RU2675599C1 - Safe method for producing 2-methyl-5-nitrothetrazole and a microreactor for its implementation - Google Patents

Safe method for producing 2-methyl-5-nitrothetrazole and a microreactor for its implementation Download PDF

Info

Publication number
RU2675599C1
RU2675599C1 RU2018104416A RU2018104416A RU2675599C1 RU 2675599 C1 RU2675599 C1 RU 2675599C1 RU 2018104416 A RU2018104416 A RU 2018104416A RU 2018104416 A RU2018104416 A RU 2018104416A RU 2675599 C1 RU2675599 C1 RU 2675599C1
Authority
RU
Russia
Prior art keywords
phase
microreactor
nitrotetrazole
flow
methyl
Prior art date
Application number
RU2018104416A
Other languages
Russian (ru)
Inventor
Руфат Шовкет оглы Абиев
Станислав Дмитриевич Светлов
Михаил Алексеевич Илюшин
Юлия Николаевна Павлюкова
Ольга Михайловна Нестерова
Владимир Аронович Островский
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)"
Priority to RU2018104416A priority Critical patent/RU2675599C1/en
Application granted granted Critical
Publication of RU2675599C1 publication Critical patent/RU2675599C1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

FIELD: technological processes.SUBSTANCE: invention relates to a method for producing 2-methyl-5-nitrotetrazole by alkylation of the sodium salt of 5-nitrotetrazole in a two-phase system, an aqueous phase is methylene chloride, in which as the aqueous phase a reaction solution is used, obtained by the diazotization of 5-aminotetrazole with sodium nitrite in diluted sulfuric acid medium, followed by neutralization with sodium carbonate to pH=6.5–8.0, with the process of alkylation in a flow-type microreactor, and during the process a continuous measurement of the length of the dispersed phase droplets and fluid shells of a continuous phase is carried out, adjusting the position of a dispersing element of the microreactor in such a way as to ensure the maintenance of the two-phase flow parameters throughout the process. Invention also relates to a flow-type microreactor for implementing the production method.EFFECT: proposed production method allows to increase the safety of the process by eliminating the need to work with the individual crystalline sodium salt of 5-nitrotetrazole, which in an anhydrous form is highly sensitive to mechanical impulses, provides continuous maintenance of stable hydrodynamic conditions of the process during the accumulation of reaction products in the system.3 cl, 9 dwg, 3 ex

Description

Изобретение относится к химии тетразолов, конкретно к способу получения 2-метил-5-нитротетразола 1, имеющего применение в качестве легкоплавкого компонента (пластификатора) полимерной основы связующего энергонасыщенных систем и материалов [Ostrovskii V.A., Pevzner M.S., Kofman T.G. et al. Energetic 1,2,4-triazoles and tetrazoles. Synthesis, structure and properties. In Targets in Heterocyclic Systems. Chemistry and Properties/Eds. O. Attanasi, D. Spinelli. Ital. Soc. Chim. 1999, 3, 467-526], и устройству для его осуществления - микрореактору.The invention relates to the chemistry of tetrazoles, and specifically to a method for producing 2-methyl-5-nitrotetrazole 1 having use as a low-melting component (plasticizer) of a polymer base of a binder of energy-saturated systems and materials [Ostrovskii V.A., Pevzner M.S., Kofman T.G. et al. Energetic 1,2,4-triazoles and tetrazoles. Synthesis, structure and properties. In Targets in Heterocyclic Systems. Chemistry and Properties / Eds. O. Attanasi, D. Spinelli. Ital. Soc. Chim. 1999, 3, 467-526], and a device for its implementation - a microreactor.

На фиг.1 и 2 показан известный способ получения 2-метил-5-нитротетразола 1 [Thomas М. Klapotke, Carles

Figure 00000001
and Jorg Stierstorfer, Neutral 5-nitrotetrazoles: easy initiation with low pollution. New J. Chem., 2009, 33, 136-147]: на фиг. 1 - в виде химических схем, на фиг. 2 - в виде блок-схемы процесса (операционной схемы).1 and 2 show a known method for producing 2-methyl-5-nitrotetrazole 1 [Thomas M. Klapotke, Carles
Figure 00000001
and Jorg Stierstorfer, Neutral 5-nitrotetrazoles: easy initiation with low pollution. New J. Chem., 2009, 33, 136-147]: in FIG. 1 - in the form of chemical schemes, in FIG. 2 - in the form of a flowchart of a process (operational diagram).

На фиг. 3-5 показаны химические (фиг. 3) и операционные (фиг. 4) схемы, а также схема каталитического цикла Старкса (фиг. 5), по которым реализован способ-прототип [Pavlyukova, Yu. N.; Nesterova, О.M.; Ilyushin, М.A.; Ostrovskii, V.A., Chem. Heterocycl. Compd. 2017, 53, 733. [Khim. Geterotsikl. Soedin. 2017, 53, 733]. На фиг. 6. показана химическая схема, характеризующая потерю солью 6 при нарушении температурного и временного режима кристаллизационной воды, с ее превращением в безводную соль 5, обладающую свойствами инициирующего взрывчатого вещества, весьма чувствительного к начальным импульсам.In FIG. 3-5 show chemical (Fig. 3) and operational (Fig. 4) schemes, as well as a diagram of the Starks catalytic cycle (Fig. 5), which implements the prototype method [Pavlyukova, Yu. N .; Nesterova, O.M .; Ilyushin, M.A .; Ostrovskii, V.A., Chem. Heterocycl. Compd 2017, 53, 733. [Khim. Geterotsikl. Soedin. 2017, 53, 733]. In FIG. 6. A chemical diagram is shown that characterizes the loss of salt 6 in violation of the temperature and time conditions of crystallization water, with its transformation into anhydrous salt 5, which has the properties of an initiating explosive that is very sensitive to initial pulses.

На фиг. 7 представлена схема предлагаемого устройства, на фиг. 8 - временная диаграмма сигналов, регистрируемых датчиками перемещения границы раздела водной и органической фаз, на фиг. 9 - схема снарядного (тейлоровского) течения в предлагаемом аппарате.In FIG. 7 presents a diagram of the proposed device, FIG. 8 is a timing chart of signals recorded by the displacement sensors of the aqueous and organic phases, FIG. 9 is a diagram of the shell (Taylor) current in the proposed apparatus.

Известны следующие способы получения 2-метил-5-нитротетразола 1. 1. Алкилирование 5-аминотетразола 2 диметилсульфатом в водном растворе NaOH с разделением образующихся региоизомерных 1-метил-5-амино- 3 и 2-метил-5-аминотетразола 4 и последующим диазотированием 2-метил-5-аминотетразола 4 нитритом натрия в серной кислоте [Thomas М. Klapotke, Carles

Figure 00000001
and Jorg Stierstorfer, Neutral 5-nitrotetrazoles: easy initiation with low pollution. New J. Chem., 2009, 33, 136-147] (фиг. 1, 2).The following methods are known for producing 2-methyl-5-nitrotetrazole 1. 1. Alkylation of 5-aminotetrazole 2 with dimethyl sulfate in an aqueous NaOH solution with separation of the resulting regioisomeric 1-methyl-5-amino-3 and 2-methyl-5-aminotetrazole 4 and subsequent diazotization 2-methyl-5-aminotetrazole 4 with sodium nitrite in sulfuric acid [Thomas M. Klapotke, Carles
Figure 00000001
and Jorg Stierstorfer, Neutral 5-nitrotetrazoles: easy initiation with low pollution. New J. Chem., 2009, 33, 136-147] (Fig. 1, 2).

Как следует из фиг. 1, 2, данный способ получения 2-метил-5-нитротетразола 1 имеет следующие недостатки:As follows from FIG. 1, 2, this method of producing 2-methyl-5-nitrotetrazole 1 has the following disadvantages:

- при алкилировании 5-аминотетразола 2 образуются два региоизомерных продукта: 1-метил-5-аминотетразол 3 и 2-метил-5-аминотеразол 4 в соотношении ~2:1.5 соответственно [Ф.Р. Бенсон, в кн. Гетероциклические соединения, т. 8. Ред. Р. Эльдерфильд, М.: 1969, с. 46]. Данное соотношение обусловлено электронодонорным эффектом заместителя у атома углерода тетразольного цикла (аминогруппа) [Ostrovskii V.A., Koren А.О., Heterocycles, 2000. N6, p. 1421-1448]. Отметим, что для получения целевого продукта 2-метил-5-нитротетразола 1 пригоден только один из двух региоизомеров, а именно - 2-метил-5-аминотетразол 4, который, как указано выше, образуется в ходе алкилирования в меньшем количестве, чем региоизомер 3. После разделения региоизомеров 3 и 4, 2-метил-5-аминотетразол 4 выделяют с низким выходом, не превышающим 15%. Очевидно, что выход целевого соединения - 2-метил-5-нитротетразола 1 не превышает 10% в расчете на исходный 5-аминотетразол 2.- during the alkylation of 5-aminotetrazole 2, two regioisomeric products are formed: 1-methyl-5-aminotetrazole 3 and 2-methyl-5-aminotetrazole 4 in a ratio of ~ 2: 1.5, respectively [F.R. Benson, in the book. Heterocyclic compounds, v. 8. Ed. R. Elderfield, Moscow: 1969, p. 46]. This ratio is due to the electron-donating effect of the substituent on the carbon atom of the tetrazole ring (amino group) [Ostrovskii V.A., Koren A.O., Heterocycles, 2000. N6, p. 1421-1448]. Note that to obtain the target product of 2-methyl-5-nitrotetrazole 1, only one of the two regioisomers is suitable, namely, 2-methyl-5-aminotetrazole 4, which, as mentioned above, is formed during alkylation in a smaller amount than the regioisomer 3. After separation of the regioisomers 3 and 4, 2-methyl-5-aminotetrazole 4 is isolated in a low yield not exceeding 15%. Obviously, the yield of the target compound - 2-methyl-5-nitrotetrazole 1 does not exceed 10% based on the starting 5-aminotetrazole 2.

