной дозы гамма-лучей, обеспечивающей деконтаминацию питательных сред при спонтанной (случайной) контаминации их микроорганизмами.
Учитывая, что питательные среды в технологическом процессе (при транспортировке, длительном хранении, нарушении стерильности в процессе подготовки к использовано и т.д.) могут быть контаминированы различными видами микроорганизмов: бактерии, кокки, грибы, микоплазмы, проводили опыты по определенно оптимальной стерилизирующей (деконтаминирующей) дозы гамма-лучей.
Для этой цели использовали безбелковые (синтетическую среду 199 и минимальную среду - MEM) и белковые (сыворотку крупного рогатого скота - СКРС и гидролизат лактоальбумина - ГЛА) питательные среды, которые разливали во флаконы, закупоривали резиновыми пробками и размещали в облучательную камеру гамма-установки "Исследователь" и подвергали облучению в дозах 5×102, 1×103, 2×103, 4×103, 8×103, 1×104, 1,5×104, 2×104 Гр. Облученные в вышеуказанных дозах питательные среды подвергали бактериологическими исследованиям путем высева проб из каждой среды по 1 мл на мясо-пептонный агар (МПА) и мясопептонный бульон (МПБ) с последующим термостатированием бактериальных сред в течение 7 суток и с последующей регистрацией количества выросших колоний.
Степень деконтаминации облученных питательных сред определяли путем микроскопирования препаратов по наличию или отсутствию роста микроорганизмов в исследуемых пробах.
Установлено, что в пробах из безбелковых питательных, облученных в дозах 0,8×103, 1,0×104 и 1,5×104 Гр роста микроорганизмов не наблюдалось, в то время как в пробах, из питательных сред, облученных в дозах 1×103, 5×102, 2×103, 4×103 Гр обнаружен рост единичных колоний микроорганизмов.
Результаты параллельных микробиологических исследований по радиодеконтаминации белковых питательных сред (СКРС, ГЛА) показали, что надежная стерилизация их наступала при облучении в дозах 1,5×104 - 2×104 Гр.
Следовательно, надежное обеззараживание (деконтаминация) безбелковых и белковых питательных сред при случайной контаминации их микроорганизмами достигается при облучении их гамма-лучами в дозах 8×103 - 2×104 Гр.
Пример 2. Определение оптимальных деконтаминирующих доз гамма-лучей при искусственной контаминации питательных сред аспорогеными и спорогенными видами микроорганизмов.
Поскольку при спонтанной (случайной) контаминации питательных сред концентрация микробных клеток может быть весьма низкой (единичные колонии), в определенных условиях (нарушение условий хранения, нарушение стерильности при хранении, отключение холодильников, попадание влаги в емкости и т.д.), попавшие в питательные среды контаминанты, активно размножаясь в питательных средах (особенно - в белковых), могут создать высокую концентрацию микробов, что диктует необходимость подбора оптимальных режимов деконтаминации.
С учетом изложенного, были поставлены опыты радиационной деконтаминации питательных сред при их искусственной контаминации аспорогенными и спорогенными микроорганизмами, обладающими различной радиорезистентностью.
Для этой цели, питательные среды, указанные в примере 1, подвергали искусственной контаминации путем внесения в питательные среды аспорогенных (St. aureus) и спорогенных (B. subtilis) микроорганизмов, обладающих высокой и весьма высокой резистентностью по отношению к химическим (антибиотики, дезинфектанты) и физическим (ионизирующие излучения) агентам. Искусственную контаминацию питательных сред проводили путем внесения вышеуказанных микроорганизмов в питательные среды в концентрации 1×107 микробных клеток на 1 мл питательной среды. Облучение искусственно контаминированных питательных сред (199, MEM, ГЛА и СКРС) проводили в дозах гамма-лучей 1,0×104, 2,0×104 и 3,0×104 Гр. Дальнейшую обработку питательных сред, микробиологические исследования и определение степени деконтаминации питательных сред проводили согласно примеру 1.