Способ-прототип настоящего изобретения описан в работе [Pavlyukova, Yu.N.; Nesterova, О.M.; Ilyushin, М.A.; Ostrovskii, V.A., Chem. Heterocycl. Compd. 2017, 53, 733. [Khim. Geterotsikl. Soedin. 2017, 53, 733.]. Как следует из химических и операционных схем, а также каталитического цикла Старкса (фиг. 3-5), способ-прототип позволяет синтезировать соединение 1 в три стадии (А-Е): А - получение натриевой соли 5-нитротетразола 5, диазотированием 5-аминотетразола 2 нитритом натрия в водном растворе серной кислоты, с последующей нейтрализацией Na2CO3 до рН=7.5-8.0. На стадии В, следуя методикам, приведенным в описании к патентам [von Herz, Е. (Jan 5, 1937). U.S. Patent 2,066,954; Renz, R.N.; Williams, M.D.; Fronabarger, J.W. (Aug 7, 2007). U.S. Patent 7,253,288 B2], a также в статье [Ilyushin, M.A.; Smimov, A.V.; Andreev, V.N.; Tselinskii, I.V.; Shugalei, I.V.; Nesterova, О.M. Russian J. General Chem. (Engl. Transl), 2015, 85, 2878], из водного реакционного раствора, содержащего растворенную натриевую соль 5-нитротетразола (Na-5-NT aq), (фиг. 2), выделяют соответствующую кристаллическую соль 5-нитротетразола 5 в форме тетрагидрата путем выпаривания досуха водного реакционного раствора А в токе воздуха на кипящей водяной бане. На стадии С растворяют тетрагидрат натриевой соли 5-нитротетразола (cryst) 5 в воде и используют водный раствор вновь образованной соли Na-5-NT aq для последующего алкилирования в условиях межфазного катализа (Стадия D). На стадии D алкилируют диметилсульфатом тетрагидрат натриевой соли 5-нитротетразола 5, в двухфазной системе вода - хлористый метилен в присутствии катализатора межфазного переноса - тетрабутиламмония бромистого (фиг. 3, 4). Как следует из цикла Старкса (фиг. 5), в результате равновесного обмена ионами в водной фазе из натриевой соли 5-нитротетразола 5aq образуется тетрабутиламмониевая соль 5-нитротетразола 7, которая, благодаря липофильному катиону, преодолевает границу раздела фаз. В органической фазе осуществляется процесс алкилирования соли 7 с образованием целевого 2-метил-5-нитротетразола 1.The prototype method of the present invention is described in [Pavlyukova, Yu.N .; Nesterova, O.M .; Ilyushin, M.A .; Ostrovskii, VA, Chem. Heterocycl. Compd 2017, 53, 733. [Khim. Geterotsikl. Soedin. 2017, 53, 733.]. As follows from the chemical and operational schemes, as well as the Starks catalytic cycle (Fig. 3-5), the prototype method allows you to synthesize compound 1 in three stages (AE): A - obtaining the sodium salt of 5-nitrotetrazole 5, diazotization 5- aminotetrazole 2 with sodium nitrite in an aqueous solution of sulfuric acid, followed by neutralization of Na 2 CO 3 to pH = 7.5-8.0. At stage B, following the procedures described in the description of the patents [von Herz, E. (Jan 5, 1937). US Patent 2,066,954; Renz, RN; Williams, MD; Fronabarger, JW (Aug 7, 2007). US Patent 7,253,288 B2], and also in [Ilyushin, MA; Smimov, AV; Andreev, VN; Tselinskii, IV; Shugalei, IV; Nesterova, O.M. Russian J. General Chem. (Engl. Transl), 2015, 85, 2878], from the aqueous reaction solution containing the dissolved 5-nitrotetrazole sodium salt (Na-5-NT aq), (FIG. 2), the corresponding crystalline 5-nitrotetrazole 5 salt is isolated in the form tetrahydrate by evaporating to dryness the aqueous reaction solution A in a stream of air in a boiling water bath. In step C, 5-nitrotetrazole (sodium) 5 sodium salt tetrahydrate is dissolved in water and an aqueous solution of the newly formed Na-5-NT aq salt is used for subsequent alkylation under interfacial catalysis (Step D). In stage D, sodium tetrahydrate of 5-nitrotetrazole 5 is alkylated with dimethyl sulfate, in a two-phase system, water is methylene chloride in the presence of an interphase transfer catalyst - tetrabutylammonium bromide (Fig. 3, 4). As follows from the Starks cycle (Fig. 5), as a result of the equilibrium exchange of ions in the aqueous phase, the tetrabutylammonium salt of 5-nitrotetrazole 7 is formed from the 5-nitrotetrazole 5aq sodium salt, which, due to the lipophilic cation, overcomes the phase boundary. In the organic phase, the process of alkylation of salt 7 is carried out with the formation of the target 2-methyl-5-nitrotetrazole 1.

Способ-прототип обладает очевидным достоинством. А именно: в этом способе исключена необходимость предварительного получения и последующего диазотирования 2-метил-5-аминотетразола 4 (фиг. 1). Алкилирование в этом случае осуществляется напрямую, в качестве субстрата выступает тетрабутиламмониевая соль 5-нитротетразола 7, образующаяся в результате обмена ионами (фиг. 3-5) натрия и тетрабутиламмония (фиг. 3, 4). При этом основным продуктом реакции является целевой региоизомер - 2-метил-5-нитротетразол 1. Преимущественное образование N2-изомера является следствием сильного электроноакцепторного характера группы NO2 у атома углерода тетразольного цикла [Ostrovskii V.A., Koren А.О., Heterocycles, 2000. N6, p. 1421-1448]; в отличие от группы NH2, обладающей, как указано выше, электронодонорными свойствами, что и приводит к преимущественному образованию N1-изомера. Выход целевого продукта, согласно условиям, приведенным в способе-прототипе, достаточно высокий (80%); после кристаллизации 61%.The prototype method has an obvious advantage. Namely: this method eliminates the need for preliminary preparation and subsequent diazotization of 2-methyl-5-aminotetrazole 4 (Fig. 1). Alkylation in this case is carried out directly, the tetrabutylammonium salt of 5-nitrotetrazole 7, formed as a result of the exchange of ions (Figs. 3-5) of sodium and tetrabutylammonium, acts as a substrate. The main reaction product is the target regioisomer, 2-methyl-5-nitrotetrazole 1. The predominant formation of the N 2 isomer is a consequence of the strong electron-withdrawing nature of the NO 2 group at the carbon atom of the tetrazole ring [Ostrovskii VA, Koren A.O., Heterocycles, 2000 . N6, p. 1421-1448]; in contrast to the NH2 group, which, as indicated above, has electron-donating properties, which leads to the predominant formation of the N 1 -isomer. The yield of the target product, according to the conditions given in the prototype method, is quite high (80%); after crystallization 61%.

Однако, представленный выше способ-прототип обладает и некоторыми существенными недостатками. Во-первых, данный способ потенциально взрывоопасен, т.к. на стадии (В) - выделяют тетрагидрат натриевой соли 5-нитротетразола 6, упариванием досуха реакционного раствора, содержащего в качестве основного компонента водную натриевую соль 5-нитротетразола 5aq. Соль 6, при нарушении температурного и временного режима, теряет кристаллизационную воду, превращаясь в безводную соль 5 (фиг. 3 и 6), обладающую свойствами инициирующего взрывчатого вещества, весьма чувствительного к начальным импульсам (удар, трение, луч огня, электрический разряд) [Koldobskii, G.I.; Soldatenko, D.S.; Gerasimova E.S.; Khokryakova, N.R.; Shcherbinin, M.B.; Lebedev, V.P.; Ostrovskii, V.A. Russian J. Org Chem. (Engl. Transl.) 1991, 33, 1771].However, the above prototype method has some significant disadvantages. Firstly, this method is potentially explosive, because at the stage (B) - sodium tetrahydrate of 5-nitrotetrazole 6 is isolated by evaporation to dryness of the reaction solution containing 5aq aqueous sodium salt of 5-nitrotetrazole as the main component. Salt 6, in violation of the temperature and time regime, loses crystallization water, turning into anhydrous salt 5 (Figs. 3 and 6), which has the properties of an initiating explosive that is very sensitive to initial impulses (shock, friction, fire beam, electric discharge) [ Koldobskii, GI; Soldatenko, D.S .; Gerasimova E.S .; Khokryakova, N.R .; Shcherbinin, M.B .; Lebedev, V.P .; Ostrovskii, V.A. Russian J. Org Chem. (Engl. Transl.) 1991, 33, 1771].

Очевидно, что для решения проблемы потенциальной взрывоопасности, обусловленной потерей кристаллизационной воды и превращения соли 6 в безводную соль 5 (фиг. 4), следует исключить стадию В (фиг. 3, 4) из процесса получения 2-метил-5-нитротетразола 1. Другой недостаток способа-прототипа заключается в том, что синтез 2-метил-5-нитротетразола 1 выполняют в емкостном реакторе (batch-reactor), в котором, из-за диффузионного контроля скорости, необходимо интенсивное перемешивание двухфазной системы «водная фаза - органический растворитель». Для этого в способе-прототипе предложено использовать высокоскоростной диспергатор (с частотой вращения 4000 об/мин). Несмотря на это, для проведения синтеза 2-метил-5-нитротетразола 1 в условиях межфазного катализа необходим катализатор - тетрабутиламмоний бромистый (ТБАБ) [Демлов, Э.; Демлов 3. Межфазный катализ. Пер. с англ. - М.: Мир, 1987. - 485 с.]Obviously, to solve the problem of potential explosion hazard caused by the loss of crystallization water and the conversion of salt 6 to anhydrous salt 5 (Fig. 4), stage B (Figs. 3, 4) should be excluded from the process of obtaining 2-methyl-5-nitrotetrazole 1. Another disadvantage of the prototype method is that the synthesis of 2-methyl-5-nitrotetrazole 1 is carried out in a capacitive reactor (batch-reactor), in which, due to the diffusion control of the speed, intensive mixing of the two-phase system "water phase - organic solvent ". To do this, in the prototype method, it is proposed to use a high-speed dispersant (with a rotation speed of 4000 rpm). Despite this, for the synthesis of 2-methyl-5-nitrotetrazole 1 under the conditions of interphase catalysis, a catalyst is needed - tetrabutylammonium bromide (TBAB) [Demlov, E .; Demlov 3. Interfacial catalysis. Per. from English - M .: Mir, 1987. - 485 p.]

Предлагаемое изобретение позволяет устранить указанные выше недостатки способа-прототипа. С этой целью в процессе на стадии алкилирования (D) (фиг. 4) вместо емкостного реактора периодического действия и условий межфазного катализа предлагается использовать микрореактор проточного типа, имеющий общие технические элементы с микрореактором, описанном в патенте [Абиев, P.Ш; Попова, Е.А.; Светлов, С.Д.; Лаппалайнен, Л.А.; Трифонов, Р.Е.; Островский В.А. (10.08.2015, Бюл. №22). RU 2559369 С1], но отличающийся от него несколькими существенными признаками.The present invention allows to eliminate the above disadvantages of the prototype method. To this end, in the process at the alkylation stage (D) (Fig. 4), instead of a batch reactor and interphase catalysis conditions, it is proposed to use a flow-type microreactor having common technical elements with the microreactor described in the patent [Abiev, P. Ш; Popova, E.A .; Svetlov, S.D .; Lappalainen, L.A .; Trifonov, R.E .; Ostrovsky V.A. (08/10/2015, Bull. No. 22). RU 2559369 C1], but differing from it by several significant features.

Известен микрореактор (устройство-аналог) проточного типа [Абиев, P.Ш; Попова, Е.А.; Светлов, С.Д.; Лаппалайнен, Л.А.; Трифонов, Р.Е.; Островский В.А. (10.08.2015, Бюл. №22). RU 2559369 С1] содержащий микроканал для проведения гетерофазной химической реакции, Y-образный микродиспергатор с штуцерами для ввода сплошной и дисперсной фаз, насосы для подачи реакционных растворов и сепарационное устройство.Known microreactor (analog device) flow type [Abiev, P. Ш; Popova, E.A .; Svetlov, S.D .; Lappalainen, L.A .; Trifonov, R.E .; Ostrovsky V.A. (08/10/2015, Bull. No. 22). RU 2559369 C1] containing a microchannel for conducting a heterophasic chemical reaction, a Y-shaped microdispersant with fittings for introducing continuous and dispersed phases, pumps for supplying reaction solutions and a separation device.

К выходному патрубку микрореактора присоединены последовательно сепаратор для разделения жидких фаз и сепаратор для отделения газов и парообразных продуктов от жидкости. Известное устройство позволяет эффективно осуществлять массообмен с химической реакцией, однако при использовании дисперсной фазы, хорошо смачивающей поверхность микроканала, тейлоровский (снарядный) режим течения не возникает, а фазы образуют два слоя, движущихся друг над другом (стратифицированное, или слоистое, течение), либо дисперсная фаза движется в виде «ручейка» по поверхности капилляра. Это препятствует реализации преимуществ микроканалов, обусловленных тейлоровскими вихрями, возникающими между соседними каплями дисперсной среды (Бауэр Т., Шуберт М., Ланге Р., Абиев Р.Ш. Интенсификация гетерогенно-каталитических газожидкостных реакций в реакторах с многоканальным монолитным катализатором // Журн. прикл. химии, 2006., Т. 79, №7, С. 1057-1066; М.Т. Kreutzer, F. Kapteijn, J.А. Moulijn, J.J. Heiszwolf, Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels // Chemical Engineering Science. 2005. V. 60. P. 5895-5916). Как удельная поверхность, так и поверхностный коэффициент массоотдачи при этом резко снижаются, и процесс протекает в крайне неблагоприятных условиях.A separator for separating the liquid phases and a separator for separating gases and vaporous products from the liquid are connected in series to the outlet pipe of the microreactor. The known device allows efficient mass transfer with a chemical reaction, however, when using a dispersed phase that moistens the surface of the microchannel well, the Taylor (slug) flow regime does not occur, and the phases form two layers moving one above the other (stratified or layered flow), or the dispersed phase moves in the form of a "brook" along the surface of the capillary. This prevents the realization of the advantages of microchannels due to Taylor vortices arising between adjacent drops of a dispersed medium (Bauer T., Schubert M., Lange R., Abiev R.Sh. Intensification of heterogeneous-catalytic gas-liquid reactions in reactors with a multichannel monolithic catalyst // Zhurn. Prikl. Chemistry, 2006., T. 79, No. 7, pp. 1057-1066; M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, JJ Heiszwolf, Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels // Chemical Engineering Science. 2005. V. 60. P. 5895-5916). In this case, both the specific surface and the surface mass transfer coefficient sharply decrease, and the process proceeds under extremely unfavorable conditions.

Известно устройство (устройство-аналог) для проведения процесса получения замещенных тетразолов диазотированием 5-аминотетразола с использованием микрореакторов (WO 2006/029193 А2, 16.03.2006, C07D 257/04 (2006.01); US 7253288 В2, 07.08.2007, C07D 257/06 (2006.01), C07D 257/04 (2006.01) Renz, R.N., Williams, M.D., Fronabarger J.W.). Необходимость использования микрореакторов при проведении процесса в гомогенных условиях не является очевидной и приводит к неоправданному усложнению аппаратурного оформления процесса. Кроме того, в этом техническом решении используются микрореакторы, конструкция которых не позволяет осуществлять непрерывное измерение и корректировку длины капель дисперсной фазы и жидкостных снарядов сплошной фазы. В результате этого, за счет изменения структуры течения в ходе протекания реакции в устройстве по известному изобретению нарушается снарядный режим течения, что не позволяет реализовать преимущества снарядного режима течения и поддержать параметры двухфазного течения на протяжении всего процесса. Режим течения при этом сменяется на капельный, с каплями дисперсной фазы, размер которых меньше диаметра микроканала. Все это существенно ухудшает массообмен и в целом значительно понижает производительность устройства.A device (analog device) is known for carrying out the process of producing substituted tetrazoles by diazotization of 5-aminotetrazole using microreactors (WO 2006/029193 A2, March 16, 2006, C07D 257/04 (2006.01); US 7253288 B2, August 7, 2007, C07D 257 / 06 (2006.01), C07D 257/04 (2006.01) Renz, RN, Williams, MD, Fronabarger JW). The need to use microreactors when carrying out the process under homogeneous conditions is not obvious and leads to an unjustified complication of the hardware design of the process. In addition, this technical solution uses microreactors, the design of which does not allow continuous measurement and adjustment of the length of droplets of the dispersed phase and liquid projectiles of a continuous phase. As a result of this, due to changes in the flow structure during the course of the reaction in the device according to the known invention, the slug flow regime is violated, which does not allow to realize the advantages of the slug flow regime and maintain the two-phase flow parameters throughout the process. The flow regime in this case changes to a droplet, with droplets of a dispersed phase, the size of which is less than the diameter of the microchannel. All this significantly impairs mass transfer and generally significantly reduces the performance of the device.

Известен микрореактор {устройство-прототип) проточного типа, содержащий микроканал для проведения гетерофазной химической реакции, микродиспергатор с корпусом в форме вытянутого эллипсоида и диспергирующим элементом в виде полой иглы для ввода дисперсной фазы, установленной с возможностью осевого перемещения относительно корпуса микродиспергатора, насосы для подачи реакционных растворов (патент РФ №2614283, B01J 8/04). Известное устройство обеспечивает возможность поддержания стабильных гидродинамических условий ведения процесса, достижение заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи.Known microreactor (prototype device) of the flow type, containing a microchannel for conducting a heterophase chemical reaction, a microdisperser with a housing in the form of an elongated ellipsoid and a dispersing element in the form of a hollow needle for introducing a dispersed phase installed with the possibility of axial movement relative to the housing of the microdispersant, pumps for feeding solutions (RF patent No. 2614283, B01J 8/04). The known device provides the ability to maintain stable hydrodynamic conditions for the process, achieving a given mixing intensity, which, in turn, provides high values of the coefficients of heat and mass transfer.