Установлено, что надежная деконтаминация искусственно контаминированных питательных сред, контаминированных St. aureus, достигалась при облучении их гамма-лучами в дозах 1×104 - 2×104 Гр (среда 199, MEM, ГЛА и СКРС) и 3×104 Гр (все среды контаминированные B. subtilis.
Следовательно, надежное обеззараживание (деконтаминация) питательных сред, контаминированных аспорогенной микрофлорой (St. aureus) достигается при облучении гамма-лучами в дозах (1-2)×104 Гр, а контаминированных радиорезистентными спорогенными микроорганизмами (B. subtilis) - при облучении в дозах (2-3,0)×104 Гр.
Пример 3. Изучение комбинированного действия повышенной температуры и ионизирующего излучения на наиболее вероятные контаминанты питательных сред.
Учитывая, что наиболее часто встречающимися контаминантами питательных сред являются стафилококки, кишечная палочка и сенная палочка, проводили опыты с культурой стафилококков, обладающих значительной термо-, химио-, радиорезистентностью.
Для этой цели готовили взвесь клеток St. aureus на физиологическом растворе, содержащую 1×107 стафилококков в 1 мл. Облучение клеток производили гамма-излучением 60Со в дозах 0,8×103 Гр, 1,0×103 Гр, 1,5×103 Гр. Одновременно флаконы с бактериями нагревали в сушильном шкафу при 45°, 50°, 55° и 60°С в течение 15, 20 и 30 мин. Эффективность комбинированного терморадиационного метода воздействия на испытуемые микробы определяли по выживаемости стафилококков путем учета выросших на питательном агаре в чашках Петри колоний.
Установлено, что полный бактерицидный эффект для 100% микробов наступал при предварительном нагревании питательных сред в течение 20-30 мин при температуре 55-60°С и облучении в дозе 1,5×103 Гр.
Полученные данные позволяют предположить синергетическое действие двух агентов физической природы (температуры и ионизирующего излучения), которые послужили основанием для проведения опытов по использованию комбинированного радиационно-термического метода стерилизации (деконтаминации) питательных сред, используемых в биотехнологии для культивирования на них животных клеток in vitro и выращивания на них вирусов с целью изготовления вирус - вакцин.
Пример 4. Проверка эффективности комбинированного терморадиационного метода деконтаминации питательных сред, используемых в биотехнологии для выращивания культур клеток животных in vitro.
Для этого питательные среды (199, MEM, ГЛА и СКРС), разлитые во флаконы емкостью 100 см3, перед облучением нагревали в сушильном шкафу при температуре 40°, 45°, 50°, 55°, и 60°С в течение 15, 20, 25, 30 мин, а затем подвергали облучению гамма-лучами 60Со в дозах 1×102, 2×103, 4×102, 8×102, 0,8×103, 1×103, 1,5×103, 2×103, 4×103, 8×103, 1×104 Гр.
Подвергнутые комбинированному терморадиационному воздействию питательные среды проверяли на стерильность (степень деконтаминации) путем высева проб из этих сред на бактериологические среды (МПА, МПБ) в количестве 0,5 мл, посевы культивировали в течение 7 сут, проводя ежедневные просмотры, регистрируя количество выросших колоний на бактериологических средах.
Установлено, что питательные среды, нагретые перед облучением до температуры 55-60°С в течение 25-30 мин, а затем облученные гамма-лучами в дозах (0,8-1,5)×103 Гр, оказались стерильными, поскольку в бактериологических средах роста микроорганизмов не обнаруживалось. Изменение указанных параметров терморадиационного воздействия в сторону снижения доз приводило к ослаблению степени деконтаминации, а увеличения их - к ухудшению питательных свойств деконтаминированных сред.
Таким образом, предлагаемый способ деконтаминации питательных сред для культивирования животных клеток in vitro позволяет обеспечить надежную стерилизацию питательных сред, снизить дозы облучения в 13,3 раза по сравнению с только облучением, сократить время облучения в 2 раза и обеспечить безопасность работы обслуживающего персонала.