Вместе с тем, в известном устройстве не предусмотрена возможность контроля за меняющимися характеристиками двухфазного течения. Как показали исследования, при протекании реакции в двухфазной системе, циркулирующей по замкнутому контуру микрореактора, происходит накопление продуктов реакции, что приводит к постепенному изменению физико-химических свойств фаз (вязкостей и межфазного натяжения), и, как следствие, изменяются параметры режима течения. Кроме того, меняется длина капель дисперсной фазы и жидкостных снарядов сплошной фазы: исходные сравнительно короткие капли сливаются в более длинные, в которых массоперенос существенно хуже из-за увеличения времени циркуляции внутри капли (Thulasidas Т.С., Abraham М.A., Cerro R.L. Bubble-train flow in capillaries of circular and square cross section // Chemical Engineering Science. 1995. V. 50, N 2. P. 183-199.). Чрезмерное и неконтролируемое удлинение капель приводит к срыву снарядного (тейлоровского) режима течения двухфазной смеси, обладающего наиболее благоприятными массообменными характеристиками для проведения процессов в гетерофазных системах. В итоге течение становится стратифицированным (слоистым) с очень слабо развитой поверхностью контакта фаз и практически отсутствующей конвективной диффузией, что приводит к существенному замедлению процесса в целом из-за резкого увеличения диффузионного сопротивления переносу.However, the known device does not provide the ability to control the changing characteristics of a two-phase flow. Studies have shown that when a reaction proceeds in a two-phase system circulating along the closed loop of a microreactor, the reaction products accumulate, which leads to a gradual change in the physicochemical properties of phases (viscosities and interfacial tension), and, as a result, the parameters of the flow regime change. In addition, the length of the droplets of the dispersed phase and the liquid shells of the continuous phase changes: the initial relatively short drops merge into longer ones, in which mass transfer is significantly worse due to the increase in circulation time inside the drop (Thulasidas T.S., Abraham M.A., Cerro RL Bubble-train flow in capillaries of circular and square cross section // Chemical Engineering Science. 1995. V. 50, N 2. P. 183-199.). Excessive and uncontrolled lengthening of the droplets leads to disruption of the projectile (Taylor) flow regime of the two-phase mixture, which has the most favorable mass transfer characteristics for carrying out processes in heterophase systems. As a result, the flow becomes stratified (layered) with a very poorly developed phase contact surface and almost no convective diffusion, which leads to a significant slowdown of the process as a whole due to a sharp increase in diffusion resistance to transfer.

Задачей предлагаемого изобретения является повышение безопасности процесса за счет исключения необходимости работы с индивидуальной кристаллической натриевой солью 5-нитротетразола, обладающей в безводной форме высокой чувствительностью к механическим импульсам, непрерывное поддержание стабильных гидродинамических условий ведения процесса при накоплении продуктов реакции в двухфазной системе, а именно в формировании в микроканалах капель дисперсной фазы с заданными размерами, распределенными в достаточно узком диапазоне, а также непрерывное поддержание равного расстояния между соседними каплями (т.е. длины жидкостных снарядов сплошной фазы), что в итоге ведет к достижению заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи, даже при значительном изменении физико-химических свойств растворов.The objective of the invention is to increase the safety of the process by eliminating the need to work with individual crystalline sodium salt of 5-nitrotetrazole, which has a high sensitivity to mechanical impulses in an anhydrous form, continuously maintaining stable hydrodynamic conditions of the process during the accumulation of reaction products in a two-phase system, namely, in the formation in microchannels of droplets of a dispersed phase with given sizes distributed in a rather narrow range, as well as f continuous maintenance of equal distance between adjacent drops (i.e., the length of liquid shells of the continuous phase), which ultimately leads to the achievement of a given mixing intensity, which, in turn, ensures high values of heat and mass transfer coefficients, even with a significant change in physical chemical properties of solutions.

Поставленная задача достигается тем, что в способе получения 2-метил-5-нитротетразола алкилированием натриевой соли 5-нитротетразола в двухфазной системе водная фаза - хлористый метилен, согласно изобретению, в качестве водной фазы используют реакционный раствор, полученный в результате диазотирования 5-аминотетразола нитритом натрия в среде разбавленной серной кислоты, с последующей нейтрализацией карбонатом натрия до рН=6,5-8,0, с проведением процесса алкилирования в микрореакторе проточного типа, причем в ходе процесса осуществляют непрерывное измерение длины капель дисперсной фазы и жидкостных снарядов сплошной фазы, подстраивая положение диспергирующего элемента микрореактора таким образом, чтобы обеспечить поддержание параметров двухфазного течения на протяжении всего процесса.The problem is achieved in that in the method for producing 2-methyl-5-nitrotetrazole by alkylation of the sodium salt of 5-nitrotetrazole in a two-phase system, the aqueous phase is methylene chloride, according to the invention, the reaction solution obtained by diazotization of 5-aminotetrazole with nitrite is used as the aqueous phase sodium in dilute sulfuric acid, followed by neutralization with sodium carbonate to pH = 6.5-8.0, with the alkylation process in a flow-type microreactor, and during the process not reryvnoe length measurement droplets of the dispersed phase and the continuous phase liquid projectiles, adjusting the position of the dispersive element microreactor so as to maintain a two-phase flow parameters throughout the process.

Поставленная задача достигается тем, что в микрореакторе проточного типа для реализации способа, содержащем микроканал для проведения гетерофазной химической реакции, микродиспергатор с корпусом сферической формы и диспергирующим элементом в виде полой иглы для ввода дисперсной фазы, установленной с возможностью осевого перемещения относительно корпуса микродиспергатора, насосы для подачи реакционных растворов, согласно изобретению, на микроканале установлены один или несколько датчиков для регистрации перемещения границы раздела водной и органической фаз, сигнал с которых подается на контроллер, подключенный к исполнительному устройству, управляющему осевым положением диспергирующего элемента относительно корпуса микродиспергатора.This object is achieved in that in a flow-type microreactor for implementing a method containing a microchannel for carrying out a heterophase chemical reaction, a microdisperser with a spherical body and a dispersing element in the form of a hollow needle for introducing a dispersed phase installed with the possibility of axial movement relative to the microdisperser case, pumps for of supplying reaction solutions according to the invention, one or more sensors are installed on the microchannel for detecting the movement of the interface and the aqueous and organic phases, the signal from which is supplied to the controller connected to an actuator that controls the axial position of the dispersing element relative to the microdispersion housing.

Поставленная задача достигается также тем, что в микрореакторе проточного типа, согласно изобретению, диаметр микродиспергатора в 1,3-2 раза больше внутреннего диаметра микрореактора, а диаметр полой иглы составляет 0,25-0,5 от внутреннего диаметра микрореактора.The task is also achieved by the fact that in the flow-through microreactor, according to the invention, the diameter of the microdispersant is 1.3-2 times larger than the inner diameter of the microreactor, and the diameter of the hollow needle is 0.25-0.5 of the inner diameter of the microreactor.

Заявляемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо.The claimed technical solution is new, has an inventive step and is industrially applicable.

Заявляемые способ и устройство позволяют обеспечить стабильные (распределенные в достаточно узком диапазоне) во времени размеры капель дисперсной фазы, а также равные расстояния между соседними каплями - в каплях сплошной фазы (так называемых слагах, жидкостных снарядах), даже при изменении физико-химических свойств гетерогенной среды (вязкости водной и органической фаз - растворов реагентов, межфазного натяжения), обусловленных накоплением в системе продуктов реакции и изменением температуры. Это гарантирует в течение всего процесса синтеза продукта практически одинаковые гидродинамические условия во всех элементах как сплошной, так и дисперсной среды - пузырях или каплях и слагах: интенсивность тейлоровских вихрей, время циркуляции в каждом элементе, а значит, и равномерное распределение по длине микроканалов коэффициентов тепло- и массоотдачи. В результате предлагаемое изобретение позволяет более полно использовать возможности микроканалов, т.е. при равной длине микроканалов в них достигается более высокие значения тепловых и массовых потоков, увеличивается выход реакций.The inventive method and device can provide stable (distributed in a fairly narrow range) in time the size of the droplets of the dispersed phase, as well as equal distances between adjacent drops in the drops of the continuous phase (the so-called slugs, liquid shells), even when the physicochemical properties of the heterogeneous medium (viscosity of the aqueous and organic phases - reagent solutions, interfacial tension), due to the accumulation of reaction products in the system and temperature changes. This ensures during the entire process of product synthesis almost identical hydrodynamic conditions in all elements of both a continuous and dispersed medium - bubbles or drops and slugs: the intensity of Taylor vortices, the circulation time in each element, and hence the uniform distribution along the length of the microchannels of the heat - and mass transfer. As a result, the present invention allows more fully use the capabilities of microchannels, i.e. with equal length of microchannels, higher values of heat and mass flows are achieved in them, and the yield of reactions increases.

Микрореактор проточного типа для реализации предлагаемого способа (фиг. 7) содержит микроканал 1 для проведения гетерофазной химической реакции, микродиспергатор с корпусом 2 сферической формы и диспергирующим элементом 3 в виде полой иглы для ввода дисперсной фазы, установленной с возможностью осевого перемещения относительно корпуса 2 микродиспергатора, насосы 4 для подачи реакционных растворов. На микроканале 1 установлены один или несколько датчиков 5 для регистрации перемещения границы раздела водной и органической фаз. Датчики 5 содержат излучатель 5а и приемник 5б могут быть инфракрасного типа, типа лазерного светодиода и светоприемника, либо иметь другой принцип действия. Вид сигнала, регистрируемого датчиком 5, изображен на фиг. 8. Сигнал с нескольких датчиков может обрабатываться контроллером для получения информации о средней величине длины капель 10 дисперсной фазы и жидкостных снарядов 11 сплошной фазы. Сигнал с датчиков 5 подается на контроллер 6, подключенный к исполнительному устройству 7, управляющему осевым положением диспергирующего элемента 3 относительно корпуса 2 микродиспергатора. Исполнительное устройство 7 может представлять собой электромагнитный, электромеханический, гидравлический, пневматический или иной привод, способный линейно перемещать диспергирующий элемент 3 относительно корпуса 2 микродиспергатора. На фиг. 7 представлен вариант исполнения исполнительного устройства 7, содержащего несколько гидравлических приводов, соединенных параллельно. Для обеспечения заданного времени пребывания с целью достижения высокого выхода реакции микроканал 1 с сепаратором 9 и шлангами насосов 4 по существу образуют замкнутое кольцо, по которому циркулирует двухфазная система.A flow-type microreactor for implementing the proposed method (Fig. 7) contains a microchannel 1 for carrying out a heterophase chemical reaction, a microdisperser with a spherical body 2 and a dispersing element 3 in the form of a hollow needle for introducing a dispersed phase, mounted with axial movement relative to the microdispersant body 2, pumps 4 for supplying reaction solutions. On the microchannel 1, one or more sensors 5 are installed to record the movement of the interface between the aqueous and organic phases. The sensors 5 contain an emitter 5a and a receiver 5b can be of the infrared type, such as a laser LED and a light receiver, or have a different principle of operation. The type of signal detected by the sensor 5 is shown in FIG. 8. The signal from several sensors can be processed by the controller to obtain information about the average length of the droplets 10 of the dispersed phase and liquid projectiles 11 of the continuous phase. The signal from the sensors 5 is supplied to the controller 6 connected to the actuator 7, which controls the axial position of the dispersing element 3 relative to the housing 2 of the microdisperser. The actuator 7 may be an electromagnetic, electromechanical, hydraulic, pneumatic or other actuator capable of linearly moving the dispersing element 3 relative to the housing 2 of the microdisperser. In FIG. 7 shows an embodiment of an actuator 7 comprising several hydraulic actuators connected in parallel. To ensure a given residence time in order to achieve a high reaction yield, the microchannel 1 with the separator 9 and the pump hoses 4 essentially form a closed ring, through which the two-phase system circulates.

Микродиспергатор включает также подвижное уплотнение 8 (сальниковое, сильфонное или другое), обеспечивающее герметичность сопряжения диспергирующего элемента 3 относительно корпуса 2 микродиспергатора.The microdispersant also includes a movable seal 8 (stuffing box, bellows or other), which ensures the tightness of the pairing of the dispersing element 3 relative to the housing 2 of the microdisperser.

Для разделения водной и органической фаз служит сепаратор 9, содержащий первую ступень 9а для отделения водной фазы и газов от хлористого метилена и вторую ступень 9б для отделения газов от водной фазы. В микроканале 1 образуются капли дисперсной фазы 10 и жидкостные снаряды (слаги) 11 сплошной фазы. В каплях дисперсной фазы 10 возникают вихри Тейлора 12, а в жидкостных снарядах (слагах) 11 сплошной фазы -аналогичные вихри Тейлора 13.To separate the aqueous and organic phases, a separator 9 is used, comprising a first stage 9a for separating the aqueous phase and gases from methylene chloride and a second stage 9b for separating gases from the aqueous phase. In the microchannel 1, droplets of the dispersed phase 10 and liquid projectiles (weak) 11 of the continuous phase are formed. In drops of the dispersed phase 10, Taylor 12 vortices appear, and in liquid shells (slugs) 11 of the continuous phase, Taylor 13 similar vortices appear.

Устройство работает следующим образом. Микроканал 1 устройства заполняют сплошной фазой, включая соответствующий насос 4, затем включают другой насос 4 и начинают подавать дисперсную фазу с заданным расходом, расходы обеих фаз также непрерывно измеряются. При некорректном выборе положения диспергирующего элемента 3 в микроканале 1 формируется либо стратифицированное (слоистое) течение, в котором тяжелая фаза движется в нижнем слое, а легкая фаза - в верхнем слое, либо тейлоровское (снарядное) течение, но длина капель дисперсной фазы и жидкостных снарядов сплошной фазы находится на грани устойчивого движения двухфазной смеси.The device operates as follows. The microchannel 1 of the device is filled with a continuous phase, including the corresponding pump 4, then the other pump 4 is turned on and the dispersed phase begins to be supplied at a given flow rate, the flow rates of both phases are also continuously measured. If the position of the dispersing element 3 is incorrectly selected in microchannel 1, either a stratified (layered) flow is formed in which the heavy phase moves in the lower layer and the light phase moves in the upper layer, or the Taylor (projectile) flow, but the length of the droplets of the dispersed phase and liquid shells the continuous phase is on the verge of stable motion of a two-phase mixture.

Для поддержания тейлоровского снарядного режима в ходе процесса осуществляют непрерывное измерение длины капель дисперсной фазы и жидкостных снарядов сплошной фазы при помощи датчиков 5. При известной скорости движения фаз путем умножения в контроллере 6 скорости движения капли на время ее прохождения tкап через зону регистрации датчика 5, в контроллере рассчитывается длина Ld капли дисперсной фазы 10:To maintain the Taylor shell mode during the process, continuous measurements are made of the length of the droplets of the dispersed phase and the liquid shells of the continuous phase using the sensors 5. At a known phase velocity by multiplying the droplet velocity in the controller 6 by the time t cap passes through the sensor registration zone 5, in the controller, the length L d of the droplet of the dispersed phase 10 is calculated:

Figure 00000002
Figure 00000002

Скорость капель может также определяться независимо - по сдвигу по времени сигнала Δt с двух датчиков 5 при известном расстоянии между соседними датчиками Lд как результат деления этого расстояния на сдвиг по времени Δt:The droplet speed can also be determined independently - by the time shift of the signal Δt from two sensors 5 at a known distance between adjacent sensors L d as a result of dividing this distance by a time shift Δt:

Figure 00000003
Figure 00000003

Аналогичным образом по времени tж.сн прохождения жидкостного снаряда 11 в контроллере рассчитывается его длина Ls:Similarly, according to the time t w.sn. of the passage of the liquid projectile 11 in the controller, its length L s is calculated:

Figure 00000004
Figure 00000004

где Utp - скорость двухфазного течения, м/с.where U tp is the velocity of the two-phase flow, m / s.

Полученные в результате измерений значения длины капли дисперсной фазы 10 и жидкостного снаряда 11 сравниваются с величинами, хранящимися в базе данных контроллера 6. В случае отклонения измеренных величин от диапазона допустимых длин капель 10 и жидкостных снарядов 11 (далее будем называть этот диапазон «нормой») производится их корректировка путем подстройки положения диспергирующего элемента 3 микрореактора следующим образом.The values of the droplet length of the dispersed phase 10 and the liquid projectile 11 obtained as a result of the measurements are compared with the values stored in the database of the controller 6. If the measured values deviate from the range of acceptable lengths of the droplets 10 and the liquid projectiles 11 (hereinafter, we will call this range the “norm”) they are adjusted by adjusting the position of the dispersing element 3 of the microreactor as follows.

Если длина капель 10 и жидкостных снарядов 11 выше нормы, контроллер 6 подает сигнал на исполнительное устройство 7, которое смещает диспергирующий элемент 3 вправо, ближе к зоне сужения корпуса 2 микродиспергатора. При этом генерируемые капли становятся короче, и параметры процесса восстанавливаются, приходя в норму.If the length of the droplets 10 and liquid shells 11 is higher than normal, the controller 6 sends a signal to the actuator 7, which biases the dispersing element 3 to the right, closer to the narrowing zone of the micro-dispersant body 2. In this case, the generated drops become shorter, and the process parameters are restored, returning to normal.

Если длина капель 10 и жидкостных снарядов 11 ниже нормы, контроллер 6 подает сигнал на исполнительное устройство 7, которое смещает диспергирующий элемент 3 влево, ближе к зоне расширения корпуса 2 микродиспергатора. При этом генерируемые капли становятся длиннее, приходя в норму, и параметры процесса снова восстанавливаются.If the length of the droplets 10 and the liquid projectiles 11 is below normal, the controller 6 sends a signal to the actuator 7, which biases the dispersing element 3 to the left, closer to the expansion zone of the microdispersion case 2. In this case, the generated drops become longer, returning to normal, and the process parameters are restored again.

Таким же образом система «датчики 5 - контроллер 6 - исполнительное устройство 7 - диспергирующий элемент 3» обеспечивают поддержание параметров двухфазного течения на протяжении всего процесса, в том числе в ходе проведения химической реакции, когда по мере накопления продуктов в водной и органической фазах меняются их физико-химические характеристики.In the same way, the system "sensors 5 - controller 6 - actuator 7 - dispersing element 3" ensure the maintenance of the parameters of the two-phase flow throughout the process, including during the chemical reaction, when they accumulate in the aqueous and organic phases, they change physico-chemical characteristics.

Пример конкретного выполнения 1. Получение натриевой соли 5-нитротетразола в емкостном реакторе по способу-прототипу (фиг. 2).An example of a specific implementation 1. Obtaining the sodium salt of 5-nitrotetrazole in a capacitive reactor according to the prototype method (Fig. 2).

Натриевую соль 5-нитротетразола получают диазотированием 5-аминотетразола нитритом натрия в емкостном реакторе.Sodium salt of 5-nitrotetrazole is obtained by diazotization of 5-aminotetrazole with sodium nitrite in a capacitive reactor.