Claims (1)

  1. Способ деконтаминации питательных сред для культивирования животных клеток in vitro, предусматривающий облучение их гамма-лучами, отличающийся тем, что предварительно перед облучением питательные среды подвергают термической обработке путем нагревания их при температуре 55-60°С в течение 25-30 мин, а облучение проводят в дозе (0,8-1,5)×103 Гр.
RU2018112057A 2018-04-03 2018-04-03 Способ деконтаминации питательных сред для культивирования животных клеток in vitro RU2676330C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112057A RU2676330C1 (ru) 2018-04-03 2018-04-03 Способ деконтаминации питательных сред для культивирования животных клеток in vitro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112057A RU2676330C1 (ru) 2018-04-03 2018-04-03 Способ деконтаминации питательных сред для культивирования животных клеток in vitro

Publications (1)

Publication Number Publication Date
RU2676330C1 true RU2676330C1 (ru) 2018-12-28

Family

ID=64958567

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112057A RU2676330C1 (ru) 2018-04-03 2018-04-03 Способ деконтаминации питательных сред для культивирования животных клеток in vitro

Country Status (1)

Country Link
RU (1) RU2676330C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1836104A3 (ru) * 1990-06-05 1993-08-23 Vladimir N Chupis Cпocoб ctepилизaции пиtateльhыx cpeд b kohteйhepax
RU2059417C1 (ru) * 1992-10-01 1996-05-10 Данилевич Василий Николаевич Способ стерилизации питательных сред
RU2161649C2 (ru) * 1999-03-15 2001-01-10 Государственный научный центр вирусологии и биотехнологии "Вектор" Способ получения жидкой стерильной питательной среды на основе ферментативного гидролизата
RU2477311C2 (ru) * 2010-11-17 2013-03-10 Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (Минобрнауки России) Способ стерилизации жидких питательных сред для культивирования биомассы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1836104A3 (ru) * 1990-06-05 1993-08-23 Vladimir N Chupis Cпocoб ctepилизaции пиtateльhыx cpeд b kohteйhepax
RU2059417C1 (ru) * 1992-10-01 1996-05-10 Данилевич Василий Николаевич Способ стерилизации питательных сред
RU2161649C2 (ru) * 1999-03-15 2001-01-10 Государственный научный центр вирусологии и биотехнологии "Вектор" Способ получения жидкой стерильной питательной среды на основе ферментативного гидролизата
RU2477311C2 (ru) * 2010-11-17 2013-03-10 Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (Минобрнауки России) Способ стерилизации жидких питательных сред для культивирования биомассы

Similar Documents

Publication Publication Date Title
Moorer et al. Evidence for antibacterial activity of endodontic gutta-percha cones
Najdovski et al. The killing activity of microwaves on some non-sporogenic and sporogenic medically important bacterial strains
Yaldiz et al. Effect of sterilization methods on the mechanical stability and extracellular matrix constituents of decellularized brain tissues
Darmady et al. Radiation sterilization
Kumar et al. Basic concepts of sterilization techniques
RU2676330C1 (ru) Способ деконтаминации питательных сред для культивирования животных клеток in vitro
Kodoth et al. The effects of ultraviolet light on Escherichia coli
Tweij-Thu-Alfeqar Razzaq et al. Sterilization of Surgical Tools: Removing Bacterial Endospores with a Combination of Povidone-iodine, Chlorhexidine Gluconate, Ethanol, and Methanol
Shareef et al. Sterilization of culture media for microorganisms using a microwave oven instead of autoclave
Ashok et al. Sterilization for biological products
Attri et al. Sterilization in bioprocesses
Nguyen et al. Validation of 15 kGy as a radiation sterilisation dose for bone allografts manufactured at the Queensland Bone Bank: application of the VD max 15 method
RU2435864C1 (ru) Способ пробиотической обработки клеток с содержащимися в них мелкими непродуктивными животными в условиях ветеринарного госпиталя
Baggini Sterilization in Microbiology
RU2683684C1 (ru) Способ восстановления активности защитных биопрепаратов после транспортировки, длительного или неправильного хранения
Tarpley et al. RADIATION STERILIZATION I: The Effect of High Energy Gamma Radiation from Kilocurie Radioactive Sources on Bacteria
Thiyagarajan et al. Portable plasma medical device for infection treatment
RU2000811C1 (ru) Способ стерилизации и дезинфекции медицинского оборудовани
RU2098134C1 (ru) Способ инактивации инфекционной активности возбудителей кишечных инфекций и вакцина для иммунизации животных
RU2806168C2 (ru) Применение растворов фотосенсибилизаторов в бактерицидных целях для обработки тушек птиц
Makwana et al. PHARMACEUTICAL MICROBIOLOGY
RU2577995C1 (ru) Способ элиминации бактериальных инфекций при культивировании клеточных культур растений с использованием наночастиц серебра
Vaideanu et al. Microbiological efficiency tests of the cosmetic tools disinfection procedures
Tasnim et al. Isolation and characterization of bacteria from human amniotic membrane and determination of radiation sensitivity of isolates
Sharma et al. Sterilization Techniques used in Fermentation Processes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200404