Синтез натриевой соли 5-нитротетразола включает в себя ряд операций:The synthesis of sodium salt of 5-nitrotetrazole includes a number of operations:

а. Приготовление раствора гидрата 5-аминотетразола в 1.5%-ной H2SO4. В стакан вместимостью 200 мл, снабженный термометром, механической мешалкой и обогревом, заливают 152 мл дистиллированной воды и при перемешивании добавляют 1.3 мл (0.023 моль) концентрированной серной кислоты (98%), нагревают раствор кислоты до 70-75°С, присыпают 9.78 г (0.095 моль) моногидрата 5-аминотетразола и перемешивают до полного растворения.but. Preparation of a solution of 5-aminotetrazole hydrate in 1.5% H 2 SO 4 . Fill 152 ml of distilled water with a thermometer, a mechanical stirrer and heating, add 1.3 ml (0.023 mol) of concentrated sulfuric acid (98%) with stirring, heat the acid solution to 70-75 ° С, add 9.78 g (0.095 mol) of 5-aminotetrazole monohydrate and stirred until complete dissolution.

б. Приготовление водного раствора нитрита натрия. В стакан вместимостью 500 мл, снабженный термометром, механической мешалкой и обогревом, засыпают 22 г (0.32 моль) NaNO2, заливают 152 мл дистиллированной воды и нагревают до 60°С при перемешивании до полного растворения соли.b. Preparation of an aqueous solution of sodium nitrite. In a glass with a capacity of 500 ml, equipped with a thermometer, a mechanical stirrer and heating, 22 g (0.32 mol) of NaNO 2 are poured, 152 ml of distilled water are poured and heated to 60 ° C with stirring until the salt is completely dissolved.

в. Проведение диазотирования 5-аминотетразола. При перемешивании и температуре 60°С к раствору нитрита натрия дозируют с помощью насоса-дозатора или обогреваемой капельной воронки в течение примерно 60 мин (скорость дозировки 2.5-3.5 мл/мин) раствор 5-аминотетразола в 1.5%-ной H2SO4 с температурой 70-75°С (температура поддерживается не ниже 70°С, чтобы не началась кристаллизация 5-аминотетразола из раствора). Температуру в реакторе поддерживают в пределах 55-65°С.at. Diazotization of 5-aminotetrazole. With stirring and a temperature of 60 ° C, a solution of 5-aminotetrazole in 1.5% H 2 SO 4 s is metered to a solution of sodium nitrite with a metering pump or a heated dropping funnel for about 60 minutes (dosing rate 2.5-3.5 ml / min) a temperature of 70-75 ° C (the temperature is maintained at least 70 ° C so that crystallization of 5-aminotetrazole from the solution does not begin). The temperature in the reactor is maintained between 55-65 ° C.

г. Разложение соли диазония с контролем полноты разложения. Операцию выполняют в том же реакционном сосуде. После окончания дозировки сернокислотного раствора к реакционной массе при перемешивании добавляют по каплям с помощью капельной воронки в течение примерно 10 мин 6.8 мл 98%-ной H2SO4. При этом наблюдается бурное выделение азота в результате разложения соли диазония. При нормальном течении реакции после добавления концентрированной серной кислоты делают выдержку при температуре 80°С в течение 60 мин при перемешивании, по окончании ее производят контроль наличия диазосоединений в растворе. (Контроль осуществляют с помощью цветной качественной реакции на соли диазония, выполняемой с помощью насыщенного раствора β-нафтола в пропаноле-2. Реакцию проводят следующим образом: на бумажный фильтр наносят по капле реакционной массы и раствора β-нафтола, при наличии в реакционной массе диазосоединений по фронту соприкосновения растворов появляется красное окрашивание). В случае положительной реакции к реакционной массе добавляют еще 5.0 г нитрита натрия и реакционную массу выдерживают еще 1 час при 80°С с повторением контроля на наличие диазосоединения.The decomposition of the diazonium salt with control over the completeness of decomposition. The operation is performed in the same reaction vessel. After the dosage of the sulfuric acid solution has been completed, 6.8 ml of 98% H 2 SO 4 are added dropwise to the reaction mixture dropwise with the aid of a dropping funnel over about 10 minutes. In this case, a rapid release of nitrogen is observed as a result of the decomposition of the diazonium salt. In the normal course of the reaction, after the addition of concentrated sulfuric acid, exposure is carried out at a temperature of 80 ° C for 60 minutes with stirring; at the end of the reaction, the presence of diazo compounds in the solution is checked. (The control is carried out using a color qualitative reaction for diazonium salts, carried out using a saturated solution of β-naphthol in propanol-2. The reaction is carried out as follows: a drop of reaction mass and a solution of β-naphthol are applied to the paper filter, if there are diazo compounds in the reaction mass a red coloration appears along the contact front of the solutions). In the case of a positive reaction, another 5.0 g of sodium nitrite is added to the reaction mass and the reaction mass is kept for another 1 hour at 80 ° С with repeating the control for the presence of a diazo compound.

д. Нейтрализация реакционной массы до рН 6.5-8. Нейтрализацию реакционной массы осуществляют в том же стакане. При отсутствии в реакционном растворе солей диазония его охлаждают до 20°С и нейтрализуют при перемешивании тонко измельченным углекислым натрием до рН=6.5-8.0. Расход Na2CO3 на эту операцию составляет примерно 57-63 г. При проведении синтеза в открытых стаканах за счет испарения воды объем реакционной массы в конце реакции уменьшается до 200-220 мл. Полученная реакционная масса содержит 5-6% натриевой соли 5-нитротетразола, 1-2% NaNO2, 5-8% Na2SO4.e. Neutralization of the reaction mass to pH 6.5-8. The neutralization of the reaction mass is carried out in the same glass. In the absence of diazonium salts in the reaction solution, it is cooled to 20 ° C and neutralized with stirring with finely divided sodium carbonate to pH = 6.5-8.0. The consumption of Na 2 CO 3 for this operation is approximately 57-63 g. When carrying out the synthesis in open glasses due to the evaporation of water, the volume of the reaction mass at the end of the reaction decreases to 200-220 ml. The resulting reaction mass contains 5-6% sodium salt of 5-nitrotetrazole, 1-2% NaNO 2 , 5-8% Na 2 SO 4 .

Пример конкретного выполнения 2. Получение натриевой соли 5-нитротетразола диазотированием 5-аминотетразола нитритом натрия с проведением реакции в двухфазной системе вода - хлористый метилен (схемы 3-5), с использованием на стадии алкилирования микрореактора-прототипа.An example of a specific implementation 2. Obtaining the sodium salt of 5-nitrotetrazole by diazotization of 5-aminotetrazole with sodium nitrite by carrying out the reaction in a two-phase water-methylene chloride system (schemes 3-5), using the prototype microreactor at the alkylation stage.

Установка для проведения процесса диазотирования натриевой соли 5-нитротетразола нитритом натрия состоит из двух микрореакторов, изготовленных по известному изобретению (устройство-прототип). Процесс в микрореакторе проводят в три стадии. Сначала в микрореактор подают два потока реагентов: первый поток состоит из водного раствора нитрита натрия, второй - из раствора 5-аминотетразола в азотной кислоте. После проведения первой стадии в микрореакторе-прототипе объединенный поток реагентов, состоящий из продуктов взаимодействия нитрита натрия и 5-аминотетразола в HNO3, подают во второй микрореактор, вместе со вторым потоком, состоящим из водного раствора гидроокиси натрия. После прохождения потоками канала второй стадии в микрореакторе, поток с продуктами реакции выводят из реакционной зоны и собирают в отдельную емкость для последующего использования.Installation for the process of diazotization of the sodium salt of 5-nitrotetrazole sodium nitrite consists of two microreactors made according to the known invention (prototype device). The process in the microreactor is carried out in three stages. First, two reagent streams are fed into the microreactor: the first stream consists of an aqueous solution of sodium nitrite, the second one consists of a solution of 5-aminotetrazole in nitric acid. After the first stage in the prototype microreactor, the combined reagent stream, consisting of the reaction products of sodium nitrite and 5-aminotetrazole in HNO 3 , is fed into the second microreactor, together with the second stream, consisting of an aqueous solution of sodium hydroxide. After the streams pass the second stage channel in the microreactor, the stream with the reaction products is removed from the reaction zone and collected in a separate container for subsequent use.

В результате того, что в микрореакторе-прототипе размер капель и жидкостных снарядов не контролируется, через 10-15 минут работы режим течения в микроканале микрореактора нарушается, капли дисперсной фазы (хлористого метилена) становятся короткими (длина меньше или равна диаметру микрореактора), их движение затормаживается, а затем они распадаются в сплошную пленку, движущуюся по нижней части микрореактора. Это ведет к прекращению перемешивания тейлоровскими вихрями и резкому снижению удельной поверхности контакта фаз. В конечном счете процесс приходится останавливать либо время от времени корректировать производительность насоса, подающего хлористый метилен.As a result of the fact that in the prototype microreactor the size of the droplets and liquid shells is not controlled, after 10-15 minutes of operation the flow regime in the microreactor microchannel is violated, the dispersed phase droplets (methylene chloride) become short (the length is less than or equal to the diameter of the microreactor), their movement it brakes, and then they break up into a continuous film moving along the bottom of the microreactor. This leads to the cessation of mixing by Taylor vortices and a sharp decrease in the specific surface of the phase contact. In the end, the process has to be stopped, or from time to time to adjust the performance of the pump supplying methylene chloride.

Третью стадию - получение 2-метил-5-нитротетразола осуществляют следующим образом. В реактор емкостного типа помещают 15 мл дистиллированной воды и 15 мл CH2Cl2. При интенсивном перемешивании с помощью диспергатора (4000 об/мин) добавляют 1.00 г (4.79 ммоль) тетрагидрата натриевой соли 5-нитротетразола, 0.15 г тетрабутиламмония бромистого (0.48 ммоль), затем по каплям добавляют 12.08 г (95.80 ммоль) диметилсульфата.The third stage is the preparation of 2-methyl-5-nitrotetrazole as follows. 15 ml of distilled water and 15 ml of CH 2 Cl 2 are placed in a tank type reactor. Under vigorous stirring with a dispersant (4000 rpm), 1.00 g (4.79 mmol) of 5-nitrotetrazole sodium salt tetrahydrate, 0.15 g of tetrabutylammonium bromide (0.48 mmol) are added, then 12.08 g (95.80 mmol) of dimethyl sulfate are added dropwise.

Реакционную систему выдерживают при комнатной температуре и интенсивном перемешивании в течение 2.5 ч. Отделяют органический слой, промывают дистиллированной водой (2×15 мл). Органический слой сушат безв. MgSO4, отфильтровывают осадок. Фильтрат упаривают досуха на роторном испарителе. Получают 0.5 г (81%) смеси 1-метил-5-нитротетразола и 2-метил-5-нитротетразола в соотношении 1:3. После перекристаллизации из смеси H2O-EtOH, 1:1, получают 0.32 г (52%) бесцветных пластинчатых кристаллов 2-метил-5-нитротетразола (2), т.пл. 79-82°С. ИК спектр, ν, см-1: 1041 (CN4, вал.-деф.); 1271, 1448, 1508 (CN4, вал.); 1367, 1556 (NO2, вал.). Спектр ЯМР 1Н, δ, м.д.: 4.55 (3Н, с, СН3). Спектр ЯМР 13С, δ, м.д.: 166.4 (С-5); 41.9 (СН3). Найдено, %: С 19.06; Н 2.29; N 53.75. C2H3N5O2. Вычислено, %: С 18.61; Н 2.34; N 54.26.The reaction system was kept at room temperature and vigorously stirred for 2.5 hours. The organic layer was separated, washed with distilled water (2 × 15 ml). The organic layer is dried anhydrous. MgSO 4 , filter the precipitate. The filtrate was evaporated to dryness on a rotary evaporator. Obtain 0.5 g (81%) of a mixture of 1-methyl-5-nitrotetrazole and 2-methyl-5-nitrotetrazole in a ratio of 1: 3. After recrystallization from a mixture of H 2 O-EtOH, 1: 1, 0.32 g (52%) of colorless lamellar crystals of 2-methyl-5-nitrotetrazole (2), so pl. 79-82 ° C. IR spectrum, ν, cm -1 : 1041 (CN 4 , val.-def.); 1271, 1448, 1508 (CN 4 , val.); 1367, 1556 (NO 2 , val.). 1 H NMR spectrum, δ, ppm: 4.55 (3H, s, CH 3 ). 13 C NMR spectrum, δ, ppm: 166.4 (C-5); 41.9 (CH 3 ). Found,%: C 19.06; H 2.29; N 53.75. C 2 H 3 N 5 O 2 . Calculated,%: C 18.61; H 2.34; N 54.26.

Пример конкретного выполнения 3. Получение натриевой соли 5-нитротетразола диазотированием 5-аминотетразола нитритом натрия в микрореакторе по предлагаемому изобретению.An example of a specific implementation 3. Obtaining the sodium salt of 5-nitrotetrazole by diazotization of 5-aminotetrazole with sodium nitrite in a microreactor according to the invention.

Первые две стадии проводят так же, как описано в примере конкретного выполнения 2.The first two stages are carried out as described in the example of a specific implementation 2.

Третью стадию - получение 2-метил-5-нитротетразола осуществляют следующим образом. Процесс организован в микрореакторе периодического действия согласно предлагаемому изобретению (фиг. 7). Водная и органическая фазы насосами 4 подаются в корпус 2 микродиспергатора: сплошная фаза (вода) в кольцевой канал между диспергирующим элементом 3 и стенкой микроканале 1, дисперсная (хлористый метилен) - в диспергирующий элемент 3, установленный соосно по отношению к микроканалу 1. В микроканале 1 формируется требуемый, снарядный, режим течения. После прохождения микроканала 1 двухфазная система попадает в первую ступень сепаратора 9а, где происходит ее разделение. Легкая фаза -вода - скапливается в верхней части первой ступени сепаратора 9а и переливается во вторую ступень сепаратора 9б. Далее фазы вновь подаются в насосы 4 и в корпус 2 микродиспергатора и диспергирующий элемент 3.The third stage is the preparation of 2-methyl-5-nitrotetrazole as follows. The process is organized in a batch microreactor according to the invention (Fig. 7). The aqueous and organic phases by pumps 4 are fed into the housing 2 of the microdispersant: the continuous phase (water) into the annular channel between the dispersing element 3 and the wall of the microchannel 1, the dispersed (methylene chloride) - into the dispersing element 3, mounted coaxially with respect to the microchannel 1. In the microchannel 1 the required, shell, flow mode is formed. After passing through the microchannel 1, the two-phase system enters the first stage of the separator 9a, where it is separated. The light phase of water accumulates in the upper part of the first stage of the separator 9a and overflows into the second stage of the separator 9b. Next, the phases are again fed into the pumps 4 and into the housing 2 of the microdispersant and the dispersing element 3.

Методика проведения процесса синтеза следующая: рабочие растворы помещаются в ступени сепаратора 9а и 9б в объеме 3,3 мл (полый объем сепаратора 9). Затем запускают насосы 4, которые подают рабочие растворы в корпус 2 микродиспергатора и диспергирующий элемент 3 с заданными расходами: 0,07 мл/с для органической фазы и 0,05 мл/с для водной фазы. Таким образом, в первой ступени сепаратора 9а граница раздела водной и органической фаз устанавливается на уровне нижней кромки переливного патрубка, а вторая ступень сепаратора 9б полностью заполнена водной фазой. Через определенные промежутки времени производят отбор пробы водной фазы через верхний патрубок сепаратора 9б. После окончания эксперимента и отбора последней пробы водной фазы содержимое первой ступени сепаратора 9а сливают в сборную емкость (на фиг. 7 не показана) для дальнейшего выделения целевого продукта в кристаллической форме. Полученные пробы водной фазы разбавляют и анализируют методом УФ-спектроскопии для определения остаточного содержания натриевой соли 5-нитротетразола.The procedure for the synthesis process is as follows: working solutions are placed in the steps of the separator 9a and 9b in a volume of 3.3 ml (hollow volume of the separator 9). Then start the pumps 4, which feed the working solutions into the housing 2 of the microdispersant and the dispersing element 3 with the given flow rates: 0.07 ml / s for the organic phase and 0.05 ml / s for the aqueous phase. Thus, in the first stage of the separator 9a, the interface between the aqueous and organic phases is set at the level of the lower edge of the overflow pipe, and the second stage of the separator 9b is completely filled with the aqueous phase. At certain intervals, a sampling of the aqueous phase is carried out through the upper nozzle of the separator 9b. After the experiment is completed and the last sample of the aqueous phase is taken, the contents of the first stage of the separator 9a are poured into a collection tank (not shown in Fig. 7) to further isolate the target product in crystalline form. The obtained samples of the aqueous phase are diluted and analyzed by UV spectroscopy to determine the residual sodium salt of 5-nitrotetrazole.

Отделяют органический слой, промывают дистиллированной водой. Органический слой сушат безв. MgSO4, отфильтровывают осадок. Фильтрат упаривают досуха на роторном испарителе. Получают 0.661 г (80%) смеси 1-метил-5-нитротетразола и 2-метил-5-нитротетразола в соотношении 1:3. После перекристаллизации из смеси H2O-EtOH, 1:1, получают 0.446 г (54%) бесцветных пластинчатых кристаллов 2-метил-5-нитротетразола, т.пл. 80-82°С. ИК спектр, ν, см-1: 1041 (CN4, вал.-деф.); 1271, 1448, 1508 (CN4, вал.); 1367, 1556 (NO2, вал.). Спектр ЯМР 1Н, δ, м.д.: 4.55 (3Н, с, СН3). Спектр ЯМР 13С, δ, м. д.: 166.4 (С-5); 41.9 (СН3). Найдено, %: С 18.89; Н 2.21; N 54.05. C2H3N5O2. Вычислено, %: С 18.61; Н 2.34; N 54.26.Separate the organic layer, washed with distilled water. The organic layer is dried anhydrous. MgSO 4 , filter the precipitate. The filtrate was evaporated to dryness on a rotary evaporator. Obtain 0.661 g (80%) of a mixture of 1-methyl-5-nitrotetrazole and 2-methyl-5-nitrotetrazole in a ratio of 1: 3. After recrystallization from a mixture of H 2 O-EtOH, 1: 1, 0.446 g (54%) of colorless lamellar crystals of 2-methyl-5-nitrotetrazole are obtained, so pl. 80-82 ° C. IR spectrum, ν, cm -1 : 1041 (CN 4 , val.-def.); 1271, 1448, 1508 (CN 4 , val.); 1367, 1556 (NO 2 , val.). 1 H NMR spectrum, δ, ppm: 4.55 (3H, s, CH 3 ). 13 C NMR spectrum, δ, ppm: 166.4 (C-5); 41.9 (CH 3 ). Found,%: C 18.89; H 2.21; N 54.05. C 2 H 3 N 5 O 2 . Calculated,%: C 18.61; H 2.34; N 54.26.

Таким образом, предлагаемое изобретение позволяет повысить безопасность процесса за счет исключения необходимость работы с индивидуальной кристаллической натриевой солью 5-нитротетразола, обладающей в безводной форме высокой чувствительностью к механическим импульсам, обеспечивает непрерывное поддержание стабильных гидродинамических условий ведения процесса при накоплении продуктов реакции в системе, а именно в формировании в жидкости в микроканалах капель дисперсной фазы с заданными размерами, распределенными в достаточно узком диапазоне, а также непрерывное поддержание равного расстояния между соседними каплями (т.е. длины жидкостных снарядов сплошной фазы), что в итоге ведет к достижению заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи, даже при значительном изменении физико-химических свойств растворов.Thus, the present invention improves the safety of the process by eliminating the need to work with an individual crystalline sodium salt of 5-nitrotetrazole, which is highly sensitive to mechanical impulses in an anhydrous form, provides continuous maintenance of stable hydrodynamic conditions of the process during the accumulation of reaction products in the system, namely in the formation in the liquid in microchannels of droplets of a dispersed phase with predetermined sizes distributed in a fairly narrow m range, as well as the continuous maintenance of an equal distance between adjacent drops (i.e., the length of liquid shells of a continuous phase), which ultimately leads to the achievement of a given mixing intensity, which, in turn, ensures high values of heat and mass transfer coefficients, even at a significant change in the physicochemical properties of solutions.

Claims (3)

1. Способ получения 2-метил-5-нитротетразола алкилированием натриевой соли 5-нитротетразола в двухфазной системе водная фаза - хлористый метилен, отличающийся тем, что в качестве водной фазы используют реакционный раствор, полученный в результате диазотирования 5-аминотетразола нитритом натрия в среде разбавленной серной кислоты, с последующей нейтрализацией карбонатом натрия до рН=6,5-8,0, с проведением процесса алкилирования в микрореакторе проточного типа, причем в ходе процесса осуществляют непрерывное измерение длины капель дисперсной фазы и жидкостных снарядов сплошной фазы, подстраивая положение диспергирующего элемента микрореактора таким образом, чтобы обеспечить поддержание параметров двухфазного течения на протяжении всего процесса.1. The method of producing 2-methyl-5-nitrotetrazole by alkylation of the sodium salt of 5-nitrotetrazole in a two-phase system, the aqueous phase is methylene chloride, characterized in that the reaction solution obtained by diazotization of 5-aminotetrazole with sodium nitrite in a diluted medium is used as the aqueous phase sulfuric acid, followed by neutralization with sodium carbonate to pH = 6.5-8.0, with the alkylation process in a flow-type microreactor, and during the process, the length of the droplets is dispersed continuously phase and liquid shells of a continuous phase, adjusting the position of the dispersing element of the microreactor in such a way as to ensure the maintenance of the parameters of the two-phase flow throughout the process. 2. Микрореактор проточного типа для реализации способа по п. 1, содержащий микроканал для проведения гетерофазной химической реакции, микродиспергатор с корпусом сферической формы и диспергирующим элементом в виде полой иглы для ввода дисперсной фазы, установленным с возможностью осевого перемещения относительно корпуса микродиспергатора, насосы для подачи реакционных растворов, отличающийся тем, что на микроканале установлены один или несколько датчиков для регистрации перемещения границы раздела водной и органической фаз, сигнал с которых подается на контроллер, подключенный к исполнительному устройству, управляющему осевым положением диспергирующего элемента относительно корпуса микродиспергатора.2. A flow-type microreactor for implementing the method according to claim 1, comprising a microchannel for conducting a heterophasic chemical reaction, a microdisperser with a spherical body and a dispersing element in the form of a hollow needle for introducing a dispersed phase, mounted with the possibility of axial movement relative to the microdisperser case, feed pumps reaction solutions, characterized in that the microchannel has one or more sensors for detecting the movement of the interface between the aqueous and organic phases, a signal with which is fed to a controller connected to an actuator that controls the axial position of the dispersing element relative to the housing of the microdisperser. 3. Микрореактор проточного типа по п. 2, отличающийся тем, что диаметр микродиспергатора в 1,3-2 раза больше внутреннего диаметра микрореактора, а диаметр полой иглы составляет 0,25-0,5 от внутреннего диаметра микрореактора.3. The flow-type microreactor according to claim 2, characterized in that the diameter of the microdispersant is 1.3-2 times larger than the inner diameter of the microreactor, and the diameter of the hollow needle is 0.25-0.5 of the inner diameter of the microreactor.
RU2018104416A 2018-02-05 2018-02-05 Safe method for producing 2-methyl-5-nitrothetrazole and a microreactor for its implementation RU2675599C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018104416A RU2675599C1 (en) 2018-02-05 2018-02-05 Safe method for producing 2-methyl-5-nitrothetrazole and a microreactor for its implementation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018104416A RU2675599C1 (en) 2018-02-05 2018-02-05 Safe method for producing 2-methyl-5-nitrothetrazole and a microreactor for its implementation

Publications (1)

Publication Number Publication Date
RU2675599C1 true RU2675599C1 (en) 2018-12-20

Family

ID=64753538

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018104416A RU2675599C1 (en) 2018-02-05 2018-02-05 Safe method for producing 2-methyl-5-nitrothetrazole and a microreactor for its implementation

Country Status (1)

Country Link
RU (1) RU2675599C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029193A2 (en) * 2004-09-08 2006-03-16 Pacific Scientific Energetic Materials Company Process for preparing substituted tetrazoles from aminotetrazole
RU2559369C1 (en) * 2014-04-29 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Method of producing n-substituted-5-phenyltetrazoles and microreactor therefor
SU1841155A1 (en) * 1967-10-21 2016-07-20 Акционерное общество "Государственный научно-исследовательский институт "Кристалл" Method of 2-alkyl-5-nitro-tetrazole or bis (nitro-tetrazolyl)-alkanes production
SU1841206A1 (en) * 1968-11-15 2016-10-20 Акционерное общество "Государственный научно-исследовательский институт "Кристалл" Method of producing 2-alkyl-5-nitrotetrazoles
RU2614283C1 (en) * 2016-02-15 2017-03-24 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Device for dispersing droplets or bubbles in liquid in micro-channels and method for operation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1841155A1 (en) * 1967-10-21 2016-07-20 Акционерное общество "Государственный научно-исследовательский институт "Кристалл" Method of 2-alkyl-5-nitro-tetrazole or bis (nitro-tetrazolyl)-alkanes production
SU1841206A1 (en) * 1968-11-15 2016-10-20 Акционерное общество "Государственный научно-исследовательский институт "Кристалл" Method of producing 2-alkyl-5-nitrotetrazoles
WO2006029193A2 (en) * 2004-09-08 2006-03-16 Pacific Scientific Energetic Materials Company Process for preparing substituted tetrazoles from aminotetrazole
RU2559369C1 (en) * 2014-04-29 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Method of producing n-substituted-5-phenyltetrazoles and microreactor therefor
RU2614283C1 (en) * 2016-02-15 2017-03-24 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Device for dispersing droplets or bubbles in liquid in micro-channels and method for operation thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T. M. Klapotke et al. "Neutral 5-nitrotetrazoles: easy initiation with low pollution" New Journal of Chemistry, 33, 2009, 136-147. *
Ю. Н. Павлюкова и др. "Метилирование натриевой соли 5-нитротетразола в условиях межфазного катализа" Химия гетероциклических соединений, 53(6/7), 2017, 733-736. *

Similar Documents

Publication Publication Date Title
CN101180277B (en) Method for production of 1-alkyl-3-phenyluracils
Baxendale et al. Multi‐Step Synthesis by Using Modular Flow Reactors: The Preparation of Yne Ones and Their Use in Heterocycle Synthesis
Kopach et al. The continuous flow Barbier reaction: an improved environmental alternative to the Grignard reaction?
CN102962026B (en) Equipment and method for continuously preparing high-purity AKD (Alkyl Ketene Dimer) without solvent
RU2607941C2 (en) Methods and systems for forming boronic acids and intermediates thereof
Coliaie et al. Continuous-flow, well-mixed, microfluidic crystallization device for screening of polymorphs, morphology, and crystallization kinetics at controlled supersaturation
RU2675599C1 (en) Safe method for producing 2-methyl-5-nitrothetrazole and a microreactor for its implementation
CN108997126A (en) A kind of synthesis technology of the Barium trinitroresorcinate based on block Flow Technique
EP2635548A2 (en) Continuous production and reaction of a diazo compound
EP3765440B1 (en) Process for the preparation of n-alkyl-nitratoethylnitramines
CN108610293B (en) Method for preparing dorvitinib intermediate by adopting microchannel reaction device
Okafor et al. Continuous-flow crystallisation in 3D-printed compact devices
AU2015216279B2 (en) Method for continuously producing ketomalonic acid compound using flow reactor
Popova et al. Synthesis of 5-phenyltetrazole and its N-methyl derivatives in a microreactor
US7883551B2 (en) Process for carrying out crystallization
CN105709675A (en) Post reactor of device for producing melamine and related method
Roche et al. Development of a continuous evaporation system for an API solution stream prior to crystallization
Liu et al. Gas-liquid reactive crystallization kinetics of 2, 4, 6-triamino-1, 3, 5-trinitrobenzene in the semi-batch procedure
RU2559369C1 (en) Method of producing n-substituted-5-phenyltetrazoles and microreactor therefor
CN102207455B (en) An open hole identification method for anions F -, ac - and H2PO4-
Pascual et al. Design and optimization of the single-stage continuous mixed suspension–mixed product removal crystallization of 2-chloro-n-(4-methylphenyl) propenamide
WO2021099929A1 (en) A continuous flow process for the synthesis of hydroxamic acid
KR20150109603A (en) Couette-Taylor vortices reaction equipment for extending flow path in limit space
CN114426522B (en) Method for synthesizing 2,4, 6-trisubstituted pyrimidine compound by utilizing micro-channel reaction device
WO2018154097A1 (en) Method for preparation of 1-methyl-3-(trifluoromethyl)-1h-pyrazol-5-ol

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200